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Abstract—We consider a time slotted communication network
consisting of a base station (BS), an adversary, N users and
Ns communication channels. In the first part of the paper, we
consider the setting where Ns communication channels Ns are
heterogeneously divided among N users. The BS transmits an
update to the ith user on a subset of the communication channels
Ns,i where Ns,i ∩ Ns,j is not necessarily an empty set. At each
time slot, the BS transmits an update packet to a user through a
communication channel and the adversary aims to block the
update packet sent by the BS by blocking a communication
channel. The BS has n discrete transmission power levels to
communicate with the users and the adversary has m discrete
blocking power levels to block the communication channels.
The probability of successful transmission of an update packet
depends on these power levels. The BS and the adversary have a
transmission and blocking average power constraint, respectively.
We provide a universal lower bound for the average age of
information for this communication network. We prove that
the uniform user choosing policy, the uniform communication
channel choosing policy with any arbitrary feasible transmission
power choosing policy is 4 optimal; and the max-age user
choosing policy, the uniform communication channel choosing
policy with any arbitrary feasible transmission power choosing
policy is 2 optimal. In the second part of the paper, we consider
the setting where the BS chooses a transmission policy and the
adversary chooses a blocking policy from the set of randomized
stationary policies and Ns,i = Ns for all i, i.e., all users can
receive updates on all channels. We show that a Nash equilibrium
may or may not exist for this communication network, and
identify special cases where a Nash equilibrium always exists.

I. INTRODUCTION

We consider a wireless communication system consisting

of N users, one base station (BS), Ns communication chan-

nels and an adversary. A communication channel can have

different channel gains to different users, and thus, all the sub-

carriers may not be available to all the users for transmission

of an update packet. We consider the static setting. Thus,

the communication channels are divided into N potentially

overlapping sets, where each set corresponds to a user. We

denote the set of communication channels available to user

i as Ns,i. A sub-carrier can be an element of multiple sets,

and thus, the set Ns,i ∩ Ns,j is not necessarily empty. The

cardinality of Ns,i is Ns,i. The set of all available channels is

Ns =
⋃

i Ns,i, and has cardinality Ns. There are n discrete

power levels available to the BS for transmission of an update

packet to the users and m discrete power levels available to

the adversary to block the transmission of an update packet.

We consider a slotted time model. At each time slot, the BS

chooses a transmission power to transmit an update packet to

a user via a communication channel and the adversary chooses

a communication channel and a blocking power to block any

update packet that is being sent on the chosen channel.

A large amount of work has been done on the analysis

of age of information for various applications and system

models, such as, scheduling policies for wireless networks,

gossip networks, caching systems, source coding problem,

remote estimation, energy harvesting systems and many more,

see e.g., [1]–[41]. These papers consider systems without

an adversary. The age of information in the presence of an

adversary in a wireless communication network has been

studied in the recent literature [42]–[50]. In particular, [49],

[50] consider an adversarial gossip network. In this paper, we

do not consider a gossip network, rather we consider that a

central node, i.e., the BS transmits the update packets to the

users. [42], [43] consider an adversary which decreases the

signal to noise ratio of a communication link through jamming,

due to which the rate of the communication decreases which

results in a higher age for the communication system. In

this paper, we consider that when the adversary blocks a

communication channel it completely eliminates the update

packet with a positive probability. [44] considers an adversary

which blocks the communication channel for a duration in time

which increases the average age of the system by disabling

communication in that interval. In this paper, we consider

that the adversary blocks the communication channel in a

time slotted manner. [45], [46] consider an adversary which

completely eliminates the update packet, however, they do not

consider any power constraint on the adversary. In this paper,

we consider a power constrained adversary. [47], [48] consider

a power constrained adversary which completely eliminates

the update packet. They have considered that on the time hori-

zon T , the adversary blocks αT time slots where 0 < α < 1.

