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Abstract— A status updating system is considered in which a
variable length code is used to transmit messages to a receiver
over a noisy channel. The goal is to optimize the codewords
lengths such that successfully-decoded messages are timely. That
is, such that the age-of-information (AoI) at the receiver is
minimized. A hybrid ARQ (HARQ) scheme is employed, in which
variable-length incremental redundancy (IR) bits are added to
the originally-transmitted codeword until decoding is successful.
With each decoding attempt, a non-zero processing delay is
incurred. The optimal codewords lengths are analytically derived
utilizing a sequential differential optimization (SDO) framework.
The framework is general in that it only requires knowledge of an
analytical expression of the positive feedback (ACK) probability
as a function of the codeword length.

I. INTRODUCTION

Status updating over noisy communication channels calls

for careful coding design such that the delivered status up-

date messages are as timely as possible. Using an age-of-

information (AoI) metric to assess timeliness, defined as the

time elapsed since the latest successfully-decoded message

has been generated, our goal in this paper is to provide

an analytical framework to optimize codewords lengths for

variable length codes used in delivering timely updates.

Most previous work on systems that seek to optimize

codewords for AoI minimization, as in, e.g., [1]–[8], have

mainly focused on two distinct approaches, fixed redundancy

(FR), in which the message is communicated with a single

fixed-length transmission, and infinite incremental redundancy

(IIR) schemes in which the transmission length is increased

one symbol at a time until decoding is successful. Real systems

often use a hybrid ARQ (HARQ) approach, as in, e.g., [9]–

[12], in which the message length can be variable-length, but

not at a granularity of a single symbol. HARQ systems feature

an initial transmission followed by subsequent transmissions

(of possibly varying lengths) of incremental redundancy that

are guided by feedback from the receiver to the transmitter.

With no delay associated with decoding or requesting incre-

mental redundancy, the pure IIR scheme is expected to provide

a better AoI than the HARQ scheme that restricts the number

of incremental redundancy transmissions. However, most real
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systems include a nonzero processing delay β corresponding to

the time that it takes to decode the received codeword, transmit

a negative acknowledgement (NACK) to the transmitter, and

receive a subsequent incremental redundancy transmission. For

a large enough β, this overhead significantly increases the AoI

of the IIR approach and makes the HARQ approach preferable.

Optimizing the HARQ approach requires determination of

the length of the initial transmission and each subsequent

transmission of incremental redundancy. Sequential differen-

tial optimization (SDO) [13]–[15] identifies a sequence of

HARQ transmission lengths that optimizes throughput. For

a specified maximum number of feedback transmissions and

a maximum probability that the decoder fails to produce

a positive acknowledgement (ACK) even when all possible

incremental redundancy has been received, SDO finds the

transmission lengths that minimize average blocklength. SDO

requires a known probability distribution on the probability

of ACK at each cumulative blocklength, but works equally

well for the variety of distributions that arise from different

variable-length codes operating on different channels [15]–

[17]. The original formulation of SDO minimizes the average

blocklength for a fixed maximum number of feedback trans-

missions. The recent paper [18] re-frames the optimization

problem using a Lagrangian approach to provide a closed-

form expression for the optimal transmission lengths under a

constraint on the average number of feedback transmissions.

This paper extends the SDO approach to determine trans-

mission lengths that explicitly optimize AoI. Using AoI as the

SDO objective function yields different optimal transmission

lengths than using throughput as the objective function as in

[18], since the two objectives behave differently, see, e.g., [19].

One can differentiate between the works in [1]–[12] accord-

ing to 1) whether status updates are exogenous or generated

at will, depending on the ability to control transmission times;

and 2) whether or not replacements are allowed, depending on

the ability to let new updates replace the ones in service. Our

work in this paper is categorized as a generate-at-will HARQ

scheme without replacement, and is different from related

works in that a nonzero processing delay β is considered, and

that the optimal set of codewords lengths that minimize the

long-term average AoI is analytically derived.

