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Abstract—We consider a hybrid automatic repeat request
(HARQ) based status update system where timely information
from multiple sources with different sampling processes (uncon-
trollable and controllable sampling) is sent via a transmitter
to a destination through an error-prone channel. To minimize
the average number of transmissions subject to an average age
of information constraint, we propose a near-optimal determin-
istic transmission policy. We formulate a constrained Markov
decision process (CMDP) problem and provide a solution using
the Lagrangian relaxation method and relative value iteration
algorithm. Numerical results show that the proposed policy
achieves near-optimal performance.

Index Terms: AoI, multi-source status update, generate-at-will,
random arrival, CMDP.

I. INTRODUCTION

There is a growing interest in services that require fresh
status update delivery, such as autonomous vehicles, wireless
industrial automation, and health monitoring [1]. The Age of
Information (AoI) [1]–[3] is a metric used to evaluate the
freshness of information in the status update systems. AoI is
the difference between the current time and the generation
time of the last received packet at a destination [1]–[3].

In the case of an unreliable communication channel, the reli-
ability of data transmission can be enhanced by retransmission
protocols [4]. Automatic repeat request (ARQ) protocols are
standard error control methods, where after each transmission,
the transmitter receives feedback about the reception status
of the packet as acknowledgement/negative-acknowledgement
(ACK/NACK) [4]. The transmitter keeps retransmitting each
packet until it receives an ACK or reaches the maximum
allowed number of retransmissions. While ARQ protocols
utilize only the last received version of a packet for decoding,
hybrid ARQ (HARQ) protocols utilize all received versions to
increase the probability of successful decoding the packet [4],
[5].

In this paper, we consider a multi-source HARQ-based
status update system, where the sources are connected to
a transmitter that sends status update packets to a receiver
over an unreliable wireless channel (see Fig. 1). We assume
a slotted communication, in which the transmitter can send
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at most one packet per slot. The sources, which monitor
some time-varying random processes, are classified into two
categories based on their sampling processes: 1) random
arrival sources (i.e., uncontrollable sampling) which generate
status update packets according to a Bernoulli process, and
2) generate-at-will sources (i.e., controllable sampling) which
can be commanded to generate a status update packets at any
slot. Apart from freshness requirements, the radio resources
(e.g., power and channel utilization) also play an essential
role in the operation of status update systems [6]. Hence,
we investigate the problem of minimizing the average num-
ber of transmissions subject to the average AoI constraint.
The solution of the problem is a policy that determines the
transmission status at each time slot, i.e., transmit a fresh
packet from a source, retransmit the previously transmitted but
not successfully decoded packet from a source, or stay idle.
We formulate our problem as a constrained Markov decision
process (CMDP) problem. Then, we transform the CMDP
problem into an MDP problem via the Lagrangian relaxation
method. Using the relative value iteration algorithm (RVIA),
we propose a near-optimal practical deterministic transmission
policy.

Related Works: AoI characterization has extensively been
studied from the perspective of queueing theory; see, e.g.,
[7]–[9] and the references therein. One of the earliest studies
to analyze AoI under an HARQ protocol is [9], where the
authors derived the closed-form expression of the average
AoI for an HARQ-based M/G/1/1 queueing system. Besides
the analysis, the AoI has been studied in the retransmission-
based status update systems from the perspective of sampling
and transmission policies [10]–[15]. The most related works
to our paper are [14], [15]. The work [14] considered a
similar HARQ-based status update system to ours, yet with
the following differences. The authors in [14] considered a
single generate-at-will source, while we consider both random
arrival and generate-at-will sources as a multi-source system.
Considering the random arrival sources makes the system more
complicated, as the transmitter does not know the availability
of the fresh packets at the subsequent slots. In [15], which is
an extension of [14], the authors considered an HARQ-based
status update system that contains one generate-at-will source
and several users (destinations), in which at most one user is
served at each slot.



Figure 1. The considered system model.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a multi-source status update system that con-
sists of K sources, one transmitter, and one receiver, as
depicted in Fig. 1. The receiver is interested in timely in-
formation about different random processes monitored by the
K sources. The transmitter sends status update packets to the
receiver through an error-prone wireless channel with the aid
of an HARQ protocol. The system operates in discrete time
with unit time slots t ∈ {1, 2, . . .}.

