
Adaptive Federated Dropout:
Improving Communication Efficiency and Generalization for Federated Learning

Nader Bouacida 1, Jiahui Hou 1, Hui Zang 2, Xin Liu 1

1 University of California, Davis
2 Google

nbouacida@ucdavis.edu, jhhou.cs@gmail.com, huizang@gmail.com, xinliu@ucdavis.edu

Abstract

With more regulations tackling users’ privacy-sensitive data
protection in recent years, access to such data has become in-
creasingly restricted and controversial. To exploit the wealth
of data generated and located at distributed entities such as
mobile phones, a revolutionary decentralized machine learn-
ing setting, known as Federated Learning, enables multiple
clients located at different geographical locations to collab-
oratively learn a machine learning model while keeping all
their data on-device. However, the scale and decentralization
of federated learning present new challenges. Communica-
tion between the clients and the server is considered a main
bottleneck in the convergence time of federated learning.
In this paper, we propose and study Adaptive Federated
Dropout (AFD), a novel technique to reduce the communi-
cation costs associated with federated learning. It optimizes
both server-client communications and computation costs by
allowing clients to train locally on a selected subset of the
global model. We empirically show that this strategy, com-
bined with existing compression methods, collectively pro-
vides up to 57× reduction in convergence time. It also out-
performs the state-of-the-art solutions for communication ef-
ficiency. Furthermore, it improves model generalization by up
to 1.7%.

Introduction
Equipping smart personal devices with sensors, combined
with the fact they are frequently carried, means that they of-
fer access to a large amount of training data necessary for
building reliable models. In many scenarios, the raw data is
privacy-sensitive, making it impractical to harvest into a cen-
tral server. Federated learning (Konečný et al. 2016; McMa-
han et al. 2017; Bonawitz et al. 2019; Yang et al. 2019)
addressed these issues by enabling mobile devices to col-
laboratively learn a shared global model using their training
data stored locally under the coordination of a central server,
decoupling training deep learning models from the need to
collect and store the data in the cloud.

The participating devices (usually referred to as clients)
are large in numbers and often connected to the server via
slow or unstable internet connections. With increasingly

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

improved hardware capabilities in personal computing de-
vices and larger deep learning models, the computation bur-
den becomes less significant, and the communication over-
head constitutes the main bottleneck of federated learn-
ing (Konečný et al. 2016; Smith, Kindermans, and Le 2018;
Kairouz et al. 2019). Together, a limited network bandwidth
and a great number of clients exacerbate the communica-
tion bottlenecks, increasing both the number of stragglers
and the dropping probability of clients with restricted band-
width or limited connectivity. With hundreds of communi-
cations rounds eventually needed for the model to converge,
communication time poses a particular challenge to feder-
ated learning.

A naive implementation of the federated learning frame-
work requires that each client sends a full model update back
to the server in each training round, which can lead to dis-
carding the clients with limited bandwidth in the training
process. In this case, the learned model is likely to result
in a degraded user experience during the inference stage
for clients with restricted bandwidth (Nishio and Yonetani
2019). Training low capacity models with smaller commu-
nication footprint comes at the expense of model perfor-
mance. Using additional computation to decrease the num-
ber of rounds of communication needed to train a model has
its limits in terms of the number of local epochs performed
in local training (McMahan et al. 2017) and cannot solve the
straggler problem. Lossy compression strategies (Konečný
et al. 2016) can cause a loss of accuracy in the long run and
may not be enough to tackle the communication time reduc-
tion on their own (Dutta et al. 2020). Besides, it is unclear
how these strategies deal with statistical challenges associ-
ated with decentralized highly personalized and heteroge-
neous data. As such, our goal is to expand federated learn-
ing capabilities by further enhancing the communication ef-
ficiency of the training process.

In this work, we explore a novel strategy of training a
carefully-chosen subset of the global model in each com-
munication round to reduce the communication footprint of
both download and upload links. Used jointly with compres-
sion techniques, we notice that selective dropping of a sub-
set of the model would significantly reduce the number of
weights that need to be exchanged with the server without
degrading the global model quality. The specific contribu-
tions of this paper are as follows:

ar
X

iv
:2

01
1.

04
05

0v
1 

 [
cs

.L
G

] 
 8

 N
ov

 2
02

0



• We introduce Adaptive Federated Dropout, a method that
builds upon the idea of Federated Dropout (Caldas et al.
2018a). Our approach allows each client to train a sub-
model dynamically selected in each round based on a
score map of the model’s activations while still provid-
ing updates applicable to the larger global model on the
server-side. Thus, it reduces communication costs by ex-
changing these smaller sub-models between the clients
and the server instead of the full model updates while also
decreasing the computation by training on a subset of the
model’s weights.

• We investigate the effect of our techniques on the con-
vergence of the federated learning algorithms in terms of
generalization and wall-clock time. We are able to sig-
nificantly reduce the total amount of data transferred and
communication delays, resulting in a speedup of up to
57× of the overall convergence time compared to up to
44× for the state-of-the-art, while improving the global
model’s generalization ability.

Related Work
Researchers have proposed several approaches to overcome
the communication bottleneck in federated learning and dis-
tributed training in general. Authors in (McMahan et al.
2017) proposed the Federated Averaging algorithm, a prac-
tical method for the federated learning based on iterative
model averaging. The main idea behind Federated Averag-
ing is to compute higher quality updates rather than sim-
ple gradient steps (Hoffer, Hubara, and Soudry 2017). It
succeeded in training deep networks using 10-100x fewer
communication rounds than a naively federated version of
distributed Stochastic Gradient Decent (SGD). Similar ef-
forts (Chen et al. 2016; Agarwal et al. 2018; Nilsson et al.
2018; Stich 2019; Lin et al. 2020) introduced variants of
local SGD, which perform several update steps on a local
model before communicating with the server. These algo-
rithmic solutions show performance gains in training effi-
ciency and scalability to the underlying system resources.
Nevertheless, downloading a large model from the server
can still be a significant burden for clients, particularly those
located in regions with limited connectivity.

Several works (Konečný et al. 2016; Lin et al. 2018;
Wangni et al. 2018; Dutta et al. 2020) have proposed the
compression of clients’ updates to reduce the communica-
tion bandwidth, exploiting the redundancy observed in the
gradient exchange in distributed SGD. Compression algo-
rithms for federated learning can be put into two classes: The
first category is the sketched updates, where clients compute
a regular model update and perform a compression after-
ward. This class of methods includes subsampling, proba-
bilistic quantization, and gradient sparsification. The second
category of compression methods is the structured updates,
where the model update is restricted to be of a form that al-
lows for efficient compression during the optimization pro-
cess. Low rank and random mask are two structures, which
are frequently employed (Konečný et al. 2016). To deal with
the high sparsity in the model update, they also proposed
several strategies for improving compression quality: mo-

mentum correction, local gradient accumulation and local
gradient clipping for gradient sparsification methods (Lin
et al. 2018); applying basis transformations such Hadamard
transformation and Kashin’s representation for quantization
methods (Lyubarskii and Vershynin 2010). These methods
achieve high model compression ratios while nearly miti-
gating the problem of accuracy loss brought in by sparse
updates. However, they were originally conceived for com-
pressing the clients-to-server exchanges, where unbiased up-
dates are averaged and eventually mitigate the information
loss impact resulting from compression. Although the up-
link is typically much slower than the downlink, the server-
to-clients exchanges still pose a challenge to the server.

The cited methods are either ingrained in the training pro-
cess or must be applied after generating the trained model.
Instead, Adaptive Federated Dropout dynamically selects
sub-models extracted from the global model before sending
them for the clients and the subsequent local training.

Problem Statement
In this paper, we mainly focus on synchronous federated
learning algorithms which proceeds in rounds of training.
It aims to learn a global model with parameters embodied in
a real tensorW from data stored across a number of clients.
In the training round t ≥ 1, the server distributes the cur-
rent global modelWt to the set of selected clients St with a
total of nt data instances. The selected clients locally ex-
ecute SGD based on their data and independently update
the model. As the result, they produce local updated mod-
els {Wc

t | c ∈ St}. The update of client c is expressed as:

Wc
t =Wt − αHc

t ∀c ∈ St (1)

where Hc
t is the gradients tensor for client c in training

round t and α is the learning rate. Each selected client c
then sends the update back to the server. The server aggre-
gate updates from all participating clients to construct the
new global modelWt+1 as follows:

Wt+1 =
1

nt

∑
c∈St

ncWc
t (2)

where nc is the number of data instances of client c and nt =∑
c∈St nc. Hence, we deduce thatWt+1 can be written as:

Wt+1 =Wt − αtHt (3)

whereHt = 1
nt

∑
c∈St ncH

c
t .

The goal of improving the communication efficiency of
federated learning is to reduce the cost of transferring model
updates {Wc

t | c ∈ St} from the clients to the server and
the cost of transferring the global modelWt from the server
to the clients. Our objective is to dynamically select a sub-
modelwc

t that reduces the convergence time without degrad-
ing the performance of the final model. In this work, our
emphasis is on the critical nature of the communication con-
straints. Other issues related to federated learning network-
ing problems, such as security or client availability, are be-
yond the scope of this work.



4

Server

3
6

7

Global Model
Local Training

1
2 5

Sub-Model Client Server

Activations Score 

Map

Figure 1: Adaptive Federated Dropout Overview – We reduce the size of the models exchanged between the clients and the
server by (1) building a sub-model using the activations score map, and (2) compressing the resulting structure. This compressed
sub-model is sent to the client, which in turn (3) decompress it and (4) runs local training using its data, and (5) compress the
updated sub-model afterward. The latter is sent back to the server, where (6) it will be decompressed, (7) recovered in its
original shape, and finally aggregated with other updated models into the global model.

Adaptive Federated Dropout
Our proposed method named Adaptive Federated Dropout
builds upon the technique Federated Dropout (Caldas et al.
2018a), yet is more flexible and efficient in reducing com-
munications costs. Federated Dropout is inspired by the
well-known regularisation strategy of dropout (Srivastava
et al. 2014). The main idea behind Federated Dropout is that
each client trains a local update using a sub-model rather
than training an update using the whole global model. The
sub-models are subsets of the global model constructed by
dropping a fixed percentage of the filters from convolutional
layers and activations of fully-connected layers. While this
method successfully decreases communication costs and lo-
cal computation, it drops the activations randomly and does
not consider the decomposition of the neural networks. It
treats them as black-box functions without inspecting the
changes in their internal structures resulting from dropping.
Moreover, Federated Dropout was only conceived for con-
ventional neural networks (CNN), and it is unclear how it
can be extended to recurrent neural networks (RNN), the
most popular types of models employed in natural language
processing (NLP) tasks.

Instead of randomly dropping a fraction of neurons,
Adaptive Federated Dropout maintains an activation score
map (see Figure 1) to determine which activations should
be selected to be transferred or dropped. Each score map
assigns all the activations real values representing their im-
portance and influence on the training process. In convolu-
tional layers, dropping activations would not save any space,
so we instead drop out a fixed percentage of the filters.
Besides, the dropout is only applied to the non-recurrent
connections for RNN models to preserve their memoriza-
tion ability (Zaremba, Sutskever, and Vinyals 2014). The
server creates different reduced architectures in every train-
ing round based on the activations score map, meaning only
the necessary parameters that are not affected by the selec-

tive dropping of the activations are transmitted. Since differ-
ent neurons are discarded each round, each pass effectively
calculates a gradient for a different sub-model. Following
local training, the clients (which can be entirely unaware of
the global model’s architecture) send back the updated sub-
model to the server. We propose two modes of Adaptive Fed-
erated Dropout: Multi-Model Adaptive Federated Dropout
and Single-Model Adaptive Federated Dropout.

Next, we discuss the motivation of our proposed methods.
First, considering the capacity on the edge devices, small lo-
cal datasets in the clients do not need to be trained on the full
global model to achieve good generalization. There is sub-
stantial evidence that on-device personalization of model pa-
rameters has yielded significant improvements in the model
performance (Wang et al. 2019; Zantedeschi, Bellet, and
Tommasi 2020). While our goal is not personalization by
any means, training a different customized compact sub-
model for each client or cluster of clients will likely pro-
vide higher quality updates for the global model, especially
with non-IID data distribution. This is observed in our ex-
periment that our approach achieves better generalization.
Furthermore, it is common that some compression meth-
ods (Lin et al. 2018; Tao and Li 2018) only transmit im-
portant gradients after training. We build and transmit sub-
models constructed from only important activations. The
difference is as follows. Gradient dropping does not create
any specific model patterns and still force all the clients to
train on the same shared global model. In comparison, drop-
ping neurons, instead of gradients, results in different sub-
model architectures before the training. These observations
lead to our method’s core idea: Different clients or clus-
ters of clients are likely to use the sub-models differently,
especially with high statistical heterogeneity. Training sub-
models customized for the clients’ data is likely to improve
generalization. Apart from potential regularization effects,
selecting these sub-models at random would not leverage



the full benefits of Federated Dropout since different sub-
models are not made equal with respect to generalization.

Multi-Model Adaptive Federated Dropout
This strategy enables the server to keep a different activa-
tions score map for each client. At each round, the server
sends a different sub-model for each selected client and up-
dates each client’s corresponding score map based on the
local loss function. The main challenge of our work is how
to select a group of important activations (Step 1 in Figure 1)
so that the training converges fast without accuracy loss.

Algorithm 1 Multi-Model Adaptive Federated Dropout
Input: Federated Dropout Rate k%

Server executes:
1: Initialize: Activations score maps M0, . . . ,Mn ← 0

for the n clients, Latest loss values for the n clients
l0, . . . , ln ← 0, Recorded← FALSE

2: for each round t = 1, 2, . . . , T do
3: St ← (random set of m clients) . m ≤ n
4: for each client c ∈ St in parallel do
5: if t > 1 then
6: if Recorded then
7: Select Ac to create the sub-model wc

t
8: else
9: wc

t ←Weighted Random Selection k%
10: end if
11: else
12: wc

t ← Random Selection k%
13: end if
14: After client c executes local training on wc

t :
15: lct ⇐ `(wc

t , c) . Local training loss
16: if lct < lc then
17: Record the indexes Ac of sub-model wc

t
18: UpdateMc at given activations indexes Ac

19: Recorded← TRUE
20: else
21: Recorded← FALSE
22: end if
23: lc ← lct
24: end for
25: end for

We introduce Multi-Model Adaptive Federated Dropout
in Algorithm 1. The only parameter of AFD is the Federated
Dropout Rate (FDR) k, representing the percentage of the
activations to be dropped when constructing the sub-models.
This parameter should be set empirically. We define lct as
the loss function of client c at round t, which we want to
minimize. lc is a variable that saves the loss previously com-
puted for client c. Besides, we initialize our score mapMc

in each client c with zeros (line 1) and randomly construct
sub-models for the clients in the first training round (line
12).

Ideally, we want the loss function to get close to its op-
timal local value at each step. Nevertheless, the loss value
usually fluctuates with the SGD optimizer. Our technique
tracks the loss values generated by the current local train-

Algorithm 2 Single-Model Adaptive Federated Dropout
Input: Federated Dropout Rate k%

Server executes:
1: Initialize: Activations score mapM ← 0, Latest aver-

age loss value l← 0, , Recorded← FALSE
2: for each round t = 1, 2, . . . , T do
3: if t > 1 then
4: if Recorded then
5: Select A to create the sub-model wt

6: else
7: wt ←Weighted Random Selection k%
8: end if
9: else

10: wt ← Random Selection k%
11: end if
12: St ← (random set of m clients) . m ≤ N
13: for each client c ∈ St in parallel do
14: Client c executes local training on wt:
15: lct ⇐ `(wt, c) . Local training loss
16: end for
17: l̄t = 1

m

∑
c∈St l

c
t . Average training loss

18: if l̄t < l then
19: Record the indexes A of sub-model wt

20: UpdateM at given activations indexes A
21: Recorded← TRUE
22: else
23: Recorded← FALSE
24: end if
25: l← l̄t
26: end for

ing round and the previous one (lines 15-16). If the current
loss value lct is strictly lower than the previous loss saved in
lc, that indicates that we have chosen a better sub-model at
round t. Hence, we record the indexes of the sub-model ac-
tivations (line 17) and label them as important by signing a
positive value equal to lc−lct

lc
to their corresponding entries

inMc (line 18). For the subsequent round of local training,
we use the same subset of activations Ac (line 7) because
these activations are proven beneficial to our loss function.

Once we have a greater loss than previously found for the
client c, that implies that at time t, the loss function value is
not desirable. Therefore, we refrain from dropping the same
model activations as the previous step. Instead, we randomly
select the sub-model wc

t according to the activations score
values (weighted random selection of the activations using
weights fromMc – line 9). We can think of the activations
score map as a tensor that contains the scores describing how
useful each activation. The lower an activation score is, the
higher the chance this activation is getting dropped and vice
versa. Indeed, the activations with great scores indicate that
they are flagged as influential many times during the train-
ing process. Over time, different sub-models will be evalu-
ated, and the score maps will reflect accurate estimates of
the activations’ importance. The weighted random selection
based on the activations score map will likely generate the
sub-model that best fits each client.



Single-Model Adaptive Federated Dropout
The only difficulty with Multi-Model AFD is that training
with a small fraction of clients at each round makes the al-
gorithm behaves randomly, just like the standard Federated
Dropout. We recall that Multi-Model AFD keeps an inde-
pendent activations score map for each client. If the fraction
of clients per round is small, each client will be elected few
times for training, and thus its activations score map is not
updated frequently enough to reflect accurate scores of the
activations’ importance.

To address this challenge, we investigate a second variant
of AFD that creates the same sub-model wt for all selected
clients St in each round t. As described in Algorithm 2, in
this scenario, we keep only a single activations score map
M at the server (line 1), and a single sub-model will be cre-
ated based on this score map and distributed to all clients at
a particular training round. This single score mapM will be
updated in a similar fashion to Multi-Model AFD (lines 18-
24). However, we use the consecutive average losses l and l̄t
of the selected clients from two subsequent rounds of train-
ing to update its values instead of the local losses (line 17).
Moreover, the construction of the single sub-model follows
the same logic as previously (lines 3-11) and we use A to
save the indexes of the sub-model wt in case that l̄t < l.
This mode is more lightweight than the previous one.

Experimental Results
Experimental Setup
We test our strategies using the already established federated
learning benchmarks. In particular, we run all our experi-
ments using the well-known Federated Averaging algorithm
(FedAvg) (McMahan et al. 2017).

Datasets We conduct experiments on three different
LEAF datasets (Caldas et al. 2018b), a benchmark for feder-
ated settings. (1) FEMNIST dataset (Cohen et al. 2017) for
62-class image classification, which serves as a more com-
plex extended version of the popular MNIST dataset (Le-
Cun, Cortes, and Burges 2010). The data is partitioned based
on the writer of the character in the non-IID setting. (2)
Shakespeare dataset for next-character prediction, which is
constructed from The Complete Works of William Shake-
speare (Shakespeare 1996). Each role in each play is con-
sidered as a different client in the non-IID setting. (3) Senti-
ment140 dataset (Go, Bhayani, and Huang 2009) for 2-class
sentiment analysis, which is generated by interpreting tweets
based on the emoticons presented in them. Each twitter user
is a client in the non-IID setting. In the IID setting, the data is
sampled and randomly distributed over the clients. Thus, all
users will have the same underlying distribution of data. We
reserve 20% of the data in each client for testing purposes.

Models For FEMNIST’s image classification task, we use
a CNN with two 5x5 convolution layers (the first one has
32 channels, the second one has 64 channels, each of them
followed with 2 × 2 max-pooling), a fully connected dense
layer with 2048 units, and a final softmax output layer.
For Shakespeare dataset, we consider a two-layer LSTM

classifier containing 256 hidden units preceded by an 8-
dimensional embedding layer. The embedding layer takes a
sequence of 80 characters as input, and the output is a class
label between 0 and 52. Finally, for Sentiment140, the model
used in the experiments is a two-layer LSTM classifier with
100 hidden units and pre-trained 300-dimensional GloVe
embeddings (Pennington, Socher, and Manning 2014). The
input is a sequence of 25 words, where each word is embed-
ded into a 300-dimensional space by looking up GloVe. The
output of the last dense-connected layer is a binary classifier.

Baselines We optimize our experiments to work well in
the baseline scenario, which does not involve any kind of
Federated Dropout or compression. For local training at each
client, we run a grid search on the learning rates, and we
use the best-recorded learning rates: 0.004 for FEMNIST,
0.08 for Shakespeare, and 0.001 for Sentiment140. Each se-
lected client trains for one local epoch per round using a
batch size of 10. We compare Adaptive Federated Dropout
(AFD) to Federated Dropout (FD) and Deep Gradient Com-
pression (DGC) (Lin et al. 2018). The latter is one of the
state-of-the-art compression methods for distributed training
that employs gradient sparsification, momentum correction,
and local gradient accumulation.

Results and Analysis
We first examine Multi-Model AFD strategy. Figure 2 shows
how the convergence (measured by the Top-1 accuracy of
the global model) of our three applications behaves under
different compression schemes when we simulate the non-
IID version of the datasets. In these experiments, we com-
press all server-to-clients exchanges using 8-bit Gradient
Quantization after applying Hadamard transformation as a
basis function to spread the information on the compressed
weights. We do not compress biases for any of the mod-
els because compressing smaller variables causes significant
accuracy degradation but translates into minimal communi-
cations savings. Moreover, we always keep the input and
the output layers intact. We set the Federated Dropout Rate
(FDR) as 25%, and we randomly select 30% of the clients
for training in each round. The FDR parameter should be
set empirically between 10% and 50%, taking into consid-
eration the scale of the model. The higher FDR values are
often possible with larger models. We combine both Adap-
tive Federated Dropout (AFD) and Federated Dropout (FD)
with Deep Gradient Compression (DGC). We repeat each
experiment 5 times with different seeds and report the mean
among these repetitions. We note that DGC only operates
on client-to-server communications because it is ingrained
in the local training process.

The main takeaway from these experiments is that, for
every model, Multi-Model AFD outperforms other meth-
ods. It seems to work across the board, not only preserv-
ing the global model quality but also achieving better accu-
racy. The selective dropping of the global model activations
generates a compact sub-model that is more performant and
efficient in learning from the client data. The fact that the ac-
curacy of FD (with DGC compression) is very close to DGC
means that our gains are not caused by some regularization



0 200 400 600 800 1000
Number of rounds

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

No Compression
DGC
FD+DGC
AFD+DGC

(a) FEMNIST Dataset

0 10 20 30 40 50 60 70 80
Number of rounds

15

20

25

30

35

40

45

50

55

Ac
cu

ra
cy

 (%
)

No Compression
DGC
FD+DGC
AFD+DGC

(b) Shakespeare Dataset

0 50 100 150 200 250 300 350 400
Number of rounds

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

No Compression
DGC
FD+DGC
AFD+DGC

(c) Sentiment140 Dataset

Figure 2: Top-1 accuracy results for the non-IID version of the datasets and using Multi-Model AFD.

Table 1: Accuracy and convergence time results on the non-IID LEAF datasets. For FEMNIST, Shakespeare and Sentiment140
datasets, the models are trained for 1000, 80 and 400 rounds and, the target accuracy is set to 75%, 50% and 82% respectively.

Accuracy Convergence Time (min) Speedup Ratio

FEMNIST

No Compression 78.9% ± 0.12% 3233.2 1×
DGC 76.3% ± 0.43% 102.4 31×
FD + DGC 77.5% ± 0.24% 82.3 39×
AFD + DGC 80.6% ± 0.14% 61.7 52×

Shakespeare

No Compression 53.1% ± 0.22% 762.5 1×
DGC 52.8% ± 0.54% 21.2 36×
FD + DGC 52.5% ± 0.34% 17.4 44×
AFD + DGC 54.4% ± 0.36% 13.3 57×

Sentiment140

No Compression 82.9% ± 0.19% 3050.7 1×
DGC 82.5% ± 0.29% 89.7 34×
FD + DGC 82.7% ± 0.11% 76.2 40×
AFD + DGC 83.8% ± 0.56% 57.5 53×

effects. Indeed, the models employed are not large in size
and, hence, FD has a tight margin to improve the generaliza-
tion ability of the sub-model using regularization. Because
some sub-models tend to generalize better than others for
different clients, AFD is able to build the sub-models that
best match each client’s data, resulting in accuracy increases
between 0.9% and 1.7% compared to the scenarios with no
compression involved.

The convergence time in Table 1 represents the simulated
wall-clock time to reach a pre-defined target accuracy. These
results are obtained by simulating wireless links between the
server and the clients based on the standard network speeds
of Verizon 4G LTE wireless network which handles down-
load speeds between 5 and 12 Mbps (Megabits per second)
and upload speeds between 2 and 5 Mbps. All clients are
supposed to experience the same network conditions. AFD
manages to achieve speeds ups between 52× and 57×, out-
performing both DGC and FD + DGC, which only reduce
the total convergence time by 31× to 44×. Despite the fact
that that AFD has a similar dropping ratio as FD, the gener-
alization improvement systematically results in faster con-
vergence, especially after the warm-up period to learn the
activations score map.

As previously discussed, a small fraction of clients per
round causes AFD to behave similarly to FD because of
the highly inaccurate activations score map. That is evident
by looking at Figure 4. Nevertheless, authors in (McMahan
et al. 2017) suggest that increasing the amount of multi-
client parallelism will not yield any advantages beyond a
certain point, as also shown in Figure 4. We find that setting
the fraction of clients at each round at 30-35% leverages a
good trade-off.

Therefore, we tried a different mode of AFD, the Single-
Model AFD, which only requires a single sub-model to be
shared with the clients and, hence, the server needs to main-
tain a single activations score map. This map is updated
at each training round based on the average loss function
of the selected clients. In this case, the amount of multi-
client parallelism cannot affect the AFD algorithm. How-
ever, Single-Model AFD is not effective when employed in
non-IID environments. That seems counter-intuitive at first
sight, but the problem with non-IID environments is that
the average loss function is calculated over different clients
from one round to another. So, comparing two average losses
from two different training rounds is not reliable because the
global model can get biased and does perform the same with



0 200 400 600 800 1000
Number of rounds

45

50

55

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

No Compression
DGC
FD+DGC
AFD+DGC

(a) FEMNIST Dataset

0 10 20 30 40 50 60 70 80
Number of rounds

15

20

25

30

35

40

45

50

55

Ac
cu

ra
cy

 (%
)

No Compression
DGC
FD+DGC
AFD+DGC

(b) Shakespeare Dataset

0 50 100 150 200 250 300 350 400
Number of rounds

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

Ac
cu

ra
cy

 (%
)

No Compression
DGC
FD+DGC
AFD+DGC

(c) Sentiment140 Dataset

Figure 3: Top-1 accuracy results for the IID version of the datasets and using Single-Model AFD.

Table 2: Accuracy and convergence time results on the IID LEAF datasets. For FEMNIST, Shakespeare and Sentiment140
datasets, the models are trained for 1000, 80 and 400 rounds, and the target accuracy is set to 82%, 50% and 83.5% respectively.

Accuracy Convergence Time (min) Speedup Ratio

FEMNIST

No Compression 83.9% ± 0.09% 3119.9 1×
DGC 83.6% ± 0.27% 84.9 37×
FD + DGC 84.1% ± 0.72% 65.7 48×
AFD + DGC 86.2% ± 0.55% 58.1 53×

Shakespeare

No Compression 52.2% ± 0.18% 705.7 1×
DGC 50.8% ± 0.85% 25.6 28×
FD + DGC 50.9% ± 0.72% 16.9 48×
AFD + DGC 53.7% ± 0.65% 12.4 57×

Sentiment140

No Compression 84.7% ± 0.16% 2893.4 1×
DGC 84.5% ± 0.77% 82.6 35×
FD + DGC 84.5% ± 0.39% 68.8 42×
AFD + DGC 85.3% ± 0.75% 52.6 55×

10% 20% 30% 40% 50%
Fraction of clients per round

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

FD+DGC
AFD+DGC

Figure 4: Top-1 accuracy of Multi-Model AFD and FD when
varying the fraction of clients per round in non-IID setting.

regards to all local datasets in the clients. Therefore, we con-
sider IID setting in the remainder of this paper to make sure
that the clients will have the same data distribution.

Figure 3 and Table 2 summarize the performance results
when we select the IID version of the datasets and using 10%

of the clients per round. For all three models, compression
resulted in models with minor accuracy degradation under
all compression schemes except for the Single-Model AFD.
For convergence time, the later achieves speedups between
53× and 57× compared to only 42-48× for FD. Such obser-
vations prove the robustness of our technique and the high
quality updates provided by the sub-model.

Conclusion
In this paper, we propose and study Adaptive Federated
Dropout, a practical method that trains high-quality models
using a small communication footprint, as demonstrated by
the experimental results on a variety of modes. We demon-
strate the benefit of dynamically selecting subsets of the
global modal on the trade-off between generalization and
reducing communication costs. We empirically show that a
combination of model compression and Adaptive Federated
Dropout allows for up 57× speedup in convergence time
compared to only up 44× for the state-of-the-art.

In future work, we plan to explore the effect of the dynam-
ically selected sub-models on the fairness. Another future
direction involves the personalization of clients’ sub-models
and freezing layers that reached the convergence stage.



References
Agarwal, N.; Suresh, A. T.; Yu, F.; Kumar, S.; and McMa-
han, H. B. 2018. CpSGD: Communication-Efficient and
Differentially-Private Distributed SGD. In Proceedings of
the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, 7575–7586.
Bonawitz, K. A.; Eichner, H.; Grieskamp, W.; Huba, D.; In-
german, A.; Ivanov, V.; Kiddon, C. M.; Konečný, J.; Maz-
zocchi, S.; McMahan, B.; Overveldt, T. V.; Petrou, D.; Ra-
mage, D.; and Roselander, J. 2019. Towards Federated
Learning at Scale: System Design. In SysML 2019. URL
https://arxiv.org/abs/1902.01046.
Caldas, S.; Konečny, J.; McMahan, H. B.; and Talwalkar,
A. 2018a. Expanding the Reach of Federated Learning by
Reducing Client Resource Requirements. arXiv preprint
arXiv:1812.07210 URL https://arxiv.org/abs/1812.07210.
Caldas, S.; Wu, P.; Li, T.; Konečnỳ, J.; McMahan, H. B.;
Smith, V.; and Talwalkar, A. 2018b. LEAF: A Benchmark
for Federated Settings. arXiv preprint arXiv:1812.01097
URL https://arxiv.org/abs/1812.01097.
Chen, J.; Monga, R.; Bengio, S.; and Jozefowicz, R. 2016.
Revisiting Distributed Synchronous SGD. In International
Conference on Learning Representations Workshop Track.
URL https://arxiv.org/abs/1604.00981.
Cohen, G.; Afshar, S.; Tapson, J.; and van Schaik, A. 2017.
EMNIST: an extension of MNIST to handwritten letters.
arXiv preprint arXiv:1702.05373 URL https://arxiv.org/abs/
1702.05373.
Dutta, A.; Bergou, E.; Abdelmoniem, A.; Ho, C.-y.; Sahu,
A.; Canini, M.; and Kalnis, P. 2020. On the Discrepancy
between the Theoretical Analysis and Practical Implemen-
tations of Compressed Communication for Distributed Deep
Learning. Proceedings of the AAAI Conference on Artificial
Intelligence 34: 3817–3824.
Go, A.; Bhayani, R.; and Huang, L. 2009. Twitter sentiment
classification using distant supervision. CS224N project re-
port, Stanford 1(12): 2009.
Hoffer, E.; Hubara, I.; and Soudry, D. 2017. Train Longer,
Generalize Better: Closing the Generalization Gap in Large
Batch Training of Neural Networks. In Proceedings of the
31st International Conference on Neural Information Pro-
cessing Systems, NIPS’17, 1729–1739.
Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A. N.; Bonawitz, K. A.; Charles, Z.; Cormode,
G.; Cummings, R.; D’Oliveira, R. G.; Rouayheb, S. E.;
Evans, D.; Gardner, J.; Garrett, Z.; Gascón, A.; Ghazi, B.;
Gibbons, P. B.; Gruteser, M.; Harchaoui, Z.; He, C.; He, L.;
Huo, Z.; Hutchinson, B.; Hsu, J.; Jaggi, M.; Javidi, T.; Joshi,
G.; Khodak, M.; Konečný, J.; Korolova, A.; Koushanfar, F.;
Koyejo, S.; Lepoint, T.; Liu, Y.; Mittal, P.; Mohri, M.; Nock,
R.; Özgür, A.; Pagh, R.; Raykova, M.; Qi, H.; Ramage, D.;
Raskar, R.; Song, D.; Song, W.; Stich, S. U.; Sun, Z.; Suresh,
A. T.; Tramèr, F.; Vepakomma, P.; Wang, J.; Xiong, L.; Xu,
Z.; Yang, Q.; Yu, F. X.; Yu, H.; and Zhao, S. 2019. Advances
and Open Problems in Federated Learning. arXiv preprint
arXiv:1912.04977 URL https://arxiv.org/abs/1912.04977.

Konečný, J.; McMahan, H. B.; Yu, F. X.; Richtarik, P.;
Suresh, A. T.; and Bacon, D. 2016. Federated Learning:
Strategies for Improving Communication Efficiency. In
NIPS Workshop on Private Multi-Party Machine Learning.
URL https://arxiv.org/abs/1610.05492.

Konečný, J.; McMahan, H. B.; Ramage, D.; and Richtárik,
P. 2016. Federated Optimization: Distributed Machine
Learning for On-Device Intelligence. arXiv preprint
arXiv:1610.02527 URL http://arxiv.org/abs/1610.02527.

LeCun, Y.; Cortes, C.; and Burges, C. 2010. MNIST hand-
written digit database. ATT Labs [Online]. Available: http:
//yann.lecun.com/exdb/mnist .

Lin, T.; Stich, S. U.; Patel, K. K.; and Jaggi, M. 2020. Don’t
Use Large Mini-batches, Use Local SGD. In International
Conference on Learning Representations.

Lin, Y.; Han, S.; Mao, H.; Wang, Y.; and Dally, B. 2018.
Deep Gradient Compression: Reducing the Communication
Bandwidth for Distributed Training. In International Con-
ference on Learning Representations.

Lyubarskii, Y.; and Vershynin, R. 2010. Uncertainty Princi-
ples and Vector Quantization. IEEE Transactions on Infor-
mation Theory 56(7): 3491–3501.

McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In Proceedings of
the 20th International Conference on Artificial Intelligence
and Statistics, volume 54 of Proceedings of Machine Learn-
ing Research, 1273–1282.

Nilsson, A.; Smith, S.; Ulm, G.; Gustavsson, E.; and
Jirstrand, M. 2018. A Performance Evaluation of Feder-
ated Learning Algorithms. In Proceedings of the Second
Workshop on Distributed Infrastructures for Deep Learning,
DIDL ’18, 1–8.

Nishio, T.; and Yonetani, R. 2019. Client Selection for Fed-
erated Learning with Heterogeneous Resources in Mobile
Edge. In 2019 IEEE International Conference on Commu-
nications (ICC).

Pennington, J.; Socher, R.; and Manning, C. 2014. GloVe:
Global Vectors for Word Representation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 1532–1543.

Shakespeare, W. 1996. The Complete Works of William
Shakespeare. Complete Works Series. Wordsworth Editions.

Smith, S. L.; Kindermans, P.-J.; and Le, Q. V. 2018. Don’t
Decay the Learning Rate, Increase the Batch Size. In Inter-
national Conference on Learning Representations.

Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A Simple Way to Pre-
vent Neural Networks from Overfitting. Journal of Machine
Learning Research 15(56): 1929–1958.

Stich, S. U. 2019. Local SGD Converges Fast and Com-
municates Little. In International Conference on Learning
Representations.

https://arxiv.org/abs/1902.01046
https://arxiv.org/abs/1812.07210
https://arxiv.org/abs/1812.01097
https://arxiv.org/abs/1604.00981
https://arxiv.org/abs/1702.05373
https://arxiv.org/abs/1702.05373
https://arxiv.org/abs/1912.04977
https://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1610.02527
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist


Tao, Z.; and Li, Q. 2018. eSGD: Communication Efficient
Distributed Deep Learning on the Edge. In USENIX Work-
shop on Hot Topics in Edge Computing (HotEdge 18).
Wang, K.; Mathews, R.; Kiddon, C.; Eichner, H.; Beaufays,
F.; and Ramage, D. 2019. Federated Evaluation of On-
device Personalization. arXiv preprint arXiv:1910.10252
URL https://arxiv.org/abs/1910.10252.
Wangni, J.; Wang, J.; Liu, J.; and Zhang, T. 2018. Gradi-
ent Sparsification for Communication-efficient Distributed
Optimization. In Proceedings of the 32Nd International
Conference on Neural Information Processing Systems,
NIPS’18, 1306–1316.
Yang, Q.; Liu, Y.; Chen, T.; and Tong, Y. 2019. Federated
Machine Learning: Concept and Applications. ACM Trans.
Intell. Syst. Technol. 10(2).
Zantedeschi, V.; Bellet, A.; and Tommasi, M. 2020. Fully
Decentralized Joint Learning of Personalized Models and
Collaboration Graphs. In Proceedings of Machine Learning
Research, volume 108, 864–874.
Zaremba, W.; Sutskever, I.; and Vinyals, O. 2014. Re-
current Neural Network Regularization. arXiv preprint
arXiv:1409.2329 URL https://arxiv.org/abs/1409.2329.

https://arxiv.org/abs/1910.10252
https://arxiv.org/abs/1409.2329

	Introduction
	Related Work
	Problem Statement
	Adaptive Federated Dropout
	Multi-Model Adaptive Federated Dropout
	Single-Model Adaptive Federated Dropout

	Experimental Results
	Experimental Setup
	Results and Analysis

	Conclusion

