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Abstract—In this work, we consider a remote monitoring
scenario in which multiple sensors share a wireless channel to
deliver their status updates to a process monitor via an access
point (AP). Moreover, we consider that the sensors randomly
arrive and depart from the network as they become active and
inactive. The goal of the sensors is to devise a medium access
strategy to collectively minimize the long-term mean network Age
of Information (AoI) of their respective processes at the remote
monitor. For this purpose, we propose specific modifications to
ALOHA-QT algorithm, a distributed medium access algorithm
that employs a Policy Tree (PT) and Reinforcement Learning
(RL) to achieve high throughput. We provide the upper bound
on the mean network AoI for the proposed algorithm along with
pointers for selecting its key parameter. The results reveal that the
proposed algorithm reduces mean network AoI by more than 50
percent for state of the art stationary randomized policies while
successfully adjusting to a changing number of active users in
the network. The algorithm needs less memory and computation
than ALOHA-QT while performing better in terms of AoI.

I. INTRODUCTION

Applications involving Internet of Things (IoT) have
emerged across many industries to make up industry 4.0. In the
near future, connected robotics and autonomous systems will
be a significant driving force behind the design of 5G and
beyond [1]. Monitoring the states of the robotic machinery
and its environment via multiple sensors will result in a large
amount of Machine Type Communication (MTC) data. This
data is characterized by periodic traffic generation, and short
packet duration [2]. Many industry 4.0 applications such as
factory robots, automated forklifts, and conveyor belts need
not be active at all times. As individual tasks arise sporadically
and are completed by the machines, the number of active users
transmitting MTC data will be dynamic.

AoI is a performance metric especially suitable for real-time
monitoring applications because it measures the freshness of
information coming from a remote source [3]. AoI depends on
different aspects of the overall system, such as sampling rate
of sensors, queue management, etc. From a medium access
and control (MAC) design perspective, improving AoI requires
us to jointly optimize the transmission rate, delay, and the
probability of successful reception of the information. Hence,
adapting and designing special MAC protocols with the goal
of reducing AoI have to be considered.

One way to optimize AoI in wireless IoT networks is to
use grant-based channel access protocols where a centralized
scheduler keeps track of all the active users in the network

and distributes the network resources efficiently to all the
systems. However, they are typically inefficient for MTC
applications and complex to implement due to the overhead
in signaling, and coordination [4]. This reason compels us
to look at simpler distributed grant-free random access (RA)
protocols for MTC applications which are descendants of the
well-known ALOHA [5] and Slotted ALOHA (SA) [6]. The
simplicity in implementation of RA protocols comes with the
trade-off of poor performance in terms of AoI when compared
to the grant-based solutions due to the frequent collision of
packets [7]. In fact, it was shown in [8] that the mean network
AoI gap between grant based policies and grant free policies is
O(n) where n is the number of active users in the network. In
order to bridge this gap, the users must overcome the collision
problem by learning to coordinate and select transmission
times in a way that the chances of packets colliding is reduced.

Stationary randomized policies to reduce collisions have
been suggested to improve the performance of RA schemes.
They rely on knowing or estimating the active number of
users in the network [6], [9]–[11]. This value is difficult for
the users to evaluate in a decentralized setup [12]. One such
scheme [10], relies on Poisson distributed packet arrivals at
the users to estimate the number of active users in the network
in order to optimize an AoI threshold. It however, cannot be
applied to the generate-at-will [13] model addressed in this
paper. In [11] the authors present Age-Dependent Random
Access (ADRA), an extension of [9] where the users access
the channel only if a predefined AoI threshold is exceeded.
The channel access probability and the AoI threshold are both
a function of the number of active users in the network. The
DRR algorithm [14] achieves optimal AoI by requiring the
AP to establish the number of active users in the network
and relaying this information to the users via a feedback.
This scheme therefore requires a more complex feedback as
well as offloads some complexity to the AP and moves in
the direction of centralized scheduling. ALOHA-Q [15] and
ALOHA-QT [16] require neither the users nor the AP to
ascertain the number of active users. Both the algorithms
maintain the simplicity of classical RA and achieve better
channel utilization using RL to coordinate with each other over
the feedback of the AP. The high utilization and flexibility of
the ALOHA-QT algorithm piques our interest to investigate its
performance in terms of AoI. ALOHA-QT employs a PT [17]
to divide the transmission slots in a frame into non-conflicting
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Fig. 1. Example Scenario: Remote monitoring of factory robots who need
to transmit their status updates only when they have a task at hand.

