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Abstract

Count-Min Sketch with Conservative Updates (CMS-CU) is a popular algorithm to approximately count
items’ appearances in a data stream. Despite CMS-CU’s widespread adoption, the theoretical analysis
of its performance is still wanting because of its inherent difficulty. In this paper, we propose a novel
approach to study CMS-CU and derive new upper bounds on the expected value and the CCDF of the
estimation error under an i.i.d. request process. Our formulas can be successfully employed to derive
improved estimates for the precision of heavy-hitter detection methods and improved configuration rules
for CMS-CU. The bounds are evaluated both on synthetic and real traces.

1 Introduction

Counting how many times a given item appears in a data stream is a basic step common to a variety
of applications spanning different domains including network management. For example, routers and
servers often routinely count the number of packets in each flow for troubleshooting, traffic monitoring [1],
detection of denial of service attacks, etc. Similarly, caching policies often rely on content popularity
estimates [10]. Counting is a deceptively simple operation: in many applications the available memory
does not permit to instantiate a counter for each possible item, because the number of items is huge (e.g.,
catalogs of cacheable objects in content delivery networks) or because counters are updated frequently and
then require expensive fast memories (e.g., for high-rate inline packet flow processing). As a consequence,
these applications rely on approximate counting techniques such as sketch-based algorithms [6], among
which a popular one is the Count-Min Sketch (CMS) [7]. CMS is also a building brick of more recent
sketch algorithms [14,22].

CMS achieves significant memory reduction by mapping different items to the same counters through
hash functions. As different items may increment the same counter, CMS suffers from overestimation
errors. When counters are only incremented, a slight modification to CMS operation, referred to as
Conservative Update [11] or Minimal Increment [5], can reduce the estimation error. The Count-Min sketch
with Conservative Updates (CMS-CU) is successfully employed for caching [10], heavy flows detection [21],
telemarketing call detection [2], and natural language processing [13].

Although conservative updates are a minor modification to CMS operation, they heavily correlate the
growth of the different counters, making CMS-CU much more difficult to study than CMS. As CMS-
CU reduces CMS estimation errors, it is still possible to maintain upper bounds originally proposed for
CMS [7, 8]. This approach has been adopted in some papers, for example to study CMS-CU’s trade-off
between memory and accuracy [20,21], but fails to capture the specific advantages offered by CMS-CU.

To the best of our knowledge, only three papers ventured to study CMS-CU [3,4,9]. The authors of [3]
relied on a fluid approximation under the assumption that all counters are equally likely to be updated
at each step. This assumption may be satisfied only for a large number of counters and a large number
of items with similar popularities. Reference [9] modeled CMS-CU as a stack of Bloom filters and derived
bounds for the error’s Complementary Cumulative Distribution Function (CCDF) when requests follow
the Independent Reference Model (IRM) [12]. Unfortunately, CCDF computation in [9] is an iterative
procedure whose time complexity grows quadratically with the error value. Moreover, the analysis in both
papers hold for families of k-wise independent hash functions [16], where k may be arbitrarily large. But
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such families are incompatible with the memory-constrained applications that need CMS-CU, because
memory requirements and computation time grow with k [18]. More recently, the authors of [4] propose
an online algorithm to estimate the error.

In this paper, we propose a novel analysis of CMS-CU which leads to new upper bounds on the expected
value and the CCDF of the estimation error under an IRM request process. Our methodology diverges
from related work as it quantifies the error on a per-item basis, which is particularly suited for data streams
with heterogeneous items’ popularities. The analysis also overcomes the limitations of the previous studies
as 1) it holds for pairwise independent hash functions, and 2) it provides CCDF expressions with time
complexity independent of the error’s value. We show that our formulas can be successfully employed to
derive improved estimates for the precision of heavy-hitter detection methods and improved configuration
rules for CMS-CU.

The rest of the paper is organized as follows. In Sec. 2, we provide the background and introduce the
notation. The theoretical analysis is carried out in Sec. 3. Section 4 presents numerical experiments both
on synthetic and real world traces.