The K sources are divided into two classes based on
their sampling processes: 1) a set I of I random arrival
sources whose sampling processes are uncontrollable and 2)
a set J of J generate-at-will sources, where the transmitter
can sample the process at any time. Each source k ∈ I
generates status update packets randomly and independently
at the beginning of slots according to a Bernoulli random
process with parameter λk. We denote the set of all sources
by K = I ∪ J = {1, . . . ,K}, where K = I + J .

Each random arrival source has a buffer of size one to
store the last arrived packet. The transmitter has a memory
of size K packets to store the previously transmitted but not
successfully decoded packets of each source. Note that, after
a number of unsuccessful transmission attempts of a packet
from a source, the transmitter may decide to transmit a packet
from the other sources. In this case, the transmitter retains the
previously transmitted but not successfully decoded packet of
each source in the transmitter’s memory for possible future
retransmissions, since this packet is more likely to be decoded
than a new packet from that source due to the HARQ protocol.
We term a packet in the transmitter’s memory an under-process
packet. Thus, the maximum number of packets stored in the
system is I+K packets, i.e., I packets at the buffers of random
arrival sources and K packets at the transmitter’s memory.

We assume that the transmitter1 can transmit at most one
packet per slot. At each slot, the transmitter decides whether to
send a packet or stay idle. The possible transmission options
for a random arrival source k ∈ I are either transmitting
the packet from its buffer or retransmitting the under-process
packet from the transmitter’s memory. The possible transmis-
sion options for a generate-at-will source k ∈ J are either

1A mathematically equivalent system is the one where each source is
equipped with an own transmitter while at most one source is allowed to
transmit at each slot.

generating and transmitting a new sample or retransmitting the
under-process packet from the transmitter’s memory. We refer
to the packets in the buffers of the random arrival sources and
to the newly generated packets of the generate-at-will sources
as fresh packets. If the transmitter decides to transmit a fresh
packet from a given source, this packet replaces the source’s
under-process packet in the transmitter’s memory.

1) Transmission Model: At each slot t, the transmitter takes
one of the following actions: 1) transmit a fresh packet from
a source, 2) retransmit an under-process packet of a source, or
3) stay idle. Let ut,k ∈ {0, 1} denote the decision variable
about transmitting a fresh packet from source k at slot t,
where ut,k = 1 indicates that the transmitter sends the fresh
packet, and ut,k = 0 otherwise. Let rt,k ∈ {0, 1} denote
the decision variable about retransmitting the under-process
packet of source k at slot t, where rt,k = 1 indicates that
the transmitter sends the under-process packet, and rt,k = 0
otherwise. Since the transmitter can transmit at most one
packet per slot, we have

∑
k∈K ut,k + rt,k ≤ 1.

HARQ protocol: In the considered HARQ protocol, every
packet transmission attempt is followed by an instantaneous
error-free ACK/NACK feedback signal from the receiver. Let
dt ∈ {0, 1} denote the packet reception status at slot t, where
dt = 1 indicates that the transmitted packet was decoded
successfully (ACK), and dt = 0 indicates that either the
transmitted packet was not decoded successfully (NACK) or
the transmitter remained idle. In the HARQ protocol, the
receiver uses all previously received versions of a packet to
decode it. Therefore, the probability of successful decoding a
packet is an increasing function of the number of attempted
transmissions of the packet. Let xt,k denote the number of
attempted transmissions of a packet of source k up to slot t.
The evolution of xt,k is given as

xt+1,k =

 1 ut,k = 1
xt,k ut,k + rt,k = 0
xt,k + 1 rt,k = 1.

(1)

To account for the fact that most practical HARQ protocols
allow only a finite number of retransmissions, we limit the
number of transmission attempts of a packet to xmax, i.e.,
xt,k ≤ xmax. The function representing the probability of
successful decoding after xt,k transmissions is denoted by
f(xt,k). In practice, f(·) is a complicated function of several
parameters such as the channel conditions, the channel coding
methods, and the combining technique utilized in the HARQ
protocol [16], [17].