schedules which can be selected by the users.
This paper proposes a better performing and computation-

ally cheaper version of ALOHA-QT and calls it modified
ALOHA-QT or mAQT. The modifications are better suited for
remote monitoring in MTC applications where the number of
active users is changing over time. We obtain an upper bound
for the mean network AoI by using properties of a well-known
abstract data structure called the full binary tree (FBT).

II. SYSTEM MODEL

We consider a remote process monitor connected to an AP,
receiving the status update packets of M physical processes
over a wireless network. Each process has a sensor and
transmitter associated with it, and we call this subsystem a user
to be consistent with the terminology used in MAC protocols.
Time is divided into slots of equal duration. The length of
a status update packet is assumed to be constant, and the
transmitter takes the duration of the entire slot to transmit
a single packet. Throughout the paper, we express all time-
related quantities in terms of slots.

We consider that every user has two states - active and
inactive. There are n[t] active users in the network at time
t. The number of slots a user spends in a state follows a
geometric distribution with a transition probability of p on
every slot. Therefore, the average number of slots before a
state transition for every user is 1/p = k. On average, there
is an activation or a deactivation once every k

M slots in the
entire network.

To generate a packet, the sensor accurately samples the state
of the process, and the transmitter encapsulates it into a status
update packet ready for transmission. This packet generation
process of a user is assumed to be generate-at-will [13], where
an active user generates a new status update packet at the
beginning of only those slots where it has decided to transmit.
Hence, the user always has the freshest state encapsulated
in any transmitted packet. The state of the physical process
needs to be monitored only if the user is active. Such as
system model can be imagined in a factory-like scenario
shown in Figure 1, where the state of the machinery needs
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Fig. 2. Linear AoI progression: AoI of a user grows linearly until the user
successfully transmits its status update packet at t = 1 and t = 5. The AoI
becomes 1 after a successful transmission.

to be monitored. Individual machines are not occupied at all
times and therefore only need to be monitored when they are
performing a task.

A decision to transmit di[t] ∈ {1, 0} is made at the start
of slot t by each active user i according to its policy where
di[t] = 1 if the user decides to transmit and di[t] = 0 if it
decides to abstain from transmitting. At the end of the slot, the
AP broadcasts the slot outcome as feedback F [t] ∈ {1, e, 0}
to all the users. If only one user transmits on the channel in
a slot, the AP is able to receive the packet successfully, and
we call this a success slot, i.e. F [t] = 1. When more than one
user transmits in a slot, their signals interfere, and the AP can
neither decode any of the packets nor extract the number of
users who transmitted on the channel. This scenario is called a
collision, i.e. F [t] = e. We assume only an interference-limited
channel such that transmission by any user fails only in the
case of a collision. When no user transmits on the channel in
a given time slot, then we say it is an idle slot, i.e. F [t] = 0.
The feedback is assumed to be immediate and perfect i.e., all
active users receive the feedback at the end of the slot.

At the beginning of a slot, the AP sends the successfully
received packet (if any) from the previous slot to the process
monitor, which updates the state of the respective process
accordingly. Hence, the AoI of user i at the process monitor
is given by,

∆i[t+ 1] =

{
1, if di[t] = 1 and F [t] = 1

∆i[t] + 1, otherwise .
(1)

An example of the evolution of AoI for a particular user i is
shown in Figure 2. Here, di[1] = 1, F [1] = 1 di[5] = 1 and
F [5] = 1. For time slots other than 1 and 5, the user i either
refrained from transmitting or experienced collisions.

