
Coexistence of Age Sensitive Traffic and High
Throughput Flows: Does Prioritization Help?

Tanya Shreedhar
Wireless Systems Lab, IIIT-Delhi

tanyas@iiitd.ac.in

Sanjit K. Kaul
Wireless Systems Lab, IIIT-Delhi

skkaul@iiitd.ac.in

Roy D. Yates
WINLAB, Rutgers University

ryates@winlab.rutgers.edu

Abstract—We study the coexistence of high throughput traffic
flows with status update flows that require timely delivery of
updates. A mix of these flows share an end-to-end path that
includes a WiFi access network followed by paths over the
Internet to a server in the cloud. Using real-world experiments,
we show that commonly used methods of prioritization (DSCP
at the IP layer and EDCA at the 802.11 MAC layer) in networks
are highly effective in isolating status update flows from the
impact of high throughput flows in the absence of WiFi access
contention, say when all flows originate from the same WiFi
client. Prioritization, however, isn’t as effective in the presence
of contention that results from the throughput and status update
flows sharing WiFi. This results in prioritized status update
flows suffering from a time-average age of information at the
destination server that is about the same as when all flows have
the same priority.

I. INTRODUCTION

IoT devices often communicate their updates, which require
timely delivery to a server in the cloud, over an end-to-end path
that includes a shared wireless access followed by a multihop
path over the Internet to the server. The update traffic often
shares the path with traffic that would like to achieve high
throughput. Update packets that require timeliness will suffer
large delays if queued together with high throughput flows.
They may also suffer significant delays in obtaining transmis-
sion opportunities over a shared multiaccess when competing
for the same with high throughput flows. In practice, the
networking stack allows priorities to be associated with data
flows using, for example, the mechanism of Differentiated
Services Code Point (DSCP). In principle, this can help
alleviate the adverse consequences of update packets sharing
the network with throughput flows.

In this work, we empirically shed light on the benefits of
prioritizing update packets sent over a shared WiFi access to a
server in the cloud. We use the time average age of informa-
tion (AoI) [1] to quantify timeliness. Transmission Control
Protocol (TCP) flows are used to emulate high throughput
traffic. For end-to-end flows carrying update packets, we
regulate the end-to-end rate of updates using the Age Control
Protocol (ACP) [2]–[5], which has been shown to provide good
timeliness performance over paths of interest in this work.

Work on optimizing metrics of the age of information has
considered packet management techniques, including priorities
and preemption when multiple sources share a service facil-
ity [6]–[12]. Such work often uses queueing models to capture

sharing of the network resources. However, contention has not
been modeled when sources share a multiaccess channel. Also,
these works assume that all traffic sharing the facility requires
timely delivery. Last but not least, it is often assumed that
packet management may discard a source packet.

Given the shared WiFi access and Enhanced Distributed
Contention Access (EDCA), we have different queues for the
ACP and TCP flows in our work as we assign a higher priority
to update packets (ACP flows). The queues, however, are FCFS
and don’t allow preemption. Our specific contributions are:
1) We provide an empirical evaluation of the impact of

coexisting ACP and TCP flows on the time-average age
of information of the ACP flows and the throughputs of
the TCP flows. Both flows share a WiFi network and have
a server in the cloud as their destination.

2) Using different experimental configurations (a) with and
without prioritization, (b) with and without shared access,
and (c) in the absence of TCP flows, we show that while
giving ACP flows higher priority in the absence of con-
tention over the WiFi access (all flows originate from the
same WiFi client) effectively isolates the ACP flows from
the TCP flows, the contention that is caused when WiFi
access is introduced and all flows originate from different
WiFi clients results in barely any gains from prioritization.

3) We show from our experiments that as the number of
ACP flows become large enough, TCP and ACP flows
(prioritized) sharing the same WiFi access is worse both
in terms of the throughputs of the TCP flows and the
timeliness achieved by the ACP flows.