Our case study for tail-biting convolutional codes shows

that optimized HARQ beats optimized IIR and FR without

replacement for all values of processing delay β.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a transmitter-receiver pair communicating over

a noisy memoryless channel. The transmitter generates k-bit

measurements, at will, from a time-varying process. Mea-

surements are time-stamped and sent to the receiver using

ℓ1-bit codewords, ℓ1 ≥ k. We use the term message to

denote a transmitted codeword. The receiver sends an ACK (a

NACK) feedback following successful (unsuccessful) decod-

ing attempts. Feedback messages are assumed to be free of

errors, which is a mild assumption given the low information

rate of the ACKs and NACKs. In addition to the time for

message transmission, a fixed β amount of time is consumed

per decoding attempt, which includes the roundtrip time for

sending feedback and processing it at the transmitter. We term

β the processing delay. A HARQ scheme is employed, in

which IR bits are transmitted to help the receiver re-attempt

decoding in case a NACK is fed back. IR lengths are denoted

by {ℓ2, ℓ3, . . . , ℓm}, where m is the maximum number of

transmission attempts per message. A system model overview

is shown in Fig. 1.

Let us denote the cumulative blocklength by

Nf ,
f
∑

i=1

ℓi, 1 ≤ f ≤ m, (1)

and let P
(Nf )
ACK denote the probability of receiving an ACK

while using a blocklength of Nf bits. Clearly, such probability

increases with Nf . The value of Nm is chosen to be large-

enough that P
(Nm)
ACK ≈ 1, which depends on the specific code

being used and the channel statistics.2 We note that Nm

is fixed, yet the value of m is not; it is to be optimally-

determined. Our SDO methodology, however, can be altered

to work for fixed Nm and m (cf. Section V-B).3

Let τi denote the ith service time: time consumed in

transmitting the ith message. We consider a normalized setting

in which sending a message using Nf bits consumes Nf

time units. The channel is memoryless, and hence τi’s are

independent and identically distributed (i.i.d.) ∼ τ , which is

approximately given by

τ =

{

N1 + β, w.p. P
(N1)
ACK

Nf + fβ, w.p. P
(Nf)
ACK − P

(Nf−1)
ACK , f ≥ 2

. (2)

The above serves as a close approximation to τ under the

reasonable assumption that receiving an ACK using Nf bits

implies receiving an ACK using Nf+1 bits as well. For

instance, for f = 2, one can write

P (τ = N2 + 2β) = P (NACK at N1, ACK at N2)

= P (ACK at N2)− P (ACK at N1, ACK at N2)

= P
(N2)
ACK − P

(N1)
ACK + P (ACK at N1, NACK at N2) , (3)

2We assume an ACK always corresponds to a successful (correct) decoding
event. We ignore events in which an error bypasses the receiver undetected.

3Other cases, such as when Nm is variable and m is fixed, or when both
are variable, are to be studied in future work.

encoder decoder
ℓ1 ℓ2 ℓ3

message

feedback (ACK/NACK)

IR bits

channel
β delay

Fig. 1. Overview of the considered HARQ system model. In this example, 3
transmissions are made before successful decoding, thereby requiring ℓ2+ ℓ3
IR bits to be transmitted on top of the original ℓ1 bits. A processing delay of
3β time units is incurred in total (β per decoding attempt).

whence the last term is assumed having probability ≈ 0.

Similar arguments can be followed for f > 2.

Our goal is to design the blocklengths {Nf} such that the

long-term average AoI is minimized. The AoI at time t is

a(t) , t− u(t), (4)

where u(t) represents the time stamp of the latest successfully-

decoded message. To minimize AoI, therefore, the transmitter

should not acquire the (i + 1)th measurement until the ith
message is transmitted successfully, i.e., after (at least) τi time

units starting from the transmission time of the ith message.