III. POLICY TREE BASED ALGORITHM

A binary policy tree is shown in Figure 3. Each node in
the tree 1 is represented by a tuple (c, 2l) | 0 ≤ c < 2l,
l ∈ N. The node is called a schedule with level l. Every
active user in the network keeps a time slot counter t. The
schedule (c, 2l) prescribes transmission if t mod 2l = c. For
example, the schedule (3, 4) prescribes a transmission when
t = 3, 7, 11, 15, 19, 23, . . . . The tree is arranged in a way
that the children of a parent schedule (c, 2l) are (c, 2l+1) and

1Henceforth, we only talk about binary trees.
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Fig. 3. Policy Tree: Each node in the tree is called a schedule. Non-
conflicting slots in a parent schedule are divided equally amongst the two
children schedules.

Symbol Parameter Value
ALOHA-QT mAQT

J Depth of PT 6 5
η Schedule selection threshold 0.95 -
ε Relinquishing probability 0.02 -
α+ Increment factor 0.2 0.2
α− Decrement factor -0.5 -0.5
γ0 Weight initialization bias 0.1 0.1
γ1 Weight initialization noise 1.8 1.8
winit Weight initialization factor 0.25 0.25

TABLE I. Symbols for the different parameters used in ALOHA-QT and
mAQT. The optimal values given in the last column were obtained after
running a gridsearch. These were used or the evaluation in Section V.

(c + 2l, 2l+1) and hence all slots that prescribe transmission
for both the children are present in the parent. For example,
while one child of the schedule (3, 4), e.g., (3, 8) prescribes
transmission when t = 3, 11, 19, . . . , the other child (7, 8)
prescribes transmission when t = 7, 15, 23, . . . . The schedules
at the same level l prescribe transmission at the same rate (2l

slots) but with different offsets. In MAC algorithms employing
PT, every user transmits according to one or more schedules.
As long as users do not select ancestors or descendants of
schedules selected by other users, they will have selected non-
conflicting transmission slots. The number of schedules in the
PT is determined by the depth J (maximum level) of the tree.
A PT with depth J has 2J+1 − 1 schedules.

A. ALOHA-QT Algorithm

ALOHA-QT (Algorithm 1) is a distributed expert-based
RL algorithm using which, every user selects non-conflicting
schedules in a PT. Notation of parameters and state variables
used in this algorithm are given in Tables I and II respectively.
The algorithm iteratively assigns a weight w(c,2l) ∈ [0, 1]
to every schedule (c, 2l) in the PT according to its potency
to achieve a non-conflicting transmission. First (in step 0),

Symbol Name
S Set of all schedules in the PT
A Set of all active schedules
I Set of selected schedules i.e policy
W Set of all weights. One for each schedule in the PT
ti Time slot counter
κ Boolean showing if user is active

TABLE II. State variables used in ALOHA-QT and mAQT. The cardinality
of the sets of variables are shown in the last column. They essentially

Algorithm 1 The ALOHA-QT Algorithm
0: Initialization:

ti ← 0.
S ← {(c, 2l) | 0 ≤ c < 2l, 0 ≤ l ≤ J}.
∀w(c,2l) ∈ S : w(c,2l) ← winit

γl
1
·(1−γ0+γ0 ·U(0, 1)}

W ← {wσ}σ∈S
At every slot, do

1: Active Schedule Update:
A ← {(c, 2l) ∈ S | ti mod 2l = c}.

2: Schedule Selection:
I ← {arg maxσ∈SW}∪{σ ∈ S | wσ > η}.

3: Decision:
if A ∩ I 6= ∅ and κ = 1 then di[ti] = 1
else di[ti] = 0.

