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Abstract—We consider a network with multiple sources and
a base station that send time-sensitive information to remote
clients. The Age of Incorrect Information (AoII) captures the
freshness of the informative pieces of status update packets
at the destinations. We derive the closed-form Whittle Index
formulation for a push-based multi-user network over unreliable
channels with AoII-dependent cost functions. We also propose a
new semantic performance metric for pull-based systems, named
the Age of Incorrect Information at Query (QAoII), that quan-
tifies AoII at particular instants when clients generate queries.
Simulation results demonstrate that the proposed Whittle Index-
based scheduling policies for both AoII and QAoII-dependent
cost functions are superior to benchmark policies, and adopting
query-aware scheduling can significantly improve the timeliness
for scenarios where a single user or multiple users are scheduled
at a time.

Index Terms—Age of Information, Age of Information at
Query, Age of Incorrect Information, Scheduling, Restless Multi-
Armed Bandits, Whittle Index Policies

I. INTRODUCTION

In 2022, an estimated 5.3 billion people use the Internet,
corresponding to roughly 66% of the world’s population [1].
Worldwide developments in intelligent systems and smart
devices create an excessive need for valuable and meaning-
ful real-time information updates. This evolving concept of
communication systems may require new solutions to describe
”the right piece of information” to transfer the valuable parts
of the information [2]. Among the semantic metrics, Age of
Information (AoI) [3] is proposed to measure the freshness of
information. The AoI is the amount of time that has passed
since the generation of the most recent status update at the
destination. Optimizing timeliness of transmission in networks
with multiple sources or destinations with respect to AoI
has been investigated in a number of previous works [4]–
[9]. The study in [4] derived a low-complexity technique to
evaluate AoI on first-come-first-served and last-come first-
served systems having multiple users. In [5], a threshold-
based lazy variant of Slotted ALOHA is proposed when many
devices attempt to transmit status updates via a shared medium
on a random-access channel, and the time average AoI is
calculated.

AoI is studied in real-life connections in a relatively small
number of studies (see, e.g., [6], [10], [11]). In [10], a method
for estimating the average AoI without any synchronization
was proposed, and the impact of synchronization inaccuracy
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is discussed on UDP for real networks. The AoI attained over
real-life TCP/IP links served by wireless medium access such
as WiFi, LTE, etc., and wired Ethernet access was measured
in [11]. In [6], AoI and Age of Information at Query (QAoI)
metrics are examined to compare the performances of different
scheduling methods via software simulations and Software
Defined Radio (SDR) testbed. Learning approaches can also be
integrated into the AoI metric; in [7], a reinforcement learning
(RL) approach is proposed to minimize the long-term average
AoI for multi-user networks.

Whittle Index [12] policies have an essential role in AoI
minimization in multi-user systems [7]–[9]. In [8], a policy
is identified to minimize the expected weighted sum of AoI
in a push-based wireless network with unreliable channels.
The closed-form Whittle Index equation is obtained, and the
superior efficiency of Max-Weight and Whittle’s Index policies
as compared to baseline policies is numerically shown. The
optimality of a Whittle Index policy in a multiuser setting is
analytically shown in [9].

A new performance metric is introduced in [13] named
Age of Incorrect Information (AoII), broadening the idea of
fresh updates to fresh informative updates. [14] considers the
Mean AoII as a cost for a scenario where the states of the
sources cannot be known by the scheduler beforehand, defines
a belief value that corresponds to the probability that the
information in the monitor is correct and schedule based on the
belief value of the states. [15] studies a system where perfect
Channel State Information (CSI) is unavailable, and the issue
is to minimize the AoII without proving the indexability by
using an indexed priority policy. In pull-based systems, the
information collection and utilization rely on a certain query
process. In such systems, the age value is only critical at the
time the receiver generates a query. [16] studies a pull-based
point-to-point communication model and defines the QAoI,
also shows that QAoI aware optimization might dramatically
lower the age value for both periodic and stochastic queries.

In this paper, we study AoII as a performance metric for
a multi-user status update system in which, at each time, a
single user or multiple users are scheduled to transmit the
updates over unreliable channels. We derive and propose a
closed-form Whittle Index (WI) solution when the receiver
knows the value of the state and demonstrate that the WI-
based scheduling policy significantly outperforms the baseline
policies. In addition, we introduce a novel performance metric
to the pull-based status update framework, named the Age
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of Incorrect Information at Query (QAoII). Similar to QAoI,
for QAoII, the information is only relevant for utilization
times, and the communication is initiated based on the receiver
demand, enabling resource efficiency for massive systems.
The closed-form WI is also computed for this pull-based
system considering each user’s heterogeneous Bernoulli query
process. Comparisons of WI-based scheduling policies for
AoII and QAoII costs are demonstrated for pull-based and
push-based status update systems.

II. SYSTEM MODEL

We consider Nu distinct users that can generate and send
their updates to a base station that operates as a central sched-
uler in discrete time instances. The base station observes the
state of the information sources of the users and decides which
sources can transmit their updates over unreliable channels
such that M (M ≤ Nu) is the total number of available
channels. For each user i in the system, the information
process is parameterized by pRi , N , and pti . The source
process is assumed to be a Finite State Markov Process with
N states. Let pRi

and pti denote the probability of remaining
in the same state and transitioning to each other particular state
for user i for the next frame, respectively. Eq. (1) relates pRi

,
N , and pti .

pRi + (N − 1)pti = 1 (1)

We assume that available channels in the system are indepen-
dently and identically distributed (i.i.d.) over the frames. The
probability of successful transmission for user i is psi and
pfi is the probability of unsuccessful transmission for user i
which is calculated as pfi = 1 − psi . The structure of the
communication model is illustrated in Figure 1. Dashed lines
represent the query case such that the AoII value for a user is
valuable only when the query exists for the user. Therefore,
the AoII penalty is changed to the QAoII penalty for the cases
when the query exists, as explained in Section II-B. We focus
on the case when pRi

> pti .

Fig. 1. The structure of the system model.

A. AoII Optimization

In this paper, we investigate two different optimization
problems with different penalty functions. Firstly, for the AoII
cost [13], we aim to minimize the average AoII over an infinite

horizon by tracking the AoII value of each user in every frame.
Secondly, we add a query state to our system model and aim
to minimize the average QAoII of the system and propose low
complexity scheduling policies.

We use the linear time-dissatisfaction function and indicator
error function, so the penalty of the system is given in (2) as
the multiplication of these functions.

∆i(t) = (t− U(t))1(X̂i(t) 6= Xi(t)) (2)

where U(t) is the last time instant where the receiver was in a
correct state, Xi(t) is a sample of the information process at
time t and X̂i(t) is an estimation of the process at the receiver
for user i. The transition probabilities that will be defined are
similar to those in [13, p. 5], but for multi-user cases, we have
a user index i. In the rest of the paper, we use ∆i and ∆Qi

to denote the AoII and QAoII values for user i, respectively.
The probabilities can be examined in two cases.

The penalty function evolution for user i for the case that the
receiver has perfect knowledge is the same for both transmis-
sion and no transmission cases. The AoII value changes to 0
if the information source does not change its state and 1 if the
source changes its state. The probabilities in the transmission
case do not depend on the channel because no new information
will be transmitted to the receiver due to the perfect knowledge
on the receiver side. Unlike the previous case, the penalty
function evolution for user i for the case that the receiver
does not have perfect knowledge is different for transmission
and no transmission cases:

If there is no transmission, the value of the AoII will be
equal to 0 if the information source changes its value to the
value that is last successfully received by the receiver. The
value of the AoII will increase by 1 if the process keeps its
same value or transitions to other N − 2 states. If there is a
successful transmission, the value of the AoII will be equal
to 0 if the information source does not change; the AoII will
increase by 1 if the information source change to other N −1
states. However, if the transmission is unsuccessful, the value
of the AoII will be equal to 0 if the information source changes
its value to the value that is last successfully received by the
receiver; the AoII will increase by 1 if the process keeps the
same value or transitions to other N − 2 states.

Let Ai(t) ∈ {0, 1} be the binary value corresponding to
the decision for user i at time t of the base station to either
transmit or remain idle, and ∆i(t) denote the AoII value for
user i at time t. The summary of the probability transitions of
the AoII penalty function is seen in the following:
• P(∆i(t+ 1) = 0|∆i(t) = 0, Ai(t) = 0) = pRi

• P(∆i(t+ 1) = 1|∆i(t) = 0, Ai(t) = 0) = (N − 1)pti
• P(∆i(t+ 1) = 0|∆i(t) = 0, Ai(t) = 1) = pRi

• P(∆i(t+ 1) = 1|∆i(t) = 0, Ai(t) = 1) = (N − 1)pti
• P(∆i(t+ 1) = 0|∆i(t) 6= 0, Ai(t) = 0) = pti
• P(∆i(t + 1) = ∆i(t) + 1|∆i(t) 6= 0, Ai(t) = 0) = pRi

+
(N − 2)pti
• P(∆i(t+ 1) = 0|∆i(t) 6= 0, Ai(t) = 1) = pRipsi + pfipti
• P(∆i(t+1) = ∆i(t)+1|∆i(t) 6= 0, Ai(t) = 1) = pRipfi +
(N − 2)pti + psipti



Let φ be the transmission policy defined as a sequence of
actions φ = (Aφ(0), Aφ(1), ..). Then, the scheduling problem
can be formulated as follows:

Problem 1 (AoII Optimization over Multi-User Links):

min
φ

lim
T→∞

sup
1

T
Eφ[

T−1∑
t=0

Nu∑
i=1

∆φ
i (t)|∆i(0)]

subject to
Nu∑
i=1

Aφi (t) ≤M

(3)

B. QAoII Optimization

Next, we address the case when information about times
at which information gets queried by destination is available
at the network server. This scenario allows for optimizing the
freshness of the information at the query instants. In this case,
the base station will pull information from the sources. Thus,
as opposed to a push-based model where sources initiate the
transmission, it is the base station that initiates it. For this
case, we will revise the penalty function to be a combination
of query state and AoII penalty. When the query state of a
user for a frame is equal to 1, the user is queried; otherwise,
the user is not queried. In addition, the QAoII-based cost for
user i, is calculated as the multiplication of the state of the
query and AoII-based cost value for user i in such that:

∆Qi
(t) =

{
∆i(t) if i ∈ Q(t),

0 otherwise.

where Q(t) represents the query set, that is, the set of users
with queries at frame t. Let φ be the transmission policy
defined as a sequence of actions φ = (Aφ(0), Aφ(1), ..). Then,
the scheduling problem can be formulated as follows:

Problem 2 (QAoII Optimization over Multi-User Links):

min
φ

lim
T→∞

sup
1

T
Eφ[

T−1∑
t=0

Nu∑
i=1

∆φ
Qi

(t)|∆Qi
(0)]

subject to
Nu∑
i=1

Aφi (t) ≤M

(4)

III. WHITTLE INDEX POLICIES TO MINIMIZE AOII AND
QAOII

Formulation of the AoII-based scheduling problem belongs
to the family of Restless Multi-Armed Bandit (RMAB) prob-
lems. Reaching the optimal solution to this type of problem is
known to be very difficult, so an efficient policy having low
complexity called Whittle Index policy can be used [17], [18].
By relaxing the problem to satisfy the constraint on average,
we obtain (5):

min
φ

lim
T→∞

sup
1

T
Eφ[

T−1∑
t=0

Nu∑
i=1

∆φ
i (t)|∆i(0)]

subject to lim
T→∞

sup
1

T

T−1∑
t=0

Nu∑
i=1

Aφi (t) ≤M

(5)

Then, the unconstrained Lagrangian cost [19] is defined as in
(6):

lim
T→∞

sup
1

T
Eφ(

T−1∑
t=0

Nu∑
i=1

∆φ
i (t) + λAφi (t)|∆i(0))− λM (6)

where λ is the Lagrangian parameter and can be considered
as the penalty for scheduling users. The Lagrangian problem
can be viewed as an infinite horizon average cost Markov
decision process (MDP) whose instantaneous cost is defined
as C(∆(t), A(t)) = ∆(t) + λA(t) for AoII metric, actions
represented as A(t), states and transition probabilities were
defined previously. As λM in (6) is independent of the
scheduling policy φ, it can be eliminated.
Nu-dimensional problem can be decomposed into Nu one-

dimensional problems that can be solved independently [20],
so we concentrate on a one-dimensional representation of the
problem. For every user in the system, the one-dimensional
problem is written as follows:

minφ lim
T→∞

sup
1

T
Eφ(

T−1∑
t=0

∆φ
i (t) + λAφi (t)|∆i(0)) (7)

Definition 1 (Threshold policy): A threshold policy is a
policy for which there exists a threshold n such that when the
current state ∆i < n, the action is not transmit i.e. A = 0, and
when ∆i ≥ n, the action is transmit i.e A = 1, so, A ∈ {0, 1}.

Following the results in [13], a threshold policy parame-
terized by n exists for a single-user AoII minimization given
in (7).

Definition 2: A class is indexable if the cardinality of the set
of states in which staying idle (not transmitting) is the optimal
action increases with the scheduling penalty. When the class
is indexable, the Whittle Index can be defined.

To establish indexability and to find Whittle Index expres-
sions, the steady-state form of the problem is needed. It can
be obtained by resolving the full balance equation under the
threshold value n at each state as in [13, Proposition 2]. The
steady-state form of (7), which is the one-dimensional problem
under a threshold policy, is:

min
n

∆n
i + λAni (8)

where ∆n
i is the average value of the cost and Ani is the

average active time under threshold policy n for user i
respectively.

For a given threshold n, the average AoII-based cost for-
mula can be found by

∑∞
k=1 kπk(n) where k represents the

AoII value of a state and πk(n) is the stationary distribution
of the Markov chain for a fixed threshold constructed using
the transition probabilities given in Section II-A and is given
in (9).

∆i(n) = (N − 1) pti

1+bni (nbi−n−1)

(1−bi)2 +
bn−1
i ai

(
n+ 1

1−ai

)
1−ai

1 +
(N−1)pti(1−bni )

1−bi +
(N−1)ptiaib

n−1
i

1−ai
(9)



where ai denotes a constant which is equal to pRi
pfi + (N −

2)pti + psipti and bi is a constant which is equal to pRi +
(N − 2)pti .

The active time corresponds to the portion of time when
the transmitter attempts to send packets, so the sum begins
at n, which is the threshold value and goes to infinity
(
∑∞
k=n πk(n)). Therefore, the average active time formula is

given in (10) for a given threshold.

A(n) =
(N − 1) ptib

n−1
i

(1− ai)
(

1 +
(N−1)pti(1−bni )

1−bi +
(N−1)ptiaib

n−1
i

1−ai

)
(10)

Defined steady-state probabilities are similar to those in [13,
p. 8], but for multi-user cases, we have a user index i. Since
the steady-state form of the average active time equation, Eq.
(10), is decreasing with n, the one-dimensional problem is
indexable (see [9] for detailed proof) for each user i.

After finding the steady state equations and showing the
indexability, we can find the closed-form expression of the
Whittle Index for each user by computing the ratio of the
difference between the average value of the penalty function
under threshold values n+1 and n and the difference between
average active time under threshold values n and n+1, where
n is equal to the ∆i. Thus, the closed-form Whittle Index
equation can be formulated as ∆i(n+1)−∆i(n)

Ai(n)−Ai(n+1)
. Following this,

a closed-form WI can be found as in (11). Note that the
detailed derivation of (11) is omitted due to space limitations.

Wi(∆
n
i ) =

−XY (Z1 − Z2)

(ai − 1)(bi − 1)2pti(bi −Npti + pti − 1)
(11)

where

X = b−∆i
i

(
ai(N − 1)ptib

∆i
i + (ai − 1)b2i

−(ai − 1)bi((N − 1)pti + 1)− (N − 1)ptib
∆i+1
i

)
Y = ai

(
(N − 1)ptib

∆i
i + bi −Npti + pti − 1

)
−
(

(N − 1)ptib
∆i+1
i

)
− bi +Npti − pti + 1

Z1 =

pti

(
ai(−ai∆i+∆i+1)b

∆i−1

i

(ai−1)2 +
((bi−1)∆i−1)b

∆i
i +1

(bi−1)2

)
−ai(N−1)ptib

∆i−1

i

ai−1 −
(N−1)

(
pti

(
1−b∆i

i

))
bi−1 + 1

Z2 =

pti

(
(bi∆i+bi−∆i−2)b

∆i+1

i +1

(bi−1)2 − ai(ai∆i+ai−∆i−2)b
∆i
i

(ai−1)2

)
−ai(N−1)ptib

∆i
i

ai−1 −
(N−1)

(
pti

(
1−b∆i+1

i

))
bi−1 + 1

Next, we propose Whittle Index policies for QAoII. We
consider the case where query arrivals follow a Bernoulli pro-
cess that is independent of the age process. The average cost
function for QAoII metric can be written as in (12) leveraging
the Bernoulli query arrivals in the summation of Problem 4.
Therefore, the threshold-based average cost function for QAoII
metric is modified such that only a multiplication term is added
to the threshold-based average cost function of the AoII metric

in (9). Thus, for the QAoII case, the cost value changes based
on the query probabilities of users. Then for a given threshold,
the average cost value is formulated as in (12).

∆Qi(n) =

∞∑
k=1

qikπk(n) (12)

where k represents the AoII value of a state and πk(n) is
the stationary distribution of the Markov chain for a fixed
threshold constructed using the transition probabilities given
in Section II-A and the additional query term, qi, is the query
probability for user i. Since similar analyses also hold for
QAoII metric, we use the cost in (12) and average active time
in (10) to find the closed form Whittle Index equation, and the
function is generated as in (11). Note that the threshold value,
n, is replaced by ∆i, which corresponds to the AoII value for
a user i.

Wi(∆
n
Qi

) =
qi(ai − bi)(X + Y )

(ai − 1)(bi − 1)2(bi −Npti + pti − 1)
(13)

where

X = ai(N − 1)ptib
∆i
i + b2i ((ai − 1)∆i − 1)

−bi((ai − 1)∆i − 1)((N − 1)pti + 2)

Y = (ai − 1)∆i((N − 1)pti + 1)− aiNpti + aipti

−(N − 1)ptib
∆i+1
i − 1

At each frame, for the AoII penalty case, the Whittle Indices
of all users in the system are computed by (11) or (13) and M
user(s) having the highest Whittle Index values at this frame
are selected to be scheduled as in Algorithm 1.

Algorithm 1 Proposed WI Algorithm for AoII and QAoII
1: for t = 0,1,2,. . . do
2: Observe the AoII, ∆i(t), for all users i ∈ {1, . . . , Nu}.
3: Compute Whittle Indices for all users by using Eqs.

(11) or (13) for the optimization of AoII and QAoII,
respectively.

4: Select the M users having the highest WI values to
schedule.

5: end for

When minimizing the average QAoII of the system, the AoII
values at query times for users generating queries are summed,
and the summation is divided by the total number of queries
as in (14).

∆Qi
=

1(i ∈ Q)∆i∑
i=1 1(i ∈ Q)

(14)

IV. SIMULATION RESULTS

This section includes the results generated on MATLAB.
WI-based scheduling algorithms are tested, and the average
AoII and QAoII costs optimized by the WI policy are com-
pared with the baseline Round Robin (RR) and Greedy policy
(GP) methods throughout the experiments. We also compare



our average AoII results with those generated using the AoI-
based WI algorithm in [8] and for the QAoII case we compare
the query-modified version of it. RR algorithm selects a user
or multiple users to schedule at each frame in a round-robin
fashion. In the GP, user(s) having the highest cost (highest
AoII) for the specified frame are selected to schedule.

A. Results: AoII Optimization

Figure 2 demonstrates the performance of the proposed
WI-based scheduling policy with respect to the number of
total users in the experiment allowing a single user to be
scheduled each time. The pR and ps values are uniformly
distributed with respect to the user number of the system, and
they are arranged such that while pR probabilities increase, ps
probabilities decrease. The total frame number is set to 10000.
In all cases, the proposed WI based policy is more effective
than the GP and RR based scheduling. RR, GP, and WI-
dependent average AoII values increase when the number of
users increases. Simulation results also show that our proposed
WI algorithm is much more efficient in reducing the average
AoII on the system compared to using AoI-WI [8].

Fig. 2. Average AoII values for the Round Robin (RR), Greedy (GP), AoI-
Whittle Index (AoI-WI), and AoII-Whittle Index (AoII-WI) scheduling for
the system with 2 to 9 users each time a single user is scheduled.

For the experiment results in Figure 3, we investigate the
average AoII for different numbers of scheduled users at each
frame. Without loss of generality, the total number of users is
set to 37. The probabilities pR and ps for each user are chosen
to start at 5% and increase by 2.5% up to 95%, and the total
frame number is set to 2000. The proposed WI policy is more
effective than the GP and RR. Our proposed WI algorithm
is also efficient in reducing the average AoII on the system
compared to the average AoII generated using AoI-WI. Note
that RR, GP, and WI-dependent average AoII values decrease
when more users can be scheduled at each frame. Also, when
the number of scheduled users increases, the performance gap
between different scheduling policies reduces.

B. Results: QAoII Optimization

Figure 4 illustrates the performance of the proposed WI-
based scheduling policy with respect to the number of to-

Fig. 3. Average AoII values for the Round Robin (RR), Greedy (GP), AoI-
Whittle Index (AoI-WI), and AoII-Whittle Index (AoII-WI) scheduling for a
system with 37 users, each time the number of scheduled users is increased.

tal users in the experiment allowing a single user to be
scheduled each time. The pR, ps, and the query probabilities
are uniformly distributed with respect to the user number
of the system, and they are arranged such that while pR
and query probabilities increase, ps probabilities decrease. In
the simulation, the total frame number is set to 1000, and
25 Monte Carlo simulations are conducted. In all cases, the
proposed WI based policy is more effective than the GP and
RR based scheduling. Also, our proposed WI algorithm is
much more efficient in reducing the average QAoII on the
system compared to the query-modified version of AoI-WI.
Note that RR, GP, and WI-dependent average QAoII values
increase with increasing the number of users in the system.

Fig. 4. Average QAoII values for the Round Robin (RR), Greedy (GP), QAoI-
Whittle Index (QAoI-WI), and QAoII-Whittle Index (QAoII-WI) scheduling
for the system with 2 to 9 users each time a single user is scheduled.

Figure 5 shows the comparison of the performance of the
proposed WI based policy to baseline RR and GP scheduling
policies with respect to the number of scheduled users for a
37 users system. The query state is considered throughout the
experiment. The selected user to be scheduled is increased by
1 for each run. pR and ps probabilities are arranged such that
they start at 5% and increased by 2.5% up to 95%. The query



probabilities for the users are set in that they start at 95%
and decreased by 2.5% to 5%. The total number of frames
in this experiment set is selected as 2000. Figure 5 shows
the simulation results of this experiment. The proposed query-
based WI policy is more effective in all cases than the GP and
RR scheduling. RR, GP, and WI-dependent average QAoII
values decrease when the scheduled user number increases.
Our proposed Whittle Index algorithm also efficiently reduces
the average QAoII on the system compared to the average
QAoII generated by the query-modified version of AoI-WI.
Also, when the number of scheduled users increases, the
difference between GP and WI policies decreases.

Fig. 5. Average QAoII values for the Round Robin (RR), Greedy (GP), QAoI-
Whittle Index (QAoI-WI), and QAoII-Whittle Index (QAoII-WI) scheduling
for a system with 37 users, each time the number of scheduled users is
increased.

For the experiment set results in Table I, there are 3 users
in the system having the parameters for User 1: pR = 5%,
ps = 95%, for User 2: pR = 50%, ps = 50% and for User 3:
pR = 95%, ps = 5%. The central scheduler selects a single
user at each frame to be scheduled based on RR, GP, and
WI scheduling algorithms considering AoII and QAoII costs
throughout a total of 2000 frames. The average AoII values for
this set are presented at the top of Table I. Also, for the same
pR and ps probability of users, a query probability is added
to the system such that it is 20%, 50%, and 80% for users 1,
2, and 3, respectively. The average QAoII values for this set
are summarized at the bottom of Table I. Numerical results
show that query-aware scheduling can significantly reduce the
average AoII experienced by the receiver and higher timeliness
can be achieved for pull-based systems. The decrease in age
values computed by AoII and QAoII metrics is approximately
32% for GP and approximately 14% for WI-based scheduling.

TABLE I
AVERAGE AOII & QAOII VALUES FOR DIFFERENT SCHEDULING POLICIES

FOR A SYSTEM WITH 3 USERS WHEN A SINGLE USER IS SCHEDULED.

Avg. age RR GP WI
AoII 12.587 11.726 7.820

QAoII 9.035 7.924 6.765

V. CONCLUSION

We considered a multi-user uplink system with unreliable
channels. We propose closed-form Whittle Index policies for
AoII and QAoII cost functions and compared the perfor-
mance with benchmark policies. Simulation results show that
the Whittle Index based scheduling policy is superior in
various settings. In future studies, theoretical analyses and
performance guarantees of the proposed algorithms will be
investigated.
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