2 Background, Notation and Assumptions

2.1 Data Stream Model

A data stream is a sequence St = (Z(s))s=1,...,t, where Z(s) is an item from a universe I = {1, . . . , N} [17].
In general, we want to compute a function of the sequence, F(St), for example the number of occurrences
of a given item, the set of heavy hitters (items whose number of requests exceeds a given threshold), or the
top-k most frequent items. Streaming algorithms aim to compute the function of interest using a few passes
through the data stream (only one for the applications we consider) with an amount of memory which is
sublinear in the universe’s size N and the data stream size t. Even for the simple quantities mentioned
above, exact computation requires a linear amount of memory and then the streaming algorithms need
to settle for approximated results. In the next section, we present two popular streaming algorithms for
approximate counting.

In what follows, we denote the set of integer numbers between 1 and d ∈ N by [d]. Moreover, to lighten
the notation, we do not append the sketch name to the symbols. We believe there will be no ambiguity
as each sketch is presented and analyzed in a separate section.

2.2 Count-Min Sketch (CMS)

A Count-Min sketch is a two dimensional array with d rows, each with w counters. An item i is mapped to
a counter in each row via d hash functions {hr}r∈[d] chosen uniformly at random from a family of pairwise
independent hash functions.

hr : I → {1, . . . , w}, ∀r ∈ [d]. (1)

We note that, once selected, the hash functions do not change during the processing of the stream St.
We model the association between items and counters as a bipartite undirected graph G = (I,O,E),
where O is the set of counters and E , {(i, hr(i)) : i ∈ I, r ∈ [d]} is the set of edges. We denote the open
neighbourhood of node i in the graph as NG(i) , {c : (i, c) ∈ E} and the value at time t of the counter in
row r corresponding to item i as cri (t). When item i is requested at time t, the counters {hr(i)}r∈[d] are
incremented by 1. Namely,

cri (t) = cri (t− 1) + 1, ∀r ∈ [d]. (2)

Let ni(t) denote item-i’s number of occurrences in the stream up to time t. Note that cri (t) is updated not
only by new requests for item i, but also by requests for all items that are also mapped by hr to the same
counter hr(i), i.e., by all items in the set {j ∈ I : hr(j) = hr(i)}. These items are said to collide with
i. It follows that cri (t) =

∑
j: hr(i)=hr(j)

nj(t). As such, cri (t) upper bounds ni(t). We denote the error

resulting from using cri (t) for estimating ni(t) as eri (t), i.e., eri (t) , cri (t)− ni(t). Since all counters’ values
{cri (t)}r∈[d] upper bound ni(t), their minimum also upper bounds ni(t). This minimum is the estimate of
ni(t) provided by CMS and we denote it as n̂i(t),

n̂i(t) , min
r∈[d]

cri (t) . (3)

2



The estimation error is then

ei(t) , n̂i(t)− ni(t) = min
r∈[d]

eri (t) . (4)

We also introduce δri,j(s) to represent the contribution of item j 6= i to counter hr(i) at time s. We have:

δri,j(s) , 1
(
Z(s) = j, hr(i) = hr(j)

)
, (5)

eri (t) =
∑
s∈[t]

∑
j∈I\{i}

δri,j(s) . (6)

All quantities we defined are random variables due to the initial random choice of the hash functions.
From (6) and the definition of pairwise independence [16], one can immediately conclude that E [eri (t)] =∑

j 6=i nj(t)

w ≤ t
w . Applying (4), we obtain the following upper bound for the expected estimation error:

E [ei(t)] ≤
t

w
. (7)

Moreover, the random variables {eri (t)}r∈[d] are i.i.d., and an application of the Markov inequality leads
to the following upper bound on the CCDF of ei(t):

Pr

(
ei(t)

t
≥ x

)
≤
(

1

wx

)d

. (8)

Cormode and Muthukrishnan proved this result in [7, Theorem 1] for the particular value x = e
w .