4: Reward Selection:
if (F [ti], di[ti]) = (0, 0) or (1, 1) then α← α+

else α← α−.
5: Weight Update:

∀σ ∈ A : w′σ ← wσ · eα·U(0,1).
6: Voluntary Relinquishment:

if U(0, 1) ≤ ε then ∀σ ∈ A : w′σ ← 0.
7: Weight Normalization:

W ←
∑
σ∈S wσ , W ′ ←

∑
σ∈S w

′
σ

δ ←W −W ′
if δ > 0 and W ′ < winit · |S|
then ∀σ ∈ S : Xσ ← U(0, 1)

∀σ ∈ S : wσ ← w′σ + δ · (Xσ/
∑
σXσ)

else ∀σ ∈ S : wσ ← w′σ
8: Bound Enforcement:

∀σ ∈ S : wσ ← min(1, wσ)
9: Time Increment:

ti ← ti + 1.
Every instance of U(0, 1) in the above algorithm is an inde-
pendent random sample drawn from the uniform distribution
in the interval [0, 1].

every user initializes the weights of all the schedules in the
PT such that higher schedules (closer to the root node of the
PT) have higher weights. This ensures that the users explore
transmitting at higher rates before moving down the PT. Small
noise is added to each weight to reduce the probability of
two schedules at the same level being initiated with the same
weight. The noise also ensures that the initial behavior of
all the users is not the same. The rest of the steps are then
performed by the users once every slot.

1) Step 1: The user updates in a memory location all
schedules which are active i.e., ones who prescribe a
transmission in the current slot. At any time slot, there
are always J + 1 active schedules.

2) Step 2: The user selects from the entire PT all schedules
with weights > η in addition to the schedule with the
maximum weight (we call this primary schedule).

3) Step 3: The user transmits on the channel if it is active
and any of the selected schedules suggest the user to
transmit.

4) Step 4: Feedback from the AP such as the one mentioned



in section II is used to select a positive or negative reward
by the user.

5) Step 5: The weights of all J + 1 active schedules are
updated at every time slot. A negative reward selection
in step 4 will decrease the weights while a positive
reward selection will increase the weights in this step.
As users become active and inactive, schedules become
unfavourable and promising respectively. Therefore, a
multiplicative update strategy is used for facilitating the
quick adaptation of weights in such a dynamic environ-
ment. Small noise is added to all the updated weights to
break ties between schedules that might have the same
value of weight. From a classical RL sense, this is the
reward function of the algorithm.

6) Step 6: With a small constant probability ε, the user sets
the weights of all active schedules to 0. This happens
randomly once every few hundred slots to make sure that
the users do not hold higher schedules indefinitely.

7) Step 7: If the weights of active schedules were reduced
(either due to negative feedback or relinquishment) and
if the sum of the weights in the PT falls below a value of
winit · |S|, the lost weights in this step are redistributed
across all the schedules in the PT. This allows the users
to quickly explore alternative schedules if their selected
schedule starts to give negative feedback [18].

8) Step 8: The users make sure that the weights of all
schedules remain at most 1. This way, the positive multi-
plicative update from a good schedule does not increase
indefinitely.

9) Step 9: The time counter is updated so that the user can
process the next slot.

In this manner, the users explore schedules in the PT
and learn to coordinate over time in order to select non-
conflicting schedules in a distributed manner. This coordina-
tion is achieved only via the broadcast feedback at the end
of the slot. It is important to note that each user i selects
schedules in a distributed manner and the time slot counter
ti does not need to be the same for all users in the network:
a schedule (c, 2l) for a user a with time slot counter ta is
the same as a schedule ((c+ s) mod 2l, 2l) for a user b with
time slot counter tb = ta + s. Thus, the users in the network
need not synchronize their time slot counters. This property
is especially useful if we need to change the number of users
M . A new user can be introduced in the network and it needs
to only synchronize the start of a time slot and does not need
to obtain any additional information from other users or the
AP.

B. Application specific changes to ALOHA-QT

The ALOHA-QT algorithm [16] is designed for a system to
optimize throughput in a fair manner by avoiding collisions via
implicit coordination over the feedback. The authors show its
applicability in a system model where all the users are active,
when the number of active users is slowly increasing or slowly
decreasing as well as when there is frequent activation and
deactivation at the start of every 100th slot. The system model

makes no assumptions on the maximum number of users that
the scheme can accommodate.