2) Age of Information: Let δt,k denote the AoI of source
k at the receiver at slot t; we refer to this simply as the AoI
of source k hereinafter. We use the common assumption (see,
e.g., [14], [15], [18], [19]) that all AoI values in the system
are upper bounded by δmax. To characterize the AoI of each
source, we next define the age of a fresh packet at a source
and the age of an under-process packet in the transmitter’s
memory.

Age of the fresh packets: Let δft,k denote the age of the fresh
packet of source k at slot t. For a random arrival source, if a



packet arrives at the buffer at the beginning of slot t, the age of
the fresh packet becomes zero, otherwise it is incremented by
one. Let bt,k ∈ {0, 1} denote the packet arrival status of source
k ∈ I at slot t, where bt,k = 1 indicates a packet arrives at the
buffer, and bt,k = 0 otherwise. Note that Pr(bt,k = 1) = λk.
For the generate-at-will sources, the transmitter can generate a
fresh packet at any time so that the age of the fresh packet is
always zero. Thus, the evolution of δft,k with the initial value
δf0,k = 0 is given as

δft,k =


0 bt,k = 1, k ∈ I
min{δft−1,k + 1, δmax} bt,k = 0, k ∈ I
0 k ∈ J ,

(2)

Age of the under-process packets: Let δpt,k denote the age of
the under-process packet of source k at slot t. If the transmitter
sends a fresh packet of source k at slot t, the age of the
under-process packet of the source at the next slot drops to
min{δft,k+1, δmax}. In other cases (i.e., retransmission or stay-
ing idle), the age of the under-process packet is incremented
by one. The evolution of δpt,k with the initial value δp0,k = 0
is given by

δpt+1,k =

{
min{δft,k + 1, δmax} ut,k = 1

min{δpt,k + 1, δmax} otherwise.
(3)

AoI at the receiver: We now characterize the evolution of
the AoI at the receiver. If the transmitter sends a fresh packet
of source k at slot t (i.e., ut,k = 1) and the packet is decoded
successfully at the receiver (i.e., dt = 1), the AoI of the source
at the next slot drops to min{δft,k + 1, δmax}, otherwise (i.e.,
dt = 0), the AoI increases by one. If the transmitter retransmits
the under-process packet of source k (i.e., rt,k = 1) and it is
decoded successfully at the receiver, the AoI of the source
at the next slot drops to min{δpt,k + 1, δmax}, otherwise (i.e.,
dt = 0), the AoI increases by one. If, at slot t, the transmitter
does not transmit any packet of source k (i.e., ut,k+rt,k = 0),
the AoI of the source at the next slot increases by one. The
evolution of δt,k with the initial value δ0,k = 0 is given as

δt+1,k =


min{δft,k + 1, δmax} ut,kdt = 1

min{δpt,k + 1, δmax} rt,kdt = 1

min{δt,k + 1, δmax} ut,k(1− dt) = 1
min{δt,k + 1, δmax} rt,k(1− dt) = 1
min{δt,k + 1, δmax} ut,k + rt,k = 0.

(4)

B. Problem Formulation

Our main goal is to minimize the average number of
transmissions subject to the average AoI constraint by finding
a transmission policy that determines the transmission decision
variables at each slot t.

Let τt ∈ {0, 1} denote the transmission status at slot t,
where τt = 1 indicates that the transmitter sends a packet,
and τt = 0 otherwise. Thus, we have

τt =

{
1

∑
k∈K ut,k + rt,k = 1

0 otherwise.
(5)

Let τ̄ denote the expected long-term time average number of
transmissions, defined as

τ̄ = lim sup
T→∞

1
T

∑T
t=1 E{τt}, (6)

where E{·} is the expectation with respect to the randomness
of the system (i.e., packet arrival processes of the random
arrival sources and randomness in the communication channel)
and the decision variables {ut,k, rt,k}k∈K. Finally, let δ̄ denote
the expected long-term time average of AoI, given as

δ̄ = lim sup
T→∞

1
TK

∑T
t=1

∑K
k=1 E{δt,k}, (7)

The problem is formulated as a constrained Markov decision
process (CMDP) problem. The CMDP is defined by a tuple
of five elements (S,As,P, c, d): state space, action space,
state transition probabilities, and two cost functions, which
are defined in the following.