2.3 Count-Min Sketch with Conservative Updates (CMS-CU)

The conservative update [11] or minimal increment [5] is an optimization of CMS that consists in incre-
menting only the counters that attain the minimum value. The update procedure when item i is requested
at time t becomes

cri (t) = max

(
cri (t− 1), min

f∈[d]
cfi (t− 1) + 1

)
, ∀r ∈ [d] . (9)

The error eri (t) in each row r, the estimation count n̂i(t), and the estimation error ei(t), all depend on cri (t)
in the same way as in CMS. Equations (3) and (4) hold with CMS-CU. The quantities {δri,j(s)}s∈[t],j∈I\{i}
are now defined as

δri,j(s) , 1
(
Z(s) = j, hr(i) = hr(j), n̂j(s− 1) = cri (s− 1)

)
. (10)

Equation (6) holds for CMS-CU. With respect to (5), (10) captures the additional condition that counter
hr(i) is updated by a request for j at time s only if its current value cri (s− 1) coincides with the current
estimate n̂j(s−1). Because of this additional condition, CMS-CU enjoys always a smaller error than CMS.
Therefore, CMS upper bounds on the expectation (7) and on the CCDF (8) also hold for CMS-CU.

2.4 Our Assumptions

We will assume in our analysis that the request process follows the Independent Reference Model (IRM)
[12], in other words, {Z(s)}s∈[t] are i.i.d. categorical random variables with Pr (Z(s) = i) = pi, for i ∈ I,
and

∑
i∈I pi = 1. We refer to pi as the popularity of item i. Without loss of generality, we number items

in I according to their popularity rank, hence pi ≥ pi+1, for i ∈ [N − 1]. Note that there are two sources
of randomness in our setting: the hash functions’ selection and the request process St. From now on, the
expectation E [.] and the probability Pr (.) take both kinds of randomness into account.

3 Theoretical Analysis of CMS-CU

Under the IRM model, we first prove a tighter upper bound on the CCDF of ei(t) for CMS, then we upper
bound the expectation and CCDF of ei(t) for CMS-CU.

3



3.1 CMS: CCDF of the Estimation Error

In this section we will derive a tighter bound for CMS error under the IRM assumption. As discussed in
Sec. 2.3, this new bound also applies to the CMS-CU error. We first observe from (5) that E

[
δri,j(s)

]
≤

pj/w, since item j is requested with probability pj and the hash collision probability between i and j
equals 1/w because of pairwise independence. It readily follows from (6) that E [eri (t)] ≤ (1 − pi)t/w.
Therefore, (1− pi)t/w is an upper bound on the expected error E [ei(t)].

Proposition 1 (Upper bound on the CCDF of ei(t)/t) The CCDF of the estimation error ei(t), when
using CMS, verifies

Pr (ei(t)/t ≥ x) ≤ A(x)d , (11)

where A(x) , min
k=0,...,w−1

Ak(x) , A(0) = 1 , (12)

and Ak(x) ,

∑
j>k pj

(w − k)x
+
k

w
. (13)

Proof 1 From (4) and the fact that the random variables {eri (t)}r∈[d] are i.i.d. when using CMS, we have

Pr (ei(t)/t ≥ x) =
(
Pr
(
e1i (t)/t ≥ x

))d
. To prove (11) it is then sufficient to show that Pr

(
e1i (t)/t ≥ x

)
≤

Ak(x) for k = 0, . . . , w − 1. For a given k 6= 0 we consider the event, called Er
i,k, of no hash collision in

row r between item i and any of the k most popular items (other than i, if i ≤ k). By first writing the

law of total probabilities with respect to the partition {E1
i,k, E

1
i,k}, and then using the union bound to write

Pr
(
E1

i,k

)
≤ k/w and the Markov inequality to upper bound Pr

(
e1i (t)/t ≥ x | E1

i,k

)
, we obtain

Pr
(
e1i (t)/t ≥ x

)
≤ E

[
e1i (t) | E1

i,k

]
/(xt) + k/w (14)

≤
∑
j>k

pj Pr
(
h1(i) = h1(j) | E1

i,k

)
/x+ k/w (15)

≤
∑
j>k

pj/((w − k)x) + k/w (16)

where (15) follows from (5)-(6) and (16) uses Pr
(
E1

i,k

)
≤ k/w. By observing that (16) holds also for

k = 0, we have completed the proof.