II. RELATED WORK

Several works [6]–[9] analyze the average age of updates in
the presence of priority traffic. In [6], the authors analyze the
average age of updates when the sources are assigned different
priorities for two service facilities. One which allows source
agnostic preemption in service by a new arrival of equal or
higher priority and the other in which there is a waiting room
of size 1 and a new arrival can preempt an update in waiting
but not in service. In [7], the authors expand the waiting
room to allow each source to have up to one waiting update
while the server is busy. This also allows an update in service
that is preempted by a higher priority source to be saved in
the waiting room to resume service later. In [8], the authors
analyze peak age when sources have priorities and queues

ar
X

iv
:2

20
3.

00
64

7v
1

 [
cs

.N
I]

 1
 M

ar
 2

02
2

Internet

Priority Queue

Best Effort Queue

Figure 1: Illustration of priority queueing over a shared WiFi access.
Nodes and AP maintain separate queues for different service classes.

are of infinite size for Poisson arrivals and general service
times. In [9], the authors propose and analyze three source
aware packet management policies considering a memoryless
service facility of a single queue and server. The facility sees
arrivals from two independent Poisson sources. The policies
make different choices regarding the size of the waiting room
and whether preemption is allowed in the service. In [11], the
update currently in service is preempted instead of discarding
a new arrival. In [12] arrivals consist of a mix of ordinary and
priority updates. The latter can preempt any update in service.
In case the preempted update is ordinary, it is not discarded
and is queued for resuming service later.

Systems research that analyzes AoI in real-world settings
is relatively limited [2]–[5], [13], [14]. [13] brings forth the
need for an AoI optimizer that can adapt to changing network
topologies and delays. The Age Control Protocol (ACP) [2]–
[4], is a transport-layer solution that works in an application-
independent and network-transparent manner and attempts to
minimize the age of information of a source at a monitor
connected via an end-to-end path over the Internet. In [5], the
authors propose a modification to ACP and also compare it
with other state-of-the-art TCP congestion control algorithms
used in the Internet. In [14], WiFresh, a MAC and application-
layer solution to ageing of updates over a wireless network is
proposed. There are also works on various other aspects of
the metrics of AoI, including optimizing age over multiaccess
channels and can be found in [15] and [16].

III. PRIORITIZATION IN NETWORKS

Several mechanisms exist in modern networked systems that
commonly address network bottlenecks by allowing priority
packets to pass first [17], [18]. The majority of such mech-
anisms operate by categorizing network traffic into distinct
“service classes” – each one assigned a separate queue. Based
on the QoS demands of each class, these mechanisms manage
the rate of each class queue such that the services can access
a bottleneck link depending on their priority. For example, a
router at the bottleneck link may handle voice-over-IP (VoIP)
application traffic using a high-priority, high-rate queue, while
packets of video streaming applications over the same link
might be forwarded at a significantly lower rate.

There are several ways in which network operators can
classify network flows into different service classes in their

managed routers. For example, operators may use the destina-
tion IP address and port to identify an application type (e.g.,
data egress from Netflix servers) or prioritize based on the
transport protocol used (RTP may have a different priority than
UDP/TCP traffic) [19]. The most common traffic classification
method uses Differentiated Services Code Point (DSCP) mark-
ings. Application providers can assign their packets with a
unique code in the IP layer. Each code maps to a unique traffic
class type that can be treated with a different priority. The
current standard dictates network management control traffic
to be assigned the highest priority, followed by interactive
applications, low-loss low-latency data transfers, and finally,
best-effort data transfer applications [17], [18]. As the DSCP
value is embedded in the IP header (layer 3) of every packet,
it is visible to every router on the Internet and thus allows for
end-to-end flow prioritization.

However, since multiaccess schemes like WiFi operate at
layer 2 (medium access control) of the networking stack, they
remain oblivious to DSCP markings in the IP layer. Instead,
the 802.11 standard employs its prioritization using Enhanced
Distributed Channel Access (EDCA) or Hybrid Controlled
Channel Access (HCCA) [20]. Similar to DSCP, the 802.11
prioritization assigns eight separate queues at the MAC layer
in which data packets are segregated based on their priority
level (defined as User Priority). Each priority level is
assigned to one of the four access categories (analogous to
DSCP traffic classes), i.e. background (AC_BK), best-effort
(AC_BE), video (AC_VI) and voice (AC_VO) (arranged in
increasing priority order). Each access category uses different
CSMA/CA minimum and maximum contention window sizes
and also inter-frame spacing (IFS). This enables packets
belonging to a higher priority access category faster access
to the shared channel and less contention from lower priority
packets awaiting access.