On the contrary, in this paper, we consider that at each time

slot t, the adversary chooses one of the m blocking power

levels with a pmf d(t) and the expected power to be less than

or equal to a power constraint. Different than the adversary in

[47], [48], the adversary in this paper completely eliminates
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the update packet with a positive probability (strictly less than

1), and this probability depends on the blocking power chosen

by the adversary and the transmission power chosen by the BS.

In the first part of this paper, we propose algorithms to

minimize the average age of information for the described

wireless communication network. We show that the uniform

user choosing policy together with the uniform communication

channel choosing policy and any arbitrary feasible transmis-

sion power choosing policy is 4 optimal, and in a special case,

it is 2 optimal. We show that the maximum-age user choos-

ing policy together with the uniform communication channel

choosing policy and any arbitrary feasible transmission power

choosing policy is 2 optimal.

In the second part of this paper, we relax the system model

and consider that at each time slot the BS can choose any one

of the Ns sub-carriers for transmission of an update packet

to any one of the N users, i.e., Ns,i = Ns, for all i. We

also restrict the action space of the BS and the action space

of the adversary only to the stationary policies. If the power

level choosing algorithms are not fixed for the BS and for the

adversary and if those are included in the action space of the

BS and the action space of the adversary, then we show that

in the stationary policy regime a Nash equilibrium may not

exist. We give a counter example to prove this. We also show

a special case in which the Nash equilibrium exists. However,

when the power level choosing algorithms for the BS and for

the adversary are fixed, i.e., those are not included in the list

of the actions of the BS and the list of the actions of the

adversary, then the Nash equilibrium always exists.

II. SYSTEM MODEL AND PROBLEM FORMULATION

At each time slot, the BS schedules a user i out of N users,

N > 1, with a user choosing algorithm πu and chooses a

communication channel out of Ns,i communication channels,

Ns,i > 1, with a communication channel choosing algorithm

πs to transmit an update packet to the scheduled user i. In

this paper, we use sub-carrier and communication channel

interchangeably. We consider that n discrete transmission

powers, namely {p1, p2, · · · , pn} are available to the BS, and

at each time slot the BS chooses one of these n transmission

powers, following a power choosing algorithm πp. Thus, an

action of the BS is a triplet (πu, πs, πp) and we call a valid

triplet as a BS scheduling algorithm π. We call the set of all

causal scheduling algorithms as Π. Let us consider that πp is

such that at time slot t the BS chooses the ith transmission

power with probability ei(t). We consider the following power

constraint for the BS,

n
∑

i=1

ei(t)pi ≤ p̄, t ∈ {1, · · · , T } (1)

We consider that an adversary is present in the system as

well. At each time slot, the adversary chooses a sub-carrier

out of Ns sub-carriers following an algorithm ψs to block any

update packet that is being transmitted by the BS in that sub-

carrier. We consider that m discrete blocking powers, namely

{p′1, p
′
2, · · · , p

′
m} are available to the adversary and at each

time slot the adversary chooses one of these powers, following

a blocking power choosing algorithm ψp, to block any update

packet on the sub-carrier chosen by ψs. Thus, an action of

the adversary is a pair (ψs, ψp) and we call a valid pair as an

adversarial action ψ. We call the set of all valid adversarial

actions as Ψ. Let us consider that ψp is such that at time

slot t, the adversary chooses the ith blocking power with

probability di(t). We consider the following power constraint

for the adversary,

m
∑

i=1

di(t)p
′
i ≤ p̃, t ∈ {1, · · · , T } (2)

We create an n × m matrix F , whose (i, j)th element,

fi,j , represents the probability of successful transmission of

an update packet corresponding to the BS transmission power

pi and adversary blocking power p′j . Thus, at time slot t if

the BS schedules the user k, and chooses the sub-carrier l to

transmit an update packet with power pi and if the adversary

blocks the sub-carrier l with power p′j , then with probability

fi,j the age of the kth user at time slot (t+1) becomes 1 and

with probability 1 − fi,j the age of the kth user at time slot

t+ 1 increases by one.