Proposition 1 extends known results in the literature. In particular, upper bounding the right-hand
side of (11) by (A0(x))d yields (8), and then replacing x = e/w, we obtain [7, Theorem 1].

In order to highlight the importance of this proposition, we present an example where the improve-
ment of (11) over (8) is evident. Consider a distribution where the most popular item is requested with
probability 1 − ε, and other items have uniform popularity, i.e., p1 = 1 − ε, pi = ε/(N − 1), ∀i > 1. We
compare the two bounds for x = 1/w. Equation (8) provides the trivial bound Pr (ei(t)/t ≥ 1/w) ≤ 1. On

the other hand, bounding the right-hand side of (11) by (A1(x))d yields the upper bound
(
ε w
w−1 + 1

w

)d
.

For large w and ε = o
(
1
w

)
, we conclude that Pr (ei(t)/t ≥ 1/w) . 1

wd ≈ 0, in sharp contrast with the
bound in (8).

3.2 CMS-CU: Expected Estimation Error

We consider now CMS-CU and derive an upper bound on the expectation of the estimation error. Because
of (4), an upper bound on eri (t) suffices. Thus, we turn our attention to the random variable δri,j(s). As

for CMS, it is easy to prove for CMS-CU that E
[
δri,j(s)

]
≤ pj/w. In the next lemma, we derive a tighter

bound, in particular for j > i.

Lemma 1 (Upper bound on E
[
δri,j(s)

]
) The expected contribution of item j to item i’s count at row

r at time s satisfies (17).

∃αi,j > 0, βi,j ≥ 0 :

E
[
δri,j(s)

]
≤ pj
w

(
γi,j + βi,j exp

(
− αi,j(s− 1)

))
, (17)

with
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γi,j ,

{
1, ∀j ≤ i
min

(
A(pi − pj)d−1, 1

)
, ∀j > i

(18)

and A(x) given in (12).

Proof 2 (Proof of Lemma 1) We will make use of two quantities to prove Lemma 1.

lrj ,
∑

e∈NG(hr(j))

pe, gj , min
r∈[d]

lrj . (19)

For a given realization of G, lrj is an upper bound on the growth rate of counter crj(t) and gj is an upper
bound on the growth rate of n̂j(t). To ease the writing, we use A, B, C, and Dr

j as shorthand for events
“hr(i) = hr(j)”, “n̂j(s − 1) = cri (s − 1)”, “gj ≥ pi”, and “lrj ≥ pi”, respectively. Starting from (10) we
write

E
[
δri,j
]

= pjPr (A ∩B)

= pj

[
Pr (A ∩B ∩ C) + Pr

(
A ∩B ∩ C

) ]
≤ pj

[
Pr (A ∩ C) + Pr

(
A ∩ C

)
Pr
(
B |A,C

) ]
≤ pj

[
Pr
(
A ∩

(
∩e∈[d],e 6=rD

e
j

))
+ Pr (A) Pr

(
B |A,C

) ]
≤ pjPr (A)

[
Pr
(
D1

j

)d−1
+ Pr

(
B |A,C

) ]
≤ pj
w

[
γi,j + βi,j exp(−αi,j(s− 1))

]
where γi,j is given in (18). We obtained the last step by using (for j > i) Pr

(
D1

j

)
= Pr

(
l1j − pj ≥ pi − pj

)
≤

A(pi − pj), that can be derived following the steps in (14)-(16). The inequality

Pr
(
B |A,C

)
≤ βi,j exp(−αi,j(s− 1)) (20)

also used in the last step, requires more explanations. Due to space constraints we only sketch its derivation.
For z = s− 1, we define the random variable yj(z) as,

yj(z) ,
∑

e:hr0
(j)=hr0

(e)

ne(z) : r0 = arg min
r∈[d]

lrj . (21)