Recent efforts have mapped DSCP markings to 802.11
EDCA priority and access categories [21]. It is now possible
for application providers to assign their traffic higher priority
in both wired and wireless networks by setting DSCP in the IP
header. Table I summarizes different traffic classes and their
priority mappings between DSCP (Diffserv) and 802.11.

IV. EXPERIMENTAL SETUP AND METHODOLOGY

Figure 2 illustrates our real-world experimental setup. For
our experiments, we use the ORBIT testbed [22], which is
an open wireless network emulator grid located in Rutgers
University, USA. ORBIT houses multiple programmable radio
nodes deployed in a controlled grid-like environment with
adjacent WiFi nodes along rows and columns at a distance of
1 m from each other. Each ORBIT node runs Ubuntu 18.04
LTS over Linux kernel v5.0. By default, ORBIT nodes use the
1 Gbps ethernet NIC to connect to the Internet. We set up one
of the ORBIT nodes as an 802.11n access point configured
to operate at 5 GHz on a fixed channel using hostapd and
the Atheros (ath9k) Linux WiFi driver [23]. To focus on
the interplay between priorities and contention, we disable the
automated WiFi physical layer (PHY) rate control in ath9k

AWS Mumbai
(India)

Destination

12 Mbps

Orbit Testbed (Rutgers, USA)

ACP TCP

Figure 2: An illustration of the network topology. Clients
containing a mix of TCP (red) and ACP (blue) are connected
to a WiFi AP located in the Orbit Testbed’s WiFi grid in USA.
The server is located in AWS Mumbai, India.

drivers and instead use a fixed WiFi PHY rate for the length of
an experiment. While most of our experiments use a PHY rate
of 12 Mbps, we also use 6 Mbps for some experiments. We
provide experiment-specific PHY rates in §V. We select up to
80 nodes as WiFi clients in the ORBIT testbed and associate
them to the ORBIT node configured as the WiFi access point.
Our WiFi access point routes every packet received over WiFi
to the public Internet over Ethernet. We also set up a node in
the testbed as a sniffer that captures all packets sent over the
WiFi channel during our experiments. The sniffer data allows
us to estimate MAC layer packet retry percentages suffered by
the ACP and TCP flows over the WiFi access. It also helps
confirm that EDCA priorities have been applied.

We use an ec2 AWS instance in Mumbai, India, as our
destination server for all flows. The baseline round-trip-time
(RTT), calculated by sending one packet for every ACK
between our WiFi clients and the server is ≈ 200-210 ms.
We evaluate three different flow configurations.

1) ACP-default. Update packets are sent over an end-
to-end path between a WiFi client (the ACP source) and
the AWS server (ACP monitor) using the Age Control
Protocol [5], [24]. Update packets sent by ACP are given
the default priority and treated as best-effort traffic.

2) ACP-priority. It is same as ACP-default but here
ACP packets are given the highest network priority by
setting the DSCP value as CS7 (see Table I).

3) TCP-iperf. We use iperf3 to generate TCP traffic
from WiFi clients to the AWS server. We configure each
TCP flow to use the cubic congestion control [25]. TCP
flows are always treated as best effort in our work.

In addition to priority queueing at our configured WiFi
access (available default in the 802.11 standard), we use
CAKE [26] at our AP node to support QoS priority at the
Ethernet interface. CAKE is a comprehensive network queue
management utility that has been deployed as part of the Open-
WRT framework and is available in all Linux kernels version
4.19 and later [27]. CAKE supports Differentiated Services
(DiffServ) prioritization scheme and maps ACP-priority
flows to the highest priority queue (reserved for voice ap-
plications) ingressing the Ethernet interface. On the other
hand, CAKE treats flows belonging to ACP-default and
TCP-iperf as the lowest priority best-effort traffic.