Remark 1 It is important to note that we focus on analyzing

a HARQ scheme without replacement. Specifically, it might be

better, AoI-wise, to drop the current message in transmission

after a certain number of NACKs, and replace it by a new,

fresher, one instead. This idea has been studied in, e.g., [11]

for a system with fixed m = 2. In this paper, we do not

focus on systems that allow replacements. Instead, we aim at

providing an analytical framework to design the blocklengths

{Nf} through a novel SDO approach discussed in Section III.

Let us denote by an epoch the time elapsed in between two

successful transmissions. At the beginning of the ith epoch,

the transmitter idly waits for Wi time units before acquiring

a new sample. Idle waiting can indeed minimize the average

AoI as shown in various results of the literature, e.g., [20],

[21]. In Fig. 2, we show an example of how the AoI may

evolve during the ith epoch. From the figure, one can see that

the ith epoch length is given by

Li = Wi + τi, (5)

and the corresponding area under the AoI curve is

Qi = τi−1Li +
1

2
L2
i . (6)

The sequence {Wi} denotes a waiting policy. Our goal is to

find the optimal blocklenghts and waiting policy that minimize

the long-term average AoI given by

lim sup
j→∞

∑j
i=1 E [Qi]

∑j
i=1 E [Li]

. (7)

Since τi’s are i.i.d., one can then conclude using the

results in [20] that the optimal waiting policy has a threshold

structure, in which

Wi = [γ − τi−1]
+
, (8)



Wi τiτi−1

. . .

. . .

AoI

time
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τi−1Li
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Fig. 2. An example of how the AoI may evolve in the ith epoch.

where γ ≥ 0 is some threshold, and [·]+ , max(·, 0).
This induces a stationary distribution Li ∼ L and Qi ∼ Q
for all epochs, and thereby reduces the focus to a typical

epoch through removing the summations in the numerator and

denominator of (7). Let us define τ as the starting AoI of such

an epoch. This allows us to write

E [L]=E

[

[γ − τ ]+
]

+ E [τ ] , (9)

E [Q]=E

[

τ [γ−τ ]
+
]

+(E[τ ])
2
+
1

2
E

[

(

[γ − τ ]
+
+τ
)2
]

.

(10)

Our optimization problem is therefore given by

min
{Nf}, γ≥0

E [Q]

E [L]

s.t. Nf > Nf−1, Nf ∈ Z++, ∀f (11)

with N0 , k; E [L] and E [Q] given by (9) and (10),

respectively; and τ and τ i.i.d. as in (2).

One can possibly follow a decomposition approach to solve

problem (11) by fixing the threshold γ and solving for the

blocklengths {Nf} in terms of γ, and then finding the optimal

threshold afterwards. We realize, however, that such approach

would not yield a clear analytical solution for the blocklengths,

which is one fundamental goal for this paper. Thereby, in

Section III, we focus on problem (11) in the special case

of a zero-wait policy, i.e., when γ = 0, and present a novel

SDO framework to find the optimal blocklengths. After that, in

Section IV, we discuss how to find the threshold based on the

SDO solution (which may be suboptimal). Under a zero-wait

policy, the objective function of problem (11) is simplified to

ρ0 , E [τ ] +
E
[

τ2
]

2E [τ ]
. (12)

III. THE SDO APPROACH

In this section, we solve problem (11) for γ = 0. The SDO

approach basically solves for all the blocklengths sequentially

in terms of N1. A one-dimensional search is then followed

to find the optimal N∗
1 , and subsequently all the other block-

lengths. Such approach, however, will not work if we optimize

ρ0 in its current fractional form. The reason, for instance, is

that the partial derivative of ρ0 with respect to N1 is a function

of all the blocklengths, while it should only be a function

of N1 and N2 so that the optimal N2 can be completely

characterized in terms of N1.

In fact, as we will show, the SDO approach will work

if ρ0 is represented in an equivalent yet non-fractional way.