This differs from the model which we have defined in
section II. In this model, the activation and deactivation are
less frequent but random and do not need to occur at the
beginning of a slot batch. The system designer knows the
maximum number of users M in the network. We applied the
ALOHA-QT algorithm to our system model and made two
key observations in terms of AoI. These observations lead us
to suggest to following changes to the ALOHA-QT algorithm
to better suit the system model presented in section II.

1) Skip voluntary relinquishment in step 6:
This step was designed to make sure that no user holds

a higher schedule for a long time. If any user relinquishes
selected schedules in this step, other users compete to grab
these schedules, causing collisions. At the same time, the user
who relinquished the schedules begins transmitting in some
other users selected schedule producing further collisions. This
causes the throughput to drop temporarily. While this trade-off
might be useful in maintaining fairness with a static number
of users over a long time, it was found that it does not help
when the users spend a random amount of time in the network
before becoming inactive. Therefore, we suggest skipping this
step for our application.

2) Select only one schedule in step 2:
The possibility of allowing the users to select more than

one schedule in ALOHA-QT was designed to allow a flexible
throughput for all active users. Firstly, it was observed that
in most cases, the secondary schedules were either children
or siblings of the primary selected schedule i.e. the one with
maximum weight. Secondly, it was also observed that once
a user selects one or more schedules, their weights quickly
rise up to become 1. This is caused by the reinforcing effect
of the multiplicative update on receiving positive feedback.
A newly active node entering the network needs to compete
with the selected schedules of many users in order to find a
new collision-free schedule in the PT. If we allow the users to
select more than one schedule, the newly active user is likely
to face competition from more schedules and hence take more
time to find a new collision free-schedule in the PT.

3) When PT is settled, only run Step 3:
With the suggested modifications, the users select only one

unique schedule in the PT which is neither an ancestor nor a
descendent of the schedules selected by other users. When
we establish the network with all active users running the
algorithm with the mentioned modifications, they take some
time (we call this settling time) to select their unique schedule
in the PT. This results in the network achieving full channel
utilization. We call this condition a “settled PT”. However the
tree does not remain settled forever, as there will be arrivals
and departures of users in the network as they become active
and inactive. These events unsettle the tree for a certain amount
of time (we call this resettling time) before the tree settles once
again. We propose that the users in a settled tree do not change
their selected schedules unless there is an arrival or departure
of a user in the network. Therefore, they do not need to update



any state variables when they are in a settled tree. If there are
no collisions or idles detected in the last 2J slots, the users
deem that the PT is settled. In a settled state, the users perform
only step 3 of the algorithm. Thus doing minimum work while
still avoiding collisions and idle slots entirely.

The comparison results between pure ALOHA-QT and the
modifications (modified ALOHA-QT or mAQT) are shown in
section V.

IV. ANALYSIS

We assume that the average time between two events that
disturb a settled tree k

M , is less than the average resettling
time. Hence the users spend more time in a settled tree rather
than in an unsettled one. In this section, we obtain insights into
the AoI performance of the mAQT when the tree is settled. In
such a case, the number of active users n[t] for all time slots t
in this period is constant 2. Therefore, we drop the time index
for the ease of notation and refer to the number of active users
as n in this section.

One realization of a settled tree for n = 5 is shown in
Figure 4(a). The n leaf nodes filled with color are the selected
schedules by each of the 5 users in the system. The resulting
AoI of each user over 20 time slots after the tree is settled is
shown in Figure 4(b). It can be seen that there is a successful
transmission at every slot, resulting in the network achieving
full channel utilization.

The ∆i for every user is cyclic with period 2li . The long-
term (t→∞) mean AoI per slot of a user i, ∆̄i in a settled
tree is the mean AoI of the period,

∆̄i =
1

2li

t0+2li∑
t=t0+1

∆i[t] =

∑2li

t=1 t

2li
=

2li + 1

2
. (2)

The mean network AoI ∆̄ is the mean AoI per slot of all
active users in the network,

∆̄ ,
1

n

n∑
i=1

∆̄i =
1

2
(1 +

1

n

n∑
i=1

2li). (3)

Even though the channel is fully utilized when the tree is
settled, the fraction of the channel resources utilized by each
user in the system can be different. Every user obtains 2−li -
th of the channel resources and

∑n
i=1 2−li = 1. The mAQT

algorithm has a degree of randomness, which may lead to
different realizations of the PT for the same number of users
n. Thus the users may obtain different values of ∆̄ even for
the same number of users n depending on the manner in which
they settle. To analyze this further we make use of the balance
property of a FBT [19], an abstract data structure commonly
used in computer science.