IETF Diffserv
Service Class DSCP 802.11 Access

Category
User

Priority

Network Control CS7, CS6 AC_VO
(Voice) 7

Signaling CS5 AC_VI
(Video) 5

Multimedia
Conferencing/

Streaming

AF41-43,
AF31-33

AC_VI
(Video) 4

High Throughput
Data AF11-13 AC_BE

(Best Effort) 3

Low-Priority Data CS1 AC_BK
(Background) 1

Table I: Diffserv QoS mapping in wired (DSCP) and WiFi access.

We use three different experiment configurations and simul-
taneously run ACP and TCP flows to evaluate the gains from
prioritizing ACP flows. Specifically, in Baseline Priority (BP)
we initiate one or more ACP-priority and TCP-iperf
flows from a single WiFi client. This setting eliminates any
interference between the flows due to contention over the
WiFi access. It focuses on the co-existence of ACP prioritized
flows and TCP flows in what effectively is a setting with a
single server and one FCFS queue for every priority class.
In Multiaccess Priority (MP), each ACP-priority and
TCP-iperf flow runs on a separate WiFi client. The flows
therefore compete for the shared WiFi multiaccess, resulting
in contention. Lastly, in Best Effort (BE), as in MP, each flow
begins in a different WiFi client. We have ACP-default
flows where no priority is assigned along with TCP-iperf
flows. All flows are thus treated as best effort.
Evaluation Metrics. We define our evaluation metrics.
The performance of an ACP flow (ACP-default or
ACP-priority) is evaluated in terms of the estimate of
time-average age [1] at the source. Note that since the source
of the flow (a WiFi client) is not time-synchronized with the
AWS server, age can’t be calculated at the server. We bank
on ACP ACK packets sent by the server back to the source
in response to every update packet sent by the source to
estimate the age. The round-trip-time (RTT) corresponding to
an ACK-ed source packet is assumed to be the packet’s system
time. Age is assumed to reset to this time when the source
receives an ACK. Out-of-sequence older ACKs are discarded,
which is in line with the freshness requirement. Using RTTs
as an estimate of system time can lead to over-estimation of
age. However, since we consider a linear age function, the
bias in estimation does not affect the optimal operating point.
Works [3], [5] contains the design principles and details about
ACP. In §V we present the mean time-average age, which is
the mean calculated over all ACP flows.

We also discuss ACP throughput, which is the end-to-end
rate (Mbps) of ACK-ed source packets and is calculated by the
source based on the ACK packets it receives and the size of sent
update packets. An update packet is of size 1024 bytes in all
our experiments. We will also present WiFi MAC packet retry
percentages. These simply capture the percentage of packets

(a) Two ACP flows (b) Five ACP flows (c) Ten ACP flows (d) Twenty ACP flows

Figure 3: Mean time-average age achieved by 2, 5, 10 and 20 ACP flows for Baseline Priority, Multiaccess Priority and Best Effort
configurations for 1, 2, and 5 coexisting TCP flows.

on air that were retries for a source. The retry packets are
marked with a retry flag which is captured by the sniffer. Last
but not least, TCP throughput is also a metric of interest. For
all metrics, we present the mean calculated over 3 repeats of
an experiment, where each experiment is 1000 seconds long.

V. EVALUATION

We discuss our observations from experiments performed
using the methodology described in §IV. They help gain
insight into whether prioritizing benefits ACP flows when they
share a WiFi access with TCP flows.

Are there any gains from prioritizing ACP flows over the
shared WiFi multiaccess?

Figure 3 shows the mean time-average age achieved by
ACP flows sharing the WiFi network with TCP flows. Fig-
ures 3a, 3b, 3c and 3d show the mean age for when the number
of ACP flows are set to 2, 5, 10, and 20 respectively. For each
selection of a number of ACP flows, the mean age is shown
for when the number of TCP flows are 1, 2, and 5. Further, for
each selection of number of ACP and TCP flows, the mean
is shown for the network configurations of Baseline Priority
(BP), Multiaccess Priority (MP) and Best Effort (BE).