State: Let st,k = {δft,k, δ
p
t,k, δt,k, xt,k} denote the state of

source k at slot t. The system state at slot t is defined
as st = {st,k}k∈K ∈ S , where S is the state space. The
initial state is denoted with s0 = {s0,k}k∈K, where s0,k =
{0, 0, 0, 0} for all k ∈ K.

Action: Let at = {at,k}k∈K ∈ Ast denote the action of the
transmitter at slot t, where at,k = {ut,k, rt,k} represents the
action for source k, and Ast is a space of feasible actions
in state st, defined as Ast =

{
ut,k, rt,k ∈ {0, 1} | k ∈

K,
∑

k∈K ut,k + rt,k ≤ 1, rt,k(xt,k + 1) ≤ xmax
}

.
Cost functions: The CMDP has two cost functions: 1)

transmission cost, defined as c(at) = τt, i.e., c(at) = 1 if the
transmitter makes a transmission attempt at slot t, otherwise
c(at) = 0, and 2) AoI cost, defined as e(st) =

1
K

∑K
k=1 δt,k.

State transition probabilities: Let P(s′ | s, a) denote the
state transition probabilities, defined as the probability of
moving from current state s to a next state s′ under action
a. Given an action, the one-slot evolution of the AoI values
(at the source, memory, and destination) and of the number
of transmissions of the under-process packets is independent
among the sources. Therefore, the state transition proba-
bility factorizes as P(s′ | s, a) = Πk∈KPr(s

′
k | sk, ak). Let

us denote δ̃fk ≜ min{δfk + 1, δmax}, δ̃pk ≜ min{δpk + 1, δmax},
δ̃k ≜ min{δk + 1, δmax}, f̄(·) ≜ 1− f(·), and λ̄k ≜ 1− λk.
Given the state sk = {δfk, δ

p
k , δk, xk}, the state transition

probabilities for a random arrival source k ∈ I for the non-
zero cases are given by

Pr
(
{0, δ̃fk, δ̃fk, 1} | sk, ak = {1, 0}

)
= f(1)λk (8a)

Pr
(
{δ̃fk, δ̃fk, δ̃fk, 1} | sk, ak = {1, 0}

)
= f(1)λ̄k (8b)

Pr
(
{0, δ̃fk, δ̃k, 1} | sk, ak = {1, 0}

)
= f̄(1)λk (8c)

Pr
(
{δ̃fk, δ̃fk, δ̃k, 1} | sk, ak = {1, 0}

)
= f̄(1)λ̄k (8d)

Pr
(
{0, δ̃pk , δ̃

p
k , xk + 1} | sk, ak = {0, 1}

)
= f(xk + 1)λk

(8e)

Pr
(
{δ̃fk, δ̃

p
k , δ̃

p
k , xk + 1} | sk, ak = {0, 1}

)
= f(xk + 1)λ̄k

(8f)



Pr
(
{0, δ̃pk , δ̃k, xk + 1} | sk, ak = {0, 1}

)
= f̄(xk + 1)λk

(8g)

Pr
(
{δ̃fk, δ̃

p
k , δ̃k, xk + 1} | sk, ak = {0, 1}

)
= f̄(xk + 1)λ̄k

(8h)

Pr
(
{0, δ̃pk , δ̃k, xk} | sk, ak = {0, 0}

)
= λk (8i)

Pr
(
{δ̃fk, δ̃

p
k , δ̃k, xk} | sk, ak = {0, 0}

)
= λ̄k, (8j)

The state transition probabilities for the generate-at-will source
k ∈ J are obtained by substituting λk = 1 in (8).