It follows that n̂j(z) ≤ yj(z). Furthermore, since cri (z) ≥ ni(z), we get Pr
(
B |A,C

)
≤ 1− Pr

(
F |A,C

)
,

where F = {ni(z) > yj(z)}. Since ni(z) and yj(z) are negatively associated [15], we have:

Pr
(
B |A,C

)
≤ 1− Pr (L) Pr

(
J |A,C

)
(22)

Where L = {ni(z) > m(z)}, J = {yj(z) < m(z)} and m(z) = (pi + gj)z/2. Following (21), for every fixed
graph realization of G, yj(z) is the sum of negatively associated random variables [15] and has an expected
value of gjz < m(z) under the conditioning gj < pi, thus using Chernoff bounds on events L and J we get
(20).

Comments on Lemma 1 We recall that using CMS, this expectation is upper bounded by pj/w, thus
the term γi,j + βi,j exp (−αi,j(s− 1)) is an attenuation term taking into account the conservative update.
As s→∞, this attenuation term converges to γi,j . The larger the difference between i and j probabilities,
the smaller is γi,j . This is expected, as the larger the difference in popularity between two items i, j, the
more likely that cri (t) > n̂j(t).

We now state the main result of this section.

Theorem 1 (Upper bound on E [ei(t)]) The error experienced by item i is upper bounded as follows

∃Bi ∈R+ : E
[
ei(t)

t

]
≤ 1

w

∑
j∈I\{i}

pjγi,j +
Bi

t
, (23)

where γi,j is defined in (18).
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Proof 3 We prove the upper bound on E [eri (t)] and because of (4) this upper bound holds for E [ei(t)] too.
An upper bound on E [eri (t)] is readily found by linearity of the expectation, using (6) and Lemma 1. We
find

E [eri (t)] ≤
∑

j∈I\{i}

pjγi,j
w

t+
βi

w(1− exp (−αi))
, (24)

where αi = minj∈I αi,j and βi = maxj∈I βi,j and αi,j and βi,j are the constants in Lemma 1.

As t→∞, the term Bi can be ignored. Note that the bound depends on the item’s rank i. As discussed
before, γi,j is a decreasing function of pi − pj , thus, of j. A necessary and sufficient condition to improve
over the bound in (7) for a given item i is then to have γi,N < 1. At the same time, γi,j is an increasing
function of i. Therefore, the more popular the item, the smaller the bound (23), which is always smaller
than or equal to the bound (7) when neglecting Bi. While previous studies [3, 9] bounded the error
uniformly across items, our analysis provides error bounds depending on item’s popularity. In particular,
our work is the first to support analytically the experimental evidence that the most popular items barely
experience any error [3].

To highlight the improvement of our bound over the CMS bound E [ei(t)] ≤ (1 − pi)/w (see the
beginning of Sec. 3.1), we consider the same example as in Sec. 3.1, i.e., p1 = 1 − ε, pi = ε/(N − 1) for
i > 1, and focus on the most popular item. According to CMS analysis, E [e1(t)/t] ≤ ε/w, whereas (24)

yields a bound for the most popular item that is εA
(

1− ε N
N−1

)d−1
/w ≈ εA(1 − ε)d−1/w. This bound

is smaller than εA0(1 − ε)d−1/w = ε (w(1− ε))1−d /w. By choosing ε = 1
2 , we get an improvement by a

factor of (w/2)d−1.
Having analysed the expectation of the estimation error, we turn our attention to its CCDF, which is

studied in the next section.

3.3 CMS-CU: CCDF of the Estimation Error

Proposition 2 (Upperbound on the CCDF of ei(t)/t) The CCDF of the estimation error ei(t), when
using CMS-CU, is upper bounded as follows:

Pr

(
ei(t)

t
≥ x

)
≤ min

(
A(x)d,B(x, i, t)

)
, (25)

where

B(x, i, t) ,

min
k=0,...,w−1

1

x

 1

w − k
∑
j>k

pjγi,j +
Bi(k)

t

+
k

w
, (26)

and Bi(k) are constants that depend only on item i and on k.