Contention over the shared WiFi multiaccess increases in
the configurations MP and BE when the number of ACP
clients or TCP clients increases. Let’s begin by considering
the mean age achieved under Baseline Priority. For a given
number of ACP flows, for example, 5 flows in Figure 3b, the
mean age stays unchanged for different numbers of TCP flows.
For 5 ACP flows, this age is ≈ 222 ms for 1, 2, and 5 TCP
flows. The age is ≈ 230.5 ms when there are 20 ACP nodes
as in Figure 3d. The age stays the same for a given number of
ACP nodes because in BP all ACP and TCP flows originate in
the same WiFi client. Because of their higher priority than TCP
flows, ACP flows are unaffected by changes in the number of
TCP flows originating in the WiFi client. On the other hand, an
increase in the number of ACP flows does result in an increase
in the mean age. This is because updates from a larger number
of ACP flows share the same priority queue in the WiFi client.
Mean age increases from ≈ 220 ms for 1 - 2 ACP flows
(Figure 3a) to ≈ 230 ms for 20 ACP flows (Figure 3d). As
seen in Figure 3 for MP and BE configurations in which flows

are distributed over different WiFi clients sharing the WiFi
multiaccess, mean age increases significantly as the number
of TCP flows increases for any selection of the number of
ACP flows. Assigning a higher priority to ACP flows, as in
MP, is ineffective in isolating them from the effects of TCP
flows sharing the multiaccess. Also, the mean age when using
Multiaccess Priority is in general not much smaller than when
treating ACP with the same priority as TCP when using Best
Effort.

Further, we observe from Figure 3 that for any selected
number of TCP and ACP flows, contention over the multiac-
cess results in a higher mean age in comparison to BP. In fact,
even for just 2 ACP and 2 TCP flows, we see that the mean
age for the setting of MP is about 9 ms more than that for
Baseline Priority. This gap increases rapidly with an increase
in the number of ACP and TCP flows. For example, it jumps
to 38 ms for 2 ACP and 5 TCP flows, is 55 ms for when we
have 5 ACP and 5 TCP flows, and is 130 ms for 20 ACP and
5 TCP flows. To understand the reason behind significantly
worse mean age when using MP, we begin by considering the
throughput obtained by the TCP flows. Later we also look
at the WiFi MAC layer retry percentages suffered by update
packets of ACP flows and also their round-trip times (RTTs).

Figure 4 shows the sum throughput (sum of throughputs of
all ACP and TCP flows) for the network configurations BP,
MP, and BE, and different numbers of TCP and ACP flows. It
can be observed that the sum throughput is about the same for
all the configurations and all numbers of TCP and ACP flows.
It stays in the very narrow range of 8.8 to 9 Mbps. Essentially,
the TCP and ACP flows together achieve the available data
payload rate of about 9 Mbps, given the link rate of 12 Mbps.
The figure also shows the share of ACP flows and that of TCP
flows in the sum throughput. As can be seen, the fraction of
sum throughput that corresponds to ACP flows increases with
the number of ACP flows. As expected, the sum throughput
of ACP flows for Baseline Priority is only a function of the
number of ACP flows and is not impacted by the number of
TCP flows. This throughput is 0.8 Mbps for when we have 2
ACP flows and goes up to about 5 Mbps for 20 ACP flows.

Further note, for a given number of ACP flows, the sum
throughput of TCP flows stays about the same for the con-

(a) Two ACP flows (b) Five ACP flows (c) Ten ACP flows (d) Twenty ACP flows

Figure 4: Sum throughput of ACP and TCP flows with their respective shares for 2, 5, 10 and 20 ACP flows. For each stacked bar, the
diagonally striped top part corresponds to the sum of ACP flows and the bottom part shows the sum TCP throughput. For each number of
ACP flows, the throughputs are shown for 1, 2, and 5 coexisting TCP flows and for Baseline Priority, Multiaccess Priority and Best Effort.