The age of user i at time slot t is defined as t− ti(t), where

ti(t) is the last time slot when the ith user has successfully

received an update packet. Note that the minimum value for

the age of user i is 1. We consider that at each time slot the BS

has a fresh update packet to transmit for every user present in

the system. Here by fresh update packet, we mean the update

packet for the ith user at time slot t is generated at time slot

t. As we are interested in freshness, we assume that if the ith

user does not receive the corresponding update packet at time

slot t, then that update packet gets dropped at the BS without

any cost. This is a valid assumption used in [45]–[48].

The adversary has the knowledge of πu, πs and πp. How-

ever, as the BS uses a randomized algorithm at time slot t, the

adversary has no knowledge about which user will get sched-

uled, which sub-carrier will get chosen and which transmission

power will get used at time slot t′ when t ≤ t′ ≤ T . However,

at time slot t it has full knowledge about all these for time slot

t′ when 1 ≤ t′ < t, and the adversary can optimize its future

actions based on these available information. The adversary

has full knowledge about the elements of each set Ns,i. The

age of user i at time slot t corresponding to a BS scheduling

algorithm π and adversarial action ψ is denoted as v
(π,ψ)
i (t),

thus, v
(π,ψ)
i (t) = t − ti(t), and the expected age of user i

at time slot t, is denoted as ∆
(π,ψ)
i (t). Note that, if the BS

successfully transmits an update packet to user i at time slot t,

then v
(π,ψ)
i (t+1) = 1, otherwise v

(π,ψ)
i (t+1) = v

(π,ψ)
i (t)+1.

The average age of the overall system corresponding to the BS

scheduling algorithm π and adversarial action ψ is,

∆(π,ψ) = lim sup
T→∞

1

T

T
∑

t=1

1

N

N
∑

i=1

∆
(π,ψ)
i (t) (3)

For the simplicity of presentation, in the rest of the paper

we ignore the superscript (π,ψ), unless we specify otherwise.



Now, as the BS has no control over the adversary, we consider

the following constrained optimization problem,

∆∗ = sup
ψ∈Ψ

inf
π∈Π

∆(π,ψ)

s.t. (1), (2) (4)

For the second part of the paper, we consider a relaxed

system model. We consider that at each time slot, all the

Ns sub-carriers are available to the BS to transmit an update

packet to any one of the N users, i.e., Ns,i = Ns for all

i. The BS chooses a scheduling algorithm and the adversary

chooses an adversarial action from the corresponding sets of

stationary randomized policies. In other words, πu is such

that at each time slot the BS chooses a user following a pmf

u = [u1, u2, · · · , uN ], πs is such that at each time slot the BS

chooses a sub-carrier following a pmf s = [s1, s2, · · · , sNs
]

and πp is such that at each time slot the the BS chooses a

power following a pmf e = [e1, e2, · · · , en]. Similarly, ψs is

such that at each time slot the adversary blocks a sub-carrier

following a pmf a = [a1, a2, · · · , aNs
] and ψp is such that at

each time slot the adversary chooses a blocking power follow-

ing a pmf d = [d1, d2, · · · , dm]. Thus, the power constraints

for the adversary and the BS become
∑m

i=1 dip
′(i) ≤ p̃ and

∑n
i=1 eip(i) ≤ p̄, respectively. When we restrict ourselves

only to the stationary randomized policies, instead of writing

∆π,ψ as in (3), we write the average age of the overall system

corresponding to pmfs u, s, e (these three pmfs are chosen

by the BS) and the pmfs a, d (these two pmfs are chosen by

the adversary) as ∆u,s,e,a,d. We denote the expected age of

user i at time slot t as ∆u,s,e,a,di (t). Thus, the average age

for the ith user becomes

∆u,s,e,a,di = lim sup
T→∞

1

T

T
∑

t=1

∆u,s,e,a,di (t) (5)