Proof 4 (Sketch of the proof) The bounds that are valid with CMS are also valid with CMS-CU, thus
by Proposition 1, the CCDF with CMS-CU is less than A(x)d. To prove the other part, we rely on the same
arguments used in the proofs of Proposition 1 and Lemma 1. We first write (14) for the random variable

eri (t). To bound E
[
eri (t) | Er

i,k

]
, we repeat the derivations in the proof of Lemma 1 to bound the conditional

expectation of δri,j(s), and then using (6) we obtain E
[
eri (t) | Er

i,k

]
≤
∑

j>k pjγi,jt/(w − k) + Bi(k). As

this bound is valid for k = 0, . . . , w − 1, we find (25) which concludes the proof.

In practical situations, t is large enough such that we can ignore the constants Bi(k) in (26) and the
bound (25) depends solely on x and i.

We will illustrate the utility of Proposition 2 in the next section where we estimate a metric of interest
in the heavy-hitters detection problem.
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3.4 Heavy-Hitters Use Case: Lower Bound on the Precision

Detecting heavy-hitters in a stream can be done using a sketch. A heavy-hitter is an item that has request
rate higher than a threshold φ. However, when using a sketch (for instance CMS or CMS-CU), an item
with a rate smaller than φ can erroneously appear as a heavy-hitter because of the overestimation error;
we call such an item a “false positive.” Let H be the set of heavy-hitters, H = {i : ni(t) ≥ φ · t}, and Ĥ
be the set of items classified as heavy-hitters by the sketch, Ĥ = {i : n̂i(t) ≥ φ · t}. The “precision” is one
metric used for assessing the performance of the sketch, and is defined as follows: P = |H|/|Ĥ|. For sake
of simplicity, we assume that ni(t) ≈ pit, for t large enough, this is reasonable because of the law of large
numbers. Under this approximation |H| is constant and we can write the expected value of the precision
as:

E [P ] ≈ |H|

|H|+
∑

i>|H| Pr
(

ei(t)
t ≥ φ− pi

) . (27)

Combining (27) with Proposition 2 we obtain a lower bound on the expected precision when CMS-CU is
used. This lower bound will be illustrated in Section 4.3 and compared to experimental values.

4 Experimental Evaluation and Numerical Analysis

4.1 Experimental Setting

To support our analysis, we have undertaken a series of experiments in which we simulated requests for
items over time and used CMS-CU to count the requests for each item. We considered two settings in our
experiments. In the first setting, we generated 103 synthetic streams from two different Zipf distributions,
with shape parameter α = 0.8 and α = 1.0. Each stream contains 1 million requests for items in the set
I = {1, . . . , 106} (N = 106). We selected different hash functions for each stream by choosing uniformly
at random d different seeds in [106]. The experimental values reported for this setting are averaged over
the 103 streams. We also computed the 95% confidence intervals but do not report them as they are very
narrow and would hardly be visible in the figures.

In the second setting, we used a trace of accesses to Wikipedia pages in all languages during September
2007 [19]. The trace contains 10,628,125 requests. The number of distinct Wikipedia pages requested
in this trace is 1,712,459. We extracted 10 non-overlapping stream from this trace, each containing 106

requests, and discarded the rest.
For each of the settings, we report the results obtained for two metrics: (i) the expected estimation

error of the sketch for each item, and (ii) the precision in the heavy-hitters detection problem.

4.2 The Expected Estimation Error

In the synthetic setting, we computed for each item the average estimation error over the 103 streams,
our upper bound as in Theorem 1 (but neglecting the constant Bi), and the state-of-the-art bound (7)
originally proposed in [7]. Results are shown in Fig. 1.

(a) α = 0.8, w = 10, 000 (b) α = 1.0, w = 2000

Figure 1: Synthetic traces: estimation error for each item,
N = 106, d = 5, t = 106.
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As we observed above, our analysis correctly predicts that different items experience a different error
and improve the current bound on the expected estimation error for the 500 and 190 most popular items
for α = 0.8 and α = 1, respectively.