2 5 10 20
Number of ACP Flows

10

15

20

25

30

R
e
tr

y
(%

)

BE, 2 TCP Flows

MP, 5 TCP Flows

BE, 5 TCP Flows

MP, 5 TCP Flows

(a)

0 20 40 60 80
Number of ACP Flows

0

1

2

3

4

5

S
u
m

 T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

(b)

Figure 5: (a) Retry percentages of update packets sent in ACP flows
as a function of number of ACP sources. Percentages are shown for
Best Effort and Multiaccess Priority, and for 2 and 5 TCP flows.
(b) ACP sum throughput in the absence of TCP as a function of the
number of ACP flows sharing a 6 Mbps WiFi link.

figurations BP, MP, and BE. For BE, it is within ≈ 2 Mbps
of sum TCP throughputs for Baseline Priority. Specifically,
for larger numbers of ACP flows, the TCP sum throughput is
greater by at most ≈ 1 Mbps when using Multiaccess Priority
compared to using BP. When using BE, it is at most ≈ 2
Mbps higher. TCP throughput benefits in BE because ACP
flows have the same access priority as TCP flows. The above
observation tells us that the significant increases in mean age
seen in Figure 3 with an increase in the number of TCP flows
for a given number of ACP flows, for MP and BE, may not
be entirely attributed to TCP’s throughput share.

While an increase in TCP flows doesn’t impact the TCP sum
throughput, it results in increased MAC layer retries of packets
of ACP flows. It also results in ACP flows experiencing large
RTTs. Figure 5a shows the packet retry percentages as a
function of the number of ACP flows for two and five TCP
flows and the configurations of Multiaccess Priority and Best
Effort. Retry percentages increase by about 5% - 10% when the
numbers of TCP flows increase from 2 to 5. We also see higher
retry percentages when there are larger numbers of ACP flows.
Also, observe that for a given number of TCP flows, Best
Effort sees higher retry percentages than MP. This is because
having priority has ACP flows see a little less contention over
the WiFi multiaccess.

We also look at the mean RTTs of updates packets to
see the impact of increased MAC layer retries. Figures 6a

(a) Ten ACP flows (b) Twenty ACP flows

Figure 6: Mean RTT of ACP flows. For ten and twenty ACP flows,
RTT is shown for Baseline Priority, Multiaccess Priority and Best
Effort, and for 1, 2, and 5 coexisting TCP flows.

and 6b show, respectively for 10 and 20 ACP flows, significant
increases in RTT as the number of TCP flows increase from
1 to 5, for MP and BE. These, together with the retry rates,
explain the large mean ages observed when using multiaccess
in comparison to when using Baseline Priority.

Summary — Gains from prioritizing ACP flows vanish
quickly with an increase in contention over the shared WiFi
multiaccess. The increased contention leads to higher retries
and higher RTTs, resulting in higher time-average age.

How does the performance of ACP flows sharing a 6 Mbps
WiFi link without interference from TCP flows compare to all
flows sharing a 12 Mbps WiFi link?

Figure 7 shows the mean age achieved by ACP flows when
they share the WiFi multiaccess of rate 6 Mbps in the absence
of TCP flows (labeled No TCP) and when the ACP and TCP
flows share a 12 Mbps in MP configuration. For the No TCP
setting, we see that the mean age is 209.43, 219.18, 243.79,
275.15, 327.41 ms, respectively for 5, 10, 20, 40, and 80
ACP flows. The corresponding sum ACP throughputs (see
Figure 5b) are 2, 2.9, 3.7, 4 and 5 Mbps. So with 80 ACP
flows sharing the WiFi multiaccess with a link rate of 6 Mbps,
and utilizing almost all of it (a sum throughput of 5 Mbps),
the mean age is 327.41 ms. Compare these mean ages for the
No TCP setting with 10 and 20 ACP flows under Multiaccess
Priority when a 12 Mbps WiFi link is shared with 1 - 5 TCP
flows (see: Figure 7). For 10 ACP nodes it is 230.7, 247.25,

Figure 7: Mean time-average age for ACP flows with increasing
TCP flows. In No TCP, all ACP flows share a 6 Mbps WiFi link.
For all other settings, ACP and TCP flows share a 12 Mbps link in
Multiaccess Priority configuration.

and 309 ms. For 20 ACP it is 252.76, 298.9, and 358.77 ms,
respectively. Clearly, ACP achieves lower age even with 80
flows and lower link rate (of 6 Mbps) when compared with
20 ACP flows coexisting with TCP flows even at a higher link
rate of 12 Mbps.