A. Settled Trees as Full Binary Trees

A FBT is defined as a tree structure where every node has
either two or no children. A settled PT looks exactly like a
FBT with a node in the FBT representing a schedule in the PT.
The leaf nodes (ones without children) represent the selected

2In fact, users in mAQT do not even update their time slot counters when
the tree is settled.

schedules of the n users. Any sub-tree of a FBT is also a FBT.
We define the set of selected levels (of schedules) by the users
of particular realization r of a settled PT with n users as Tr =
{l1, l2, ..., ln}. The height of a FBT h is defined as the number
of edges between the root node and the farthest leaf node. For
realization r of settled tree the height is lrmax = max(Tr).

A fully balanced FBT is where the difference between
heights of the two principle sub-trees of any sub-tree is at most
1. The tree in Figure 4(a) is an example of a fully balanced
FBT. The closer the values of li in a particular realization of
a settled tree are to each other, the more balanced that PT is.

Theorem 1. The mean AoI per user ∆̄ of a settled policy tree
depends on how balanced the tree is. For a given n, a fully
balanced FBT is ∆̄ optimal.

Proof. A FBT has at least two sibling leaf nodes at height h.
Let the leaf node(s) for realization a at a higher level be at
lamin such that lamax > lamin. Now, consider the two siblings
at lamax and one leaf node at lamin. We explicitly write these
three values in last sum in equation (3),

∆̄a =
1

2
(1 +

1

n

n∑
i=4

2li +
1

n
(2l

a
max + 2l

a
max + 2l

a
min)), (4)

where ∆̄a stands for the ∆̄ for realization a. Now, we perform
balancing operation on this tree to produce a new realization
b with the same number of leaf nodes n. This can be done by
removing the sibling pair at level lamax and giving the leaf at
lamin a pair of children. Hence the tree:

1) Loses one leaf at level lamin.
2) Adds two leaves at level lamin + 1.
3) Loses two leaves at level lamax.
4) Adds one leaf at level lamax − 1.

Therefore,

∆̄b =
1

2
(1+

1

n

n∑
i=4

2li+
1

n
(2l

a
max−1+2l

a
min+1+2l

a
min+1)). (5)

Subtracting ∆̄b from ∆̄a and simplifying it further we get,

∆̄a − ∆̄b =
3

2n
(2l

a
max−1 − 2l

a
min) ≥ 0. (6)

With equality holding if lamin = lamax−1, which is the case for
a fully balanced FBT. Hence, as long as the tree is not fully
balanced, this balancing operation results in a lower ∆̄.

We are interested in finding the least balanced realization
that will provide the upper bound of ∆̄ for a given number
of users n. A fully unbalanced tree or a skewed tree, has two
leaf nodes at n− 1-th level and one leaf node in all the levels
between n − 1-th level and root node. Putting these values
of li in equation (3) and using the expression for the sum a
geometric series, we get the mean AoI for a skewed tree,

∆̄skew =
1

2
(1 +

3 · 2n − 1

2n
). (7)

B. Optimal selection of parameter J
We can force the tree to settle in a way that more unbalanced

realizations are possible to materialize. This can be done by
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Fig. 4. Settled Policy Tree: (a) When a policy tree is settled, it represents a full binary tree where leaf nodes have no children and all other nodes have 2
children. The resulting network attains a throughput of 1. (b) Every user i has max AoI equal to 2li where li is its selected level in a settled tree. ts is any
time slot after the tree is settled.
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Fig. 5. Selection of tree depth J : Forcing the maximum level to J where
J < n−1 stops the tree from settling into more unbalanced realizations. The
lower the value of J , the better upper bound on AoI for a given n. However,
we must be careful that n never goes above 2J , as in that case there will not
be enough available schedules for all the users and the PT will never settle.

selecting the parameter tree depth J to be lower than n−1. As
we reduce the value of J further, we eliminate the possibility
of the PT settling into the more unbalanced realizations. Figure
5 shows how the upper bound of the mean AoI per user per slot
can be decreased by decreasing J . However, in order to have at
least one schedule for each user, the tree depth must be greater
than or equal to the height of a fully balanced realization , i.e.,
J ≥ dlog2 ne.