Towards that end, we follow a Dinkelbach-like approach [22],

and introduce the following auxiliary problem for fixed λ ≥ 0:

p(λ) , min
{Nf}

(1− λ)E [τ ] +
1

2
E
[

τ2
]

s.t. Nf > Nf−1, Nf ∈ Z++, ∀f. (13)

Let ρ∗0 denote the optimal long-term average AoI in (12). We

now have the following result:

Lemma 1 Let {Nλ
f } denote the solution of problem (13), and

τλ be the corresponding service time. It then holds that

ρ∗0 = p (λ∗) + λ∗, (14)

where λ∗ , argmin{p(λ) + λ : p(λ) = E [τλ]}.

Proof: First, it is direct to see that p(λ) = E [τλ] ⇐⇒ λ =
E[τ2

λ]
2E[τλ]

, and that at such case ρ0 would be equal to p(λ)+λ. It

therefore follows that ρ∗0 is given by minimizing the expression

p(λ)+λ over all values of λ that satisfy p(λ) = E [τλ]. Next,

one can show that p(λ) is decreasing in λ. In particular, there

exists some λmax such that p(λmax) < 0. This shows that the

set {λ : p(λ) = E [τλ]} is non-empty and λ∗ exists. �
Lemma 1 shows that one can find the optimal long-term

average AoI in (12) by focusing on solving problem (13) at

a specific λ∗. The value of λ∗ can be found via, e.g., a one-

dimensional search over the interval [0, λmax], where λmax

is a large-enough value of λ such that p(λmax) < 0. We

observe that for the case of the convolutional codes studied

in Section V, such λ∗ is also unique (cf. Fig. 3).

Given this auxiliary result, we now discuss how to use SDO

to find the optimal codewords lengths for fixed λ by solving

problem (13). First, let us relax the problem by ignoring the

integer constraints on the blocklengths and solving for real

values of {Nf}. Imposing the integer constraints back on

the acquired solutions can be handled, e.g., via the dithering

approach proposed in [18, Section IV-B]. In our work, we

follow a rounding approach instead to project the optimal

blocklengths onto Z++, yet we do so simultaneously after

solving for all of them. We observe that such rounding

approach has a negligible effect on optimality especially for

relatively large blocklengths, as discussed in Section V.

Next we elaborate on the partial derivatives of the first and

second moments of τ with respect to the blocklenghts {Nf}.

Using (2), the first moment is given by

E [τ ] = (N1 + β)P
(N1)
ACK

+

m−1
∑

f=2

(Nf + fβ)
(

P
(Nf )
ACK − P

(Nf−1)
ACK

)

+ (Nm +mβ)
(

1− P
(Nm−1)
ACK

)

, (15)



whose partial derivatives are given by

∂E [τ ]

∂N1
=P

(N1)
ACK + (N1 + β − (N2 + 2β))P

′(N1)
ACK , (16)

∂E [τ ]

∂Nf

=P
(Nf )
ACK − P

(Nf−1)
ACK

+ (Nf + fβ − (Nf+1 + (f + 1)β))P
′(Nf )
ACK , (17)

for 2 ≤ f ≤ m − 1, where P
′(Nf )
ACK denotes the derivative

dP
(Nf )

ACK

dNf
. Similarly, the second moment is expressed as

E
[

τ2
]

=(N1 + β)
2
P

(N1)
ACK

+

m−1
∑

f=2

(Nf + fβ)
2
(

P
(Nf )
ACK − P

(Nf−1)
ACK

)

+ (Nm +mβ)2
(

1− P
(Nm−1)
ACK

)

, (18)

whose partial derivatives are given by

∂E
[

τ2
]

∂N1
=2 (N1 + β)P

(N1)
ACK

+
(

(N1 + β)
2
− (N2 + 2β)

2
)

P
′(N1)
ACK , (19)

∂E
[

τ2
]

∂Nf

=2 (Nf + fβ)
(

P
(Nf )
ACK − P

(Nf−1)
ACK

)

+
(

(Nf + fβ)
2
− (Nf+1 + (f + 1)β)

2
)

P
′(Nf )
ACK , (20)

for 2 ≤ f ≤ m− 1.