For TCP, throughput is the utility of interest. For TCP flows
sharing a 6 Mbps WiFi link (without any ACP flows), the sum
TCP throughput is ≈ 5.5 Mbps, which is the expected pay-
load rate after accounting for overheads like packet headers.
For ACP and TCP flows sharing a 12 Mbps link, the sum
throughput is 5 Mbps (1, 2 or 5 TCP flows) for when we have
20 ACP flows and is in the range of 6 - 6.5 Mbps for 10
ACP flows (see Figure 4). In fact, it is only when we have
very few ACP flows, that the TCP sum throughputs are much
larger than 5.5 Mbps. For when TCP shares with only 1 ACP
flow, the sum TCP throughput is as high as 8 Mbps. With 5
ACP flows, the sum throughput ranges from 7 - 7.5 Mbps.

Additionally, the retry percentages for No TCP are 2% for
5 ACP flows and increase to 17% for 80 ACP flows (plot not
included). Contrast these with the much higher retry rates in
Figure 5a for when ACP flows share a 12 Mbps link with TCP
flows. We also look at the impact of retry rate on RTTs and
find that even the RTTs are smaller, with 20 ACP flows seeing
an RTT less than 220 ms.
Summary — When 20 ACP flows share a 12 Mbps access
with TCP flows, having TCP and ACP flows use non-
interfering 6 Mbps WiFi links is beneficial to both. ACP
mean ages are much smaller and TCP gets a higher sum
throughput of 5.5 Mbps.

VI. CONCLUSION

We studied the impact of prioritization on the performance
of age-sensitive traffic in the presence of competing network
traffic. We considered an array of experimental configurations
in real-world network settings. Our results indicate that ACP
flows gain from prioritization only when contention over the
wireless access from competing traffic is low. The gains are
non-existent as the contention increases. We also find that a
large number of ACP and TCP flows using non-interfering

6 Mbps WiFi links results in both better throughput and age
performance, respectively for TCP and ACP flows, than when
the flows share a 12 Mbps access.

REFERENCES

[1] S. Kaul, R. Yates, and M. Gruteser, “Real-Time Status: How Often
Should One Update?” in Proc. IEEE INFOCOM Mini Conference, 2012.

[2] T. Shreedhar, S. K. Kaul, and R. D. Yates, “Poster: ACP: Age Control
Protocol for Minimizing Age of Information over the Internet,” in
MOBICOM. ACM, 2018.

[3] T. Shreedhar, S. K. Kaul, and R. D. Yates, “An Age Control Transport
Protocol for Delivering Fresh Updates in the Internet-of-Things,” in 2019
IEEE 20th International Symposium on ”A World of Wireless, Mobile
and Multimedia Networks” (WoWMoM), 2019.

[4] T. Shreedhar, S. Kaul, and R. Yates, “ACP: An End-to-End Transport
Protocol for Delivering Fresh Updates in the Internet-of-Things,” CoRR,
2019. [Online]. Available: http://arxiv.org/abs/1811.03353

[5] T. Shreedhar, S. K. Kaul, and R. D. Yates, “An Empirical Study of
Ageing in the Cloud,” in IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), 2021.

[6] S. K. Kaul and R. D. Yates, “Age of Information: Updates with Priority,”
in IEEE International Symposium on Information Theory (ISIT), 2018.

[7] A. Maatouk, M. Assaad, and A. Ephremides, “Age of Information With
Prioritized Streams: When to Buffer Preempted Packets?” in 2019 IEEE
International Symposium on Information Theory (ISIT), 2019.

[8] J. Xu and N. Gautam, “Peak Age of Information in Priority Queuing
Systems,” IEEE Transactions on Information Theory, 2021.

[9] M. Moltafet, M. Leinonen, and M. Codreanu, “Average AoI in Multi-
Source Systems With Source-Aware Packet Management,” IEEE Trans-
actions on Communications, 2021.

[10] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-
class queueing system,” in 2015 IEEE International Symposium on
Information Theory (ISIT), 2015.

[11] E. Najm and E. Telatar, “Status updates in a multi-stream M/G/1/1
preemptive queue,” in IEEE INFOCOM 2018 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), 2018.

[12] E. Najm, R. Nasser, and E. Telatar, “Content Based Status Updates,”
IEEE Transactions on Information Theory, 2020.