Let us assume that the set of all valid user choosing pmfs,

the set of all valid sub-carrier choosing pmfs and the set of all

valid transmission power choosing pmfs are Fu, Fs and Fe,

respectively. Similarly, the set of all valid sub-carrier blocking

pmfs and the set for all valid blocking power choosing pmfs

are Fa and Fd, respectively. For a given adversarial action,

namely a sub-carrier blocking pmf a, and a blocking power

level choosing pmf d, the BS aims to minimize the average

age of the overall system by selecting a scheduling algorithm,

namely a user choosing pmf u, a sub-carrier choosing pmf

s and a transmission power choosing pmf e from the set

B(a,d), where B(a,d) is defined as follows,

B(a,d) = argmin
(u∈Fu,s∈Fs,e∈Fe,

∑
n
i=1

eipi≤p̄)

∆u,s,e,a,d (6)

Similarly, for a given scheduling algorithm, i.e., a triplet of

pmfs (u, s, e), the adversary aims to maximize the average

age by choosing a pair of pmfs, namely (a,d) from the set

B(u, s, e), where B(u, s, e) is defined as

B(u, s, e) = argmax
(a∈Fa,d∈Fd,

∑
m
i=1

dip′(i)≤p̃)

∆u,s,e,a,d (7)

We call a 5-tuple of pmfs, namely (u, s, e,a,d) as a Nash

equilibrium point if and only if (u, s, e) ∈ B(a,d) and

(a,d) ∈ B(u, s, e).
In the previous Nash equilibrium setting we consider that

the transmission power choosing pmf e and blocking power

choosing pmf d are components of the action space of the BS

and the action space of the adversary, respectively. However,

if e and d are fixed and not included in the action space of

the BS and the action space of the adversary, respectively, then

we define,

B(a) = argmin
(u∈Fu,s∈Fs)

∆u,s,e,a,d (8)

Similarly, we write,

B(u, s) = argmax
(a∈Fa)

∆u,s,e,a,d (9)

We call a triplet of pmfs, namely (u, s,a) as a Nash equilib-

rium point if and only if (u, s) ∈ B(a, ) and a ∈ B(u, s).

III. ALGORITHM AND ANALYSIS OF AGE

We find a fundamental lower bound for the optimization

problem in (4). Let us define x = argmaxi∈{1,··· ,m} p
′
i ≤ p̃.

Consider the following adversarial action: at each time slot

the adversary blocks any one of the Ns sub-carriers with a

uniform pmf and chooses the power level px. We denote this

adversarial action as ψ̄ = (ψ̄s, ψ̄p). At each time slot, if the BS

schedules the user which has the maximum age and breaks the

tie with scheduling the lower indexed user, we call that user

choosing policy as the max-age policy. (In this paper, we will

present our results in a sequence of lemmas and theorems,

with some explanations. The proofs are skipped here due to

space limitations, and will be provided in the journal version.)

Lemma 1. For the adversarial action ψ̄, an optimal user

choosing policy is the max-age policy; and if the ith user gets

chosen by the max-age policy, then an optimal sub-carrier

choosing policy is to choose a sub-carrier in Ns,i uniformly.

Let us define ȳ = argmini∈{1,··· ,n} pi ≥ p̄.

Theorem 1. The average age of the communication network

defined in (3) is lower bounded by
(N+1)Ns

2(Ns−1+fȳ,x)
.

Now, we consider that at each time slot the BS schedules

a user i with probability 1
N

and chooses one of the Ns,i sub-

carriers with probability 1
Ns,i

, to transmit an update packet to

the scheduled user with transmission power py with probability

β and with transmission power pȳ with probability (1 − β),
where β satisfies the following identity:

βpy + (1− β)pȳ = p̄ (10)

Let us denote this BS scheduling policy as ˆ̃π. Let us define

x̄ = argmini∈{1,··· ,m} p
′
i ≥ p̃.

Theorem 2. The average age of the communication system

when the BS employs the scheduling algorithm ˆ̃π is upper

bounded by 2N ; when Ns,i = Ns for all i, then the average

age is upper bounded by NNs

Ns−1+βfy,x̄+(1−β)fȳ,x̄
.