Let π denote a policy that determines the action
taken at each state. A stationary randomized policy is
mapping from each state to a distribution over actions,
π(a | s) : S ×A → [0, 1],

∑
a∈As

π(a | s) = 1. A (station-
ary) deterministic policy chooses an action at a given state
with probability one, which is a special case of the sta-
tionary randomized policy. With a slight abuse of notation,
we denote the action taken in state s by a deterministic
policy π with π(s). Let τ̄π = lim sup

T→∞

1
T

∑T
t=1 E{c(at) | s0}

denote the average number of transmissions (see (6)), ob-
tained under policy π starting from the initial state s0. Let
δ̄π = lim sup

T→∞

1
T

∑T
t=1 E{e(st) | s0} denote average AoI (see

(7)), obtained under policy π starting from the initial state s0.
Having constructed the CMDP, the CMDP problem is given
as

minimize
π

τ̄π

subject to δ̄π ≤ ∆max,
(9)

where ∆max is the maximum allowed average AoI. An optimal
policy that solves CMDP problem (9) is denoted with π∗, and
the optimal value of the problem is denoted with τ̄∗.

Similarly to [20], [21], to solve problem (9), we need to
make extra assumptions about the CMDP structure. Specifi-
cally, we assume that given the initial state (s0), all policies
will induce a Markov chain with only one recurrent class and a
(possibly empty) set of transient states. This assumption makes
problem (9) well-posed so that we can use the tools associated
with the unichain MDPs, as described in the next section.

III. DETERMINISTIC TRANSMISSION POLICY

In this section, we propose a (near-optimal) solution to
the CMDP problem. To this end, we apply the Lagrangian
relaxation method to transform the CMDP problem to
an (unconstrained) MDP problem, parametrized by a
Lagrange dual variable [22, Sec. 3.3]. In comparison to
the CMDP problem, the MDP problem has only one cost
function that is defined as L(s, a, β) = c(at) + βe(st),
whereas the other elements, i.e., the state space, action
space, and state transition probabilities, are the same. Let
L̄(π, β) = lim supT→∞

1
T

∑T
t=1 E{c(at) + β

(
e(st)−∆max

)
}

denote the Lagrangian corresponding to CMDP problem (9),
where β is the Lagrangian multiplier. Following the standard
Lagrangian relaxation procedure, we restrict to the set of
deterministic policies and construct the following MDP
problem associated with the CMDP problem (9)

minimize
π∈ΠD

L̄(π, β), (10)

where ΠD is the set of all deterministic policies. Let π∗
β denote

an optimal policy that solves problem (10) for a given β, which
is called a β-optimal policy.

The following remark expresses the relation between the
optimal values of CMDP problem (9) and the MDP problem
(10).

Remark 1: The cost function in the objective of CMDP
problem (9) is bounded below, i.e., c(at) ≥ 0 for all t ∈ N.
Moreover, the state space, S, is finite. Therefore, the two
conditions in [22, Corollary 12.2] are satisfied in our CMDP
formulation, and we have

τ̄∗ = sup
β≥0

min
π∈ΠD

L̄(π, β). (11)

According to Remark 1, the optimal value of CMDP prob-
lem (9), τ̄∗, is obtained via the solution of the right hand
side of (11), which means finding the optimal Lagrangian
multiplier β∗ and its corresponding β∗-optimal policy, π∗

β∗ .
If policy π∗

β∗ satisfies the constraint of CMDP problem (9)
with equality, i.e., δ̄π

∗
β∗ = ∆max, then π∗

β∗ is an optimal policy
for the CMDP problem, i.e., π∗ = π∗

β∗ . However, due to
the discrete nature of the action space, in general, there is
no guarantee that π∗

β∗ satisfies the constraint with equality.
To elaborate this further, the following remark presents the
structure of an optimal policy π∗.

Remark 2: An optimal policy for CMDP problem (9),
π∗, is a randomized mixture of two deterministic β̃-optimal
policies, from which one policy satisfies the constraint and
the other one violates it. The two policies are mixed with
a randomization factor such that the obtained optimal policy
satisfies δ̄π

∗
= ∆max [14], [23].