[13] C. Sönmez, S. Baghaee, A. Ergişi, and E. Uysal-Biyikoglu, “Age-of-
Information in Practice: Status Age Measured Over TCP/IP Connections
Through WiFi, Ethernet and LTE,” in IEEE International Black Sea
Conference on Communications and Networking (BlackSeaCom), 2018.

[14] I. Kadota, M. S. Rahman, and E. Modiano, “Wifresh: Age-of-
information from theory to implementation,” in International Conference
on Computer Communications and Networks (ICCCN). IEEE, 2021.

[15] A. Kosta, N. Pappas, and V. Angelakis, “Age of information: A new
concept, metric, and tool,” Foundations and Trends in Networking, 2017.

[16] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and
S. Ulukus, “Age of Information: An Introduction and Survey,” IEEE
Journal on Selected Areas in Communications, 2021.

[17] F. Baker, J. Babiarz, and K. H. Chan, “Configuration Guidelines for
DiffServ Service Classes,” RFC 4594, Aug. 2006. [Online]. Available:
https://rfc-editor.org/rfc/rfc4594.txt

[18] “Differentiated Services Field Codepoints (DSCP),” https://www.iana.
org/assignments/dscp-registry/dscp-registry.xhtml.

[19] “QoS: Classification Configuration Guide,” https://www.cisco.
com/c/en/us/td/docs/ios-xml/ios/qos classn/configuration/xe-16/
qos-classn-xe-16-book/qos-classn-ntwk-trfc.html, 2018.

[20] A. Malik, J. Qadir, B. Ahmad, K.-L. Alvin Yau, and U. Ullah, “QoS in
IEEE 802.11-based wireless networks: A contemporary review,” Journal
of Network and Computer Applications, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804515000892

[21] T. Szigeti, J. Henry, and F. Baker, “Mapping Diffserv to IEEE 802.11,”
RFC 8325, Feb. 2018. [Online]. Available: https://rfc-editor.org/rfc/
rfc8325.txt

[22] “Open-Access Research Testbed for Next-Generation Wireless Networks
(ORBIT),” https://www.orbit-lab.org/.

[23] Linux Manual, “hostapd - IEEE 802.11 AP,” https://manpages.debian.
org/testing/hostapd/hostapd.8.en.html.

[24] “ACP+: Improved Age Control over the Internet,” https://github.com/
tanyashreedhar/AgeControlProtocolPlus, 2021.

[25] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” ACM SIGOPS operating systems review, 2008.

[26] T. Høiland-Jørgensen, D. Täht, and J. Morton, “Piece of CAKE: a com-
prehensive queue management solution for home gateways,” in IEEE
International Symposium on Local and Metropolitan Area Networks
(LANMAN), 2018.

[27] “tc-cake(8) — Linux manual page,” https://man7.org/linux/man-pages/
man8/tc-cake.8.html.

http://arxiv.org/abs/1811.03353
https://rfc-editor.org/rfc/rfc4594.txt
https://www.iana.org/assignments/dscp-registry/dscp-registry.xhtml
https://www.iana.org/assignments/dscp-registry/dscp-registry.xhtml
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/qos_classn/configuration/xe-16/qos-classn-xe-16-book/qos-classn-ntwk-trfc.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/qos_classn/configuration/xe-16/qos-classn-xe-16-book/qos-classn-ntwk-trfc.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/qos_classn/configuration/xe-16/qos-classn-xe-16-book/qos-classn-ntwk-trfc.html
https://www.sciencedirect.com/science/article/pii/S1084804515000892
https://rfc-editor.org/rfc/rfc8325.txt
https://rfc-editor.org/rfc/rfc8325.txt
https://www.orbit-lab.org/
https://manpages.debian.org/testing/hostapd/hostapd.8.en.html
https://manpages.debian.org/testing/hostapd/hostapd.8.en.html
https://github.com/tanyashreedhar/AgeControlProtocolPlus
https://github.com/tanyashreedhar/AgeControlProtocolPlus
https://man7.org/linux/man-pages/man8/tc-cake.8.html
https://man7.org/linux/man-pages/man8/tc-cake.8.html

	I Introduction
	II Related Work
	III Prioritization in Networks
	IV Experimental Setup and Methodology
	V Evaluation
	VI Conclusion
	References