Now, we consider that at each time slot the BS schedules the

max-age user, i, and chooses one of the Ns,i sub-carriers with

probability 1
Ns,i

. We also consider that the BS chooses power

py with probability β and power pȳ with probability 1 − β,

where β satisfies (10). Denote this BS scheduling policy as ˜̃π.

Theorem 3. The average age of the communication sys-

tem when the BS employs the scheduling algorithm ˜̃π is

upper bounded by
(N+1)N̄s

2(N̄s−1+βfy,x̄+(1−β)fȳ,x̄)
, where N̄s =

min {Ns,1, Ns,2, · · · , Ns,N}.

Next, we make some concluding remarks about the findings

of this section. From Theorem 1 and Theorem 2, we see that

in the general setting, ˆ̃π is
4N(Ns−1+fȳ,x)

(N+1)Ns
optimal, where

4N(Ns − 1 + fȳ,x)

(N + 1)Ns

≤ 4 (11)

For the special case, when Ns,i = Ns, for all i, ˆ̃π is
2(N+1)(Ns−1+fȳ,x)

N(Ns−1+fy,x̄)
optimal, where

2(N + 1)(Ns − 1 + fȳ,x)

N(Ns − 1 + fy,x̄)
≤
2(Ns − 1 + fȳ,x)

(Ns − 1 + fy,x̄)
(12)

≤
2Ns

Ns − 1
(13)

≤4 (14)

If Ns is large, then the right side of (13) can be approximated

as 2. Thus, for the aforementioned special case and for large

Ns, ˆ̃π is 2 optimal.

From Theorem 1 and Theorem 3, we see that the scheduling

policy ˜̃π is N̄s

N̄s−1
optimal and as Ns,i > 1, for all i, ˜̃π is 2

optimal. Note that when p̄ exactly matches with one of the

powers from the sets {p1, p2, · · · , pn} and Ns,i = Ns, for all

i, then ˜̃π is the optimal scheduling policy.

IV. EQUILIBRIUM POINTS OF THE AVERAGE AGE FOR

RANDOMIZED STATIONARY ACTION SPACE

Let us assume that at each time slot the BS chooses a user

following a pmf u, chooses a sub-carrier following a pmf s,

chooses a transmission power with a pmf e and the adversary

chooses a sub-carrier with a pmf a and chooses a blocking

power following a pmf d. Recall that for this section we use

a relaxed system model, where we consider that Ns,i = Ns,

for all i. At some time slot t, user i successfully receives an

update packet transmitted by the BS and then after waiting for

Γi time slots it again receives another update packet from the

BS. Note that Γi is a random variable. The evolution of the

age for the ith user is a renewal process and Γi is a renewal

interval. Thus, from the renewal reward theorem,

∆u,s,e,a,di =
E
[

Γ2
i + Γi

]

2E [Γi]
(15)

Let the probability of successful transmission of the update

packet to user i be qi. Then, Γi is geometrically distributed

with success probability qi. Thus, (15) simplifies as,

∆u,s,e,a,di =
1

qi
(16)

Theorem 4. The optimal sub-carrier choosing pmf s, for

a given adversarial action, namely, a pair of pmfs (a,d),
depends only on a and is independent of user choosing pmf u,

transmission power choosing pmf e and d. Moreover, if the

adversary blocks any l sub-carriers with lowest probability

then the optimal choice for the BS is to choose any subset of

these l sub-carriers with probability 1. Similarly, the optimal

user scheduling pmf u does not depend on a, s, d, e. The

optimal user scheduling pmf is the uniform pmf.

Theorem 5. The optimal sub-carrier blocking pmf, a, for

a given BS scheduling policy depends only on s and is

independent of u, e and d. Moreover, if the BS chooses any

l sub-carriers with the highest probability, then the optimal

choice for the adversary is to block any subset of these l sub-

carriers with probability 1.

Without loss of generality, let p1 ≤ p2 ≤ · · · ≤ pn and

p′1 ≤ p′2 ≤ · · · ≤ p′m. Thus, we have f1,j ≤ f2,j ≤ · · · ≤ fn,j
and fi,1 ≥ fi,2 ≥ · · · ≥ fi,m, i = 1, · · · , n, j = 1, · · · ,m.