Now let us take the partial derivative of the objective

function of problem (13) with respect to N1 and equate it

to 0. Using the above, after some algebra we get that

(N2 + 2β)
2
+ 2(1− λ) (N2 + 2β)− c (N1, λ) = 0 (21)

must hold, where

c (N1, λ) ,2(1− λ)

(

P
(N1)
ACK

P
′(N1)
ACK

+ (N1 + β)

)

+ 2 (N1 + β)

(

P
(N1)
ACK

P
′(N1)
ACK

+
(N1 + β)

2

)

. (22)

Now let us fix the value of N1 (≥ k). If the discriminant of

the quadratic equation in (21), i.e., if

(1− λ)2 + c (N1, λ) (23)

is negative, then there do not exist any real solutions for N2

that solve (21). This means that the fixed value of N1 is not

optimal, and has to change. On the other hand, if the above

discriminant is non-negative, then one can get the following

two solutions for N2:

N2 = − (1− λ)±

√

(1− λ)
2
+ c (N1, λ)− 2β. (24)

Similarly, one can show that taking the partial derivative of

the objective function of problem (13) with respect to Nf ,

2 ≤ f ≤ m − 1, and equating it to 0 results in a quadratic

equation to solve for Nf+1 in terms of Nf and Nf−1. The

two solutions of such equation are given by

Nf+1=− (1−λ)±

√

(1−λ)
2
+c (Nf , Nf−1, λ)− (f+1)β,

(25)

where

c(Nf , Nf−1, λ)

,2(1−λ)

(

P
(Nf )
ACK−P

(Nf−1)
ACK

P
′(Nf )
ACK

+(Nf+fβ)

)

+2 (Nf+fβ)

(

P
(Nf )
ACK−P

(Nf−1)
ACK

P
′(Nf)
ACK

+
(Nf+fβ)

2

2

)

, (26)

provided that the discriminant below is non-negative:

(1− λ)2 + c (Nf , Nf−1, λ) . (27)

Therefore, using (24) and (25), one can characterize optimal

solutions for {N2, N3, . . . , Nm−1} in terms of N1. These

sequential solutions would eventually stop if Nf∗+1 surpasses

Nm, for some f∗, at which point one may truncate the excess

IR bits and set Nf∗+1 = Nm.

Now for the solutions to be meaningful, we need to

make sure that the obtained blocklengths are monotonically

increasing. In most scenarios, such as in the one discussed

in Section V, this would automatically cross-out the smaller

solutions in (24) and (25), especially for large values of f .

For 2 ≤ f ≤ m − 1, in case both solutions obtained for

Nf are smaller than Nf−1, or in case the discriminant of the

quadratic equation to solve for Nf+1 is negative, then the

whole solution sequence leading to such Nf is rejected. If

it so happens that all solution sequences are rejected, then

the fixed value of N1 is not optimal, and has to change. As

noted in Section V, we observe that for large values of β,

one needs to initiate SDO with a relatively large value of N1

to get meaningful (unrejected) solution sequences. Finally, in

case two or more solution sequences are obtained, we pick the

one that yields a smaller objective function of problem (13).

We now summarize the SDO approach used to characterize

the optimal long-term average AoI ρ∗0. For a given λ, we first

fix N1 and sequentially solve for {N2, N3, . . . , Nm−1} using

equations (24) and (25). We then find the best N1, which

gives p(λ). Finally, the optimal λ∗ is found as discussed in

Lemma 1, which gives ρ∗0 = p(λ∗) + λ∗.