The selection of J should take into account the maximum
number of active users the system designer would like to
provision for when the number of users is time-varying. In
our system model presented in section II, the number of active
users will never exceed M . Therefore, we can safely select
J = dlog2Me. In general, the activation/deactivation model
and its properties and total number of users in the network
should be taken into consideration when selecting J .

V. EVALUATION

The box plots in Figure 6 show the distribution of resettling
time for a given n = {13, 18, 23, 28} under an activation or
deactivation over 50 simulation runs. The upper and lower
whisker of the boxplot encapsulate the entire range of the
obtained data i.e the maximum and minimum resettling time.
It is seen that the resettling time never exceeded 1100 slots
and the maximum mean resettling time (center line of box
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Fig. 6. Resettlig time: The resettling time after an arrival and departure on
a settled tree with J = 5. The mean, resettling time increases with the active
number of users in the network n. The maximum resettling time never exceeds
1100 slots.

plot) is 300 slots. Next, we simulate random geometrically
distributed activations and deactivations for a system with
M = 32 users, k = 50, 000 and n[0] = 16. The parameters
for the algorithm shown in Table I were obtained using
the gridsearch method. The channel utilization (fraction of
successful slots) for 50 simulation runs of 50,000 slots each is
shown in Figure 7(a). The maximum and minimum utilization
over the 50 runs is shaded in the region around the mean.
The number of users n[t] is measured at the beginning of
each batch of 100 slots. The seed of the random number
generator which produced the activations and deactivations
was kept the same to show the variation in the resettling
time and to make meaningful comparisons between different
schemes. The key demonstration from this figure is that the
PT is unsettled (observed by a drop in utilization) by a change
in the number of active users. However, it then manages to
always settle and attain near full utilization after it is given
enough time to resettle. Only the selected schedules of some
users are disturbed during the resettling period which can be
seen from the observation that the utilization in Figure 7(a)
never drops below 0.8. For comparison, SA with the optimum
access probability of 1

n[t] achieves utilization of only 0.4. SA is
a totally random medium access scheme and therefore suffers
from collisions due to lack of coordination between users.



Algorithm Weights

ALOHA-Q 2J

ALOHA-QT 2J+1 − 1

mAQT 2J+1 − 1

TABLE III. The number of weights |W| required for the three expert-based
RL algorithms. These weights are updated frequently and specify the amount
of memory needed by each of the algorithms.

ALOHA-Q ALOHA-QT mAQT

Step 2 2J 2(2J+1 − 1) 2J+1 − 1
Step 5 1 J + 1 J + 1
Step 6 1 J + 1 Skipped
Step 7 2J 2J+1 − 1 2J+1 − 1

Step 8 2J 2J+1 − 1 2J+1 − 1

TABLE IV. The worst case complexity (O), of each step for the three expert-
based RL algorithms. The proposed mAQT has half the run time in step 2
and skips step 6 entirely compared to ALOHA-QT. Its performance is the
nonetheless better for our system model.

Figure 7(b) shows the ∆̄ for each batch for the same two
cases. The shaded color marks the region between 10th and
90th percentile over 50 simulation runs. Here the ∆̄ for SA is
greater than a factor of 4 as compared to mAQT. We also
compare the analytical ∆̄ of ADRA [11], where the users
jointly optimise the channel access probability and an AoI
threshold based on n[t]. Here, the ∆̄ for ADRA is greater than
a factor of 2 as compared to mAQT. Note that it was assumed
that the users in SA and ADRA have a priori knowledge of
n[t] which was not the case for mAQT. This is an unrealistic
advantage given to the users in SA to demonstrate the power
of our proposed method. Stationary random policies of SA
and ADRA is far outperformed by mAQT due to the implicit
coordination achieved between users over the feedback instead
of relying on only on random chance.