Algorithm 1 below provides an optimal transmission power

choosing pmf e for a given blocking power choosing pmf

d. The algorithm states that, if p̄ < p1, then there does

not exist a feasible e; if pn < p̄, then the optimal e is to

choose the power pn with probability 1; If these two cases

do not occur, then we define x = argmaxi∈{1,··· ,n},pi<p̄ i

and y = argmini∈{1,··· ,n},pi>p̄ i. Clearly, x < y. We define

a constant, gi =
∑m

j=1 djfi,j , i = 1, · · · , n. We call the

constant
(

gi + gx
py−pi

px−py
− gy

px−pi

px−py

)

as the coefficient for

power pi, i ∈ {1, · · · , n}\{x, y}. Then, we traverse from

power py+1 to power pn, we call this procedure as the first

traversing procedure. During this traversing process, if we find

that
(

gj + gx
py−pj

px−py
− gy

px−pj

px−py

)

, j > y, is a strictly positive

number, then we change the coefficient of the power pk as
(

gk + gx
pj−pk

px−pj
− gj

px−pk

px−pj

)

, k ∈ {1, · · · , n}\{x, j}. We keep

on doing this procedure till we reach pn. Let us assume that

during this traversing procedure pi is the last power for which

we get a positive coefficient, then we define y = i. Then,

we start performing a second traversing procedure from the

power px−1 to the power p1. During this traversing process,

if we find that the coefficient of pl, l < x, is a strictly

positive number, then we change the coefficient of the power

pk as
(

gk + gl
py−pk

pl−py
− gy

pl−pk

pl−py

)

, k ∈ {1, · · · , n}\{l, y}. We

keep on doing this procedure till we reach p1. Let us assume

that during this second traversing procedure pr is the last

power for which we get a positive coefficient, then we define

x = r. Now, if p̄ exactly matches one of the powers from

the set {p1, p2, · · · , pn}, without loss of generality assume

that pi = p̄, then we compare the two vectors zi and
(

p̄−py

px−py
zx + px−p̄

px−py
zy

)

and select the one which minimizes

(15), otherwise we select
(

p̄−py

px−py
zx + px−p̄

px−py
zy

)

, where zi is

the ith basis vector of Rn.

We note that, Algorithm 1 finds an optimal solution in O(n)
time. Next, we state the optimality of Algorithm 1.



Algorithm 1 For a given d finding an optimal e

Inputs: d, F , p, p̄

Define: g = (g1, g2, · · · , gn), where gi =
∑m

j=1 djfi,j , x = argmaxi∈{1,2,··· ,n},pi<p̄ i and

y = argmini∈{1,2,··· ,n},pi>p̄ i, zi is the ith basis

vector for Rn, x1 = x, y1 = y

if p̄ < p1 then

Return: Solution does not exist

else if pn < p̄ then

Return: zn

for i = y + 1 : n do

if
(

gi + gx
py−pi

px−py
− gy

px−pi

px−py

)

> 0 then

y = i

for i = 1 : x− 1 do

if
(

gi + gx
py−pi

px−py
− gy

px−pi

px−py

)

> 0 then

x = i

Define: e =
(

p̄−py

px−py
zx + px−p̄

px−py
zy

)

if x1 + 1 = y1 − 1 then

if
∑n

i=1 ei
∑m

j=1 djfi,j ≤
∑m

j=1 djfx1+1,j then

Return: zx+1

else

Return: e

else

Return: e

Theorem 6. For a given blocking power pmf d, Algorithm 1

gives an optimal transmission power pmf e.

Algorithm 2 provides an optimal blocking power choosing

pmf d for a given e. In Algorithm 2, we perform a similar

traversing procedure as Algorithm 1. The only difference is

while traversing in Algorithm 1, we change the coefficient

of a power level if the corresponding coefficient is strictly