Finding the optimal policy becomes readily computationally
intractable even for a moderate number of states, especially
because oftentimes, the optimal randomization factor can
be found only numerically [24, Section 3.2]. Therefore, in
order to solve CMDP problem (9), we propose a practical
deterministic policy, which is numerically shown to provide
near-optimal performance in Section IV. More specifically,
we develop an iterative algorithm based on bisection and the
relative value iteration algorithm (RVIA), as summarized in
Algorithm 1. In brief, at each iteration, we find a β-optimal
policy for a given β via the RVIA and subsequently update
β according to the bisection rule. The iterative procedure
continues until the best β-optimal policy among the feasible
β-optimal policies is found. In the next two subsections, we
delve into details of this procedure.

1) Algorithm to Find a β-optimal Policy: To obtain an
optimal policy π∗

β for a given β, we solve the MDP problem
(10) via RVIA. By [25, Theorem 8.4.3], there exists a relative
value function h(s), for all s ∈ S, that satisfies

L̄∗(β) + h(s)
= mina∈As

[
L(s, a, β) +

∑
s′∈S Pr(s′ | s, a)h(s′)

]
,

where L̄∗(β) is the optimal value of the MDP problem
(10) for a given β, defined as L̄∗(β) = minπ∈ΠD L̄(π, β).



Subsequently, the β-optimal policy, π∗
β , is obtained as [25,

Theorem 8.4.4]

π∗
β(s)=argmina∈As

[
L(s, a, β)+

∑
s′∈S Pr(s′ | s, a)h(s′)

]
.

(12)
To obtain the β-optimal policy, we use the RVIA, in which

the relative value function for all states s ∈ S at each
iteration i ∈ {0, 1, . . . } is updated as hi(s) = vi(s) −
vi(sref), where sref ∈ S is an arbitrary reference state
which remains unchanged throughout the iterations. The term
vi(s), called value function, is obtained at each iteration as
vi(s) = mina∈As

[
L(s, a, β) +

∑
s′∈S Pr(s′ | s, a)hi−1(s′)

]
.

For any state s ∈ S and initialization v0(s), the se-
quences {hi(s)}i=1,2,... and {vi(s)}i=1,2,... converge, i.e.,
limi→∞ hi(s) = h(s) and limi→∞ vi(s) = v(s). The RVI
algorithm to find a β-optimal policy is presented in Steps 3-
10 of Algorithm 1. After the convergence of RVIA, i.e., the
convergence of the relative value function, h(·), and the value
function, v(·) (see Steps 4-8 in Algorithm 1), we obtain the
β-optimal policy, π∗

β , according to (12) (see Steps 9-10 in
Algorithm 1). It is worth noting that the optimal value of the
MDP problem (10) for a given β is given by L̄∗(β) = v(sref).

2) Algorithm to Find the Optimal Lagrangian Multiplier:
According to [23, Lemma 3.1], for a given β-optimal policy
(π∗

β), the objective function of the CMDP problem, τ̄π
∗
β , and

the objective function of the MDP problem, L̄∗(β), are in-
creasing in β, while the constraint of the CMDP problem, δ̄π

∗
β ,

is decreasing in β. Therefore, we are interested in the smallest
Lagrangian multiplier that satisfies the constraint in CMDP
problem (9), defined as β̃ ≜ inf {β ≥ 0 | δ̄π

∗
β ≤ ∆max}.

To search for β̃, we use the bisection algorithm which takes
advantage of the monotonicity of δ̄π

∗
β with respect to β, as

presented in Algorithm 1 (see Steps 1-14). We initialize the
bisection algorithm with βu and βl in such a way that δ̄π

∗
βu ≤

∆max and δ̄π
∗
βl ≥ ∆max, which also implies βu ≥ βl. The

algorithm termination criterion is βu − βl < κ, where κ is a
sufficiently small constant. After termination of the bisection
algorithm, we set β̃ = βu and obtain the best feasible β-
optimal policy as π∗

β̃
= π∗

βu
. Moreover, the algorithm returns

the infeasible policy associated with βl, which represents a
lower-bound to an optimal solution of (9).