For Wikipedia access trace, we used the first stream to estimate items’ popularity distribution. Results
in Fig. 3a are then averages over the remaining 9 streams computed as done for Fig. 1. The curves confirm
qualitatively the observations on the synthetic traces: our approach leads to a smaller bound for the most
popular items.

4.3 Precision in Detecting φ−Heavy-Hitters

As we discussed in Sec. 3.4, the CCDF upper bound in Proposition 2 allows us also to derive a lower bound
on CMS-CU’s expected precision using approximation (27). If the same approximation is combined with
the CCDF upper bound (8) from [7], one can obtain an analogous lower bound on CMS-CU’s expected
precision. This lower bound is labelled “lower bound (State of the art)” in Figs. 2 and 3b.

In the experiments with the synthetic streams, we averaged the precision values obtained over the 103

runs. We have repeated these experiments for multiple width values. The experimental values are depicted
in Fig. 2 together with our lower bound and the state of the art bound. Consistently with what observed
for the CCDF, our approach improves also precision estimation. The bound becomes tighter for larger
values of the width w.

(a) Small values of the width (b) Large values of the width

Figure 2: Synthetic trace: Precision as a function of the width w, N = 106, α = 0.8, d = 5, t = 106,
φ = 5× 10−4.

In the experiments with Wikipedia trace, we slightly changed the popularity estimation procedure in
comparison to Sec. 4.2. The empirical distribution over a stream was used as input to the analytical
formulas to predict the precision in the following stream. Fig. 3b shows the corresponding results. The
advantage of our approach is even more evident over this real trace. Note that the state-of-the-art CCDF
bound in (8) depends on the count sketch parameters w and d but not on the popularity distribution.
Nevertheless, the corresponding precision in Fig. 3b changes across streams: the approximated formula
for the precision (27) depends on the specific stream because popularity distribution (and then also the
number of heavy hitters |H|) change from one stream to the other.
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(a) w = 1000, d = 4. (b) w = 2000, d = 6, φ = 3× 10−3.

Figure 3: Real trace: estimation error for each item (left) and precision (right), t = 106.

4.4 Configuring CMS-CU with QoS Guarantees

The bounds we derived can also be used to configure the width w and the depth d of CMS-CU in order
to achieve the desired precision with the minimum amount of memory. If each counter uses 4 bytes,
the memory cost of a CMS-CU is M = 4wd bytes. We compared numerically the memory requirements
determined by our approach and by the state-of-the-art one. In particular, for target precision values in
the range 0.8–0.975, we performed a search for memory values between 20 Kbytes and 3.2 Mbytes (with
a step of 20 Kbytes) and depth values between 2 and 8 (the width is then determined as w = M/4d) to
find the smallest memory which guarantees the target precision. Figure 4 shows the corresponding curves
obtained using our approach and the state-of-the-art-one for the synthetic and Wikipedia trace.

Our approach leads to configuring CMS-CU using a reduced amount of memory, e.g., for 97.5% target
precision, the improvement factors are 6.63 and 7.12 for the synthetic and the Wikipedia trace, respectively.

(a) N = 106, α = 0.8 (b) Wikipedia

Figure 4: Memory required for a given precision: (a) φ = 5 · 10−4, (b) φ = 10−3.

5 Conclusion and Perspectives

While it is a common belief that CMS-CU leads to smaller estimation errors for the most popular items [3],
our paper is the first to provide quantitative support for such property, thanks to a per-item study of the
estimation error. We showed that our analysis significantly improves existing bounds for the most popular
items and leads, in comparison to the state of the art, to more accurate estimations for the precision in
heavy-hitter detection problems as well as to improved configuration rules, which avoid to oversize the
counting data structure.

For less popular items, our bounds are not tighter than existing ones. In the future, we want then
to focus on improving the bounds for the tail of the popularity distribution. A possible approach is to
combine our analysis with existing methods to estimate the CMS-CU error floor when items have similar
popularities like those in [3].
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