IV. WAITING POLICY

We now consider optimizing the waiting policy by going

back to problem (11). As discussed towards the end of

Section II, jointly optimizing the waiting threshold γ and

the blocklenghts {Nf} would not directly yield a sequential

solution as done in the previous section. We instead follow

a potentially-suboptimal approach in which we first find the

optimal blocklengths via SDO for a zero-wait policy, then we

optimize the waiting threshold based on that. Therefore, in this

section we assume that we already have a set of blocklengths

{Nf}, with a corresponding service time random variable τ .



Now the task of finding the optimal γ∗ can be accomplished by

the techniques introduced in [20]. In what follows, we reiterate

the procedure of finding γ∗ according to our own notation, and

approach it slightly differently, for completeness.

To analytically determine the optimal threshold γ∗, one can

leverage (the original) Dinkelbach’s approach [22] for some

fixed η ≥ 0 and define

q(η) , min
γ≥0

E [Q]− ηE [L] , (28)

with E [L] and E [Q] given by (9) and (10), respectively. Next,

one can show that the following holds:

dE [Q]

dγ
=(γ + E [τ ])P (τ ≤ γ) ,

dE [L]

dγ
=P (τ ≤ γ) . (29)

Therefore, after setting
d(E[Q]−ηE[L])

dγ
= 0, the optimal thresh-

old will be given by

γ∗ = η∗ − E [τ ] , (30)

where η∗ is the unique solution of q(η∗) = 0, which can be

found via, e.g., a bisection search [22].

We note that γ∗ > 0, and is therefore a meaningful

threshold. This can be seen by observing that

q (E[τ ])=E

[

τ [γ−τ ]
+
]

+
1

2
E

[

(

[γ−τ ]
+
)2
]

+
1

2
E
[

τ2
]

, (31)

which is strictly positive. Since q(η) is decreasing [22], we

must have η∗ > E [τ ] in order for q(η∗) = 0 to hold.

V. CASE STUDY: CONVOLUTIONAL CODES

We apply the above analysis to the case of tail-biting con-

volutional codes over additive white Gaussian noise (AWGN)

channels. As shown in [15] for binary inputs with a signal-to-

noise ratio (SNR) of 2 dB, the Gaussian distribution closely-

approximates the ACK probability as follows:

P
(Nf )
ACK ≈ Q

(

k/Nf − 0.5666

0.0573

)

, (32)

where Q(x) , 1√
2π

∫∞
x

e
−u2

2 du is the Q-function. We set the

measurement length to k = 64 bits and Nm = 192 bits. Our

results are in the context of the model in (2) and (32).

A. Verifying Lemma 1

We first verify the results of Lemma 1. For a system with

β = 10 time units, we plot both E [τλ] and p(λ) versus λ in

Fig. 3. We see that E [τλ] is increasing with λ. This makes

the set {λ : p(λ) = E [τλ]} basically a singleton, which

further facilitates evaluating λ∗ through a bisection search over

[0, λmax]. We note that such case holds for all values of β.

Next, we show how the optimal long-term average AoI

behaves as a function of N1. That is, we solve for ρ∗0(N1)
as opposed to ρ∗0. We do so via slightly modifying the SDO

approach. Specifically, now that N1 is fixed, we substitute in

(12) to get a relatively new metric ρ0(N1) to be optimized

by choosing {N2, N3, N4, . . . , Nm−1}. For that, we follow

the same SDO approach discussed in Section III, yet after
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Fig. 3. p(λ) and the optimal average service time E [τλ] vs. λ, with β = 10
time units. Top plot is a zoomed-in version of bottom plot. There exists a
unique λ∗

≈ 70 such that p (λ∗) = E [τλ∗ ], at which p (λ∗) ≈ 138.

110 115 120 125 130 135 140
205

210

215

220

225

230

235

240

245

Fig. 4. Optimal long-term average AoI as a function of N1, with different
β’s. The optimal N∗

1
is denoted by red circles. For β = 10, the optimal

N∗

1
= 119 bits, with ρ∗

0
(119) ≈ 208 time units.

replacing N1 with N2. The result is shown in Fig. 4 for

β ∈ {10, 15, 20}. We see that the optimal N∗
1 that minimizes

ρ∗0(N1) is relatively mid-range and, intuitively, increases with

β. Combining the results of Fig. 3 and Fig. 4, we observe that

at β = 10, p (λ∗) + λ∗ = ρ∗0 (N
∗
1 ), as asserted in Lemma 1.

B. A Methodology for fixed m

In Fig. 5, we show how the optimal blocklengths vary

with N1 for β = 10. We see that as N1 increases, the set

of blocklengths becomes sparser, i.e., fewer number of IR

transmissions leads to reaching Nm. This figure, together with

Fig. 4 can be used to solve the problem with fixed number of

transmissions per message m, which may be relevant in some

practical systems. For instance, at N∗
1 = 119 we have m = 6

transmissions. If we have a constraint of only m = 5, then we

would have to use N1 ≥ 137 according to Fig. 5. We would

then examine Fig. 4 to conclude that N1 = 137 is the optimal

choice in this case since it attains the smallest AoI for β = 10
when compared to higher values of N1.

C. Comparison to Baseline Schemes: IIR and FR

We compare the proposed HARQ scheme with other base-

line schemes. The first is IIR, in which incremental bits are

added one-by-one until success. This is a special case of

HARQ in which Nf+1 = Nf + 1, ∀f (presuming that m
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Fig. 5. Optimal IR lengths vs. N1 using SDO, with β = 10 time units. The
optimal set of blocklengths is at N∗

1
= 119 and are denoted by ∗.

0 20 40 60 80 100 120 140 160 180 200
150

200

250

300

350

400

450

500

550

600

0 5 10 15 20 25

180

200

220

240

260

Fig. 6. Proposed HARQ and baselines (IIR, and FR with and without
replacement) vs. β. Triangles denote rounded (integer) blocklengths.

can be arbitrarily large). The second baseline scheme is FR,

for which we consider two subcases: with and without replace-

ment. FR without replacement is basically using a fixed N1

to transmit each message, with repetition in case of failures.

This makes the service time given by (N1+β)M , where M is

a geometric random variable with parameter P
(N1)
ACK . FR with

replacement is strictly better than FR without replacement in

the sense it uses fresh measurements after failures. This makes

the epoch length also given by (N1+β)M , yet the service time

is fixed at N1 + β. For IIR and FR without replacement, one

can jointly optimize N1 and the optimal waiting threshold in

(30).4 For FR with replacement, a zero-wait policy is optimal,

see [21, Theorem 2], and the long-term average AoI can be

shown to be equal to (N1 + β)
(

1/P
(N1)
ACK + 1/2

)

.

Fig. 6 shows the optimal long-term average AoI for the

proposed HARQ scheme and baseline IIR and FR as a function

of β. We also plot the AoI achieved by HARQ after rounding

the blocklengths to their nearest integer values; we see that

the performance is almost identical after rounding as noted

in Section III. The HARQ scheme outperforms IIR and FR

without replacement for all values of β. It outperforms FR

with replacement for β . 120. For β & 120 HARQ AoI is

slightly above FR with replacement since optional replacement

is not included in the current analysis of HARQ.

4Different from HARQ, this joint optimization can be optimally solved.

VI. CONCLUSION

An SDO-based analytical framework has been developed to

produce AoI-minimal HARQ transmission lengths. Different

from almost all of the AoI-related literature on coding design,

a nonzero processing delay is considered in our system, which

includes the time to decode a message, send feedback and

initiate the transmission of IR bits if needed. The optimized

HARQ scheme beats multiple baselines such as IIR and FR.

Future work includes developing an SDO-based framework

for HARQ in systems that allow message replacement.
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