In Figure 7(c) we zoom in on the mAQT region and compare
it with ALOHA-Q [15], which is another algorithm that em-
ploys RL to achieve collision-free transmissions. In ALOHA-
Q, each user selects a unique slot in a frame of fixed size F .
A necessary condition for ALOHA-Q to settle is n[t] ≤ F .
We set the frame size to 2J = F , since that is the maximum
number of users our setting for mAQT can accommodate. It
is trivial to see that the upper bound for mAQT will always
be smaller than that of ALOHA-Q since there will always be
empty slots in ALOHA-Q unless n[t] = 2J . From Tables III
and IV, we see that the better performance of mAQT compared
to ALOHA-Q comes at the cost of needing more memory and
computation. The availability of different transmission rates
in mAQT makes sure that no channel resources are wasted on
idle slots, which is an important advantage over ALOHA-Q.
The best case for our network setup would be for the users
to transmit in a round-robin fashion [8]. This can be achieved
via a centralized scheduling scheme or a partially centralized
scheme with a complex feedback such as the DRR algorithm
[14]. We show this RR plot as a baseline reference for the
best case. To the best of out knowledge, no distributed MAC
algorithm gets closer the this baseline than mAQT.

In Figure 7(d), we see that mAQT performs better than
ALOHA-QT which justifies the modifications made to it,
mentioned in section III-A. Table IV shows the worst case run-

∆̄

RR 8.93

mAQT 13.07

ALOHA-QT 15.32

ALOHA-Q 16.55

ADRA 26.71

SA 52.48

TABLE V. The mean network AoI per user per slot over all 50,000 slots.
The proposed algorithm shows 15 percent reduction in ∆̄ from ALOHA-QT
and 50 percent reduction in the same from state of the art ADRA algorithm.

time (complexity) of each step for ALOHA-QT and mAQT.
The proposed scheme skips a threshold based search across all
2J+1 weights in step 2 and skips step 6. Additionally, the users
in mAQT spend more than 50 percent of the 50,000 slots in
a settled state. In mAQT, when the users are in a settled tree,
they do run any of the complex steps from the Table IV and
only execute step 3. Hence, We obtain better performance at a
lower cost by modifying ALOHA-QT for our system model.

A final comparison of the ∆̄ for all the 50,000 slots is shown
in Table V. We see that mAQT shows a clear improvement
over ALOHA-QT, even with the reduced complexity. Com-
pared to ADRA, mAQT performs 50 percent better despite
the fact that users in ADRA have additional knowledge of
n[t].

VI. CONCLUSIONS

In this paper, we ponder the goal of minimizing the mean
AoI of a remote monitoring network with a time-varying
number of users without a centralized scheduler. We make
application-specific changes to the distributed RL algorithm
ALOHA-QT, which employs a policy tree (PT) to facilitate
the coordination between users in a network so that they
can select non-conflicting transmission slots. The users col-
lectively obtain nearly full channel utilization when the PT
is settled. This settled PT resembles a full binary tree, and
the analysis of its properties shows that the balance of the
settled tree affects the mean network AoI. We also show how
the selection of a design parameter in the algorithm, namely
the tree depth J , can be used to improve the mean network
AoI by eliminating the possibility of the tree settling into
more unbalanced realizations. Simulation results show that the
suggested algorithm reduces mean network AoI by 50 percent
for state of the art age-dependent random access (ADRA)
protocol, without the need for any interference cancellation
or out-of-band communication. With this paper, we show that
use of PT to improve AoI is promising in a decentralized
MAC setup. Some assumptions made in this work are not
representative of real-life scenarios. For example, channel
conditions other than interference, like noise, might cause a
transmission or feedback to be lost. Hence, our future work
will include implementing mAQT on a hardware testbed such
as [20] to investigate its performance outside of simulations.
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