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the pro-
posed transmission scheduling policy. For the probability
of successful decoding, we use the function in [14], i.e.,
f(xt,k) = 1− p0η

xt,k−1, where p0 ∈ [0, 1] is the error proba-
bility of the first transmission of a packet and η ∈ [0, 1] deter-
mines the effectiveness of the HARQ protocol. We consider
one random arrival source and one generate-at-will source,
i.e., K = 2, and we set η = 0.4, p0 = 0.4, δmax = 18,
and xmax = 5. The rest of the parameters are specified in
each figure. We set the bounds on the Lagrangian multiplier as
βu = 1, βl = 0, the bisection stopping criterion as κ = 0.005,
and the RVIA stopping criterion as ϵ = 0.01.

Fig. 2 shows the evolution of τ̄ with respect to time slots for
the different packet arrival rate, λk, and ∆max. From Fig. 2,

Algorithm 1: The deterministic transmission policy

Input: ∆max, f(·), λk ∀ k ∈ I, sref , ϵ, βu, βl, and κ
1 while βu − βl ≥ κ do
2 β̄ = βu+βl

2
3 Initialize: i = 1, h0(s) = 1, h1(s) = 0, v0(s) = 0

∀ s ∈ S
4 while maxs∈S |hi(s)− hi−1(s)| ≥ ϵ do
5 i = i+ 1
6 for s ∈ S do
7 vi(s) = mina∈As

[
L(s, a, β̄) +∑

s′∈S Pr(s′ | s, a)hi−1(s′)
]

8 hi(s) = vi(s)− vi(sref)

9 for s ∈ S do
10 π∗

β̄
(s) = argmina∈As

[
L(s, a, β̄) +∑

s′∈S Pr(s′ | s, a)hi(s′)
]

11 if δ̄π
∗
β̄ ≤ ∆max then

12 βu = β̄
13 else
14 βl = β̄

Output: Feasible policy: π∗
βu

, infeasible policy: π∗
βl
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Figure 2. The evolution of the average number of transmissions, τ̄ , versus
time slots for different packet arrival rate λk for k ∈ I.

it can be seen that when λk decreases, the average number
of transmissions increases dramatically. For example, when
∆max = 4, by decreasing λk from 0.5 to 0.2, the value of τ̄
increases by about 75 %. This is because when λk decreases,
the availability of the fresh packets at the random arrival source
decreases, and consequently, the AoI of this source increases.
In this case, to satisfy the AoI constraint, the transmitter must
send the generate-at-will source’s packets more frequently
to compensate for the negative effect of the random arrival
sources on the average AoI.

Fig. 3 shows the average number of transmissions, τ̄ , as
a function of ∆max under (feasible) proposed policy and
the (infeasible) lower-bound policy, obtained in Algorithm 1.
Furthermore, we consider a (feasible) baseline policy, where
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Figure 3. The average number of transmissions, τ̄ , for the proposed
transmission policy versus ∆max where λk = 0.7 for all k ∈ I.

the transmitter sends a packet whenever the average AoI
reaches ∆max. In every transmission attempt, the source with
larger AoI is selected; if there are multiple sources with the
largest AoI, one of them is selected randomly. The policy
employs an HARQ protocol where the transmitter persistently
re-transmits the packet at consecutive slots until it is trans-
mitted successfully or reaches the maximum allowed number
of transmissions xmax. According to Fig. 3, as expected, the
lower-bound policy outperforms the proposed policy as it
does not satisfy the constraint. The deterministic transmission
policy has a small gap with the lower-bound policy, which
implies its near-optimal performance. In general, compared to
the baseline policy, the proposed policy improves the system
performance considerably, e.g., the policy provides about 40 %
improvement.

V. CONCLUSION

We studied an HARQ-based multi-source status update
system with random arrival and generate-at-will sources, com-
municating through an error-prone channel. We solved the
problem of minimizing the average number of transmissions
subject to the average AoI constraint. We developed a deter-
ministic transmission policy using the RVIA and the bisection.
Numerical results showed the near-optimal performance of the
deterministic transmission policy. Overall, the results showed
about 40 % performance gain for the proposed policy over a
baseline scheduling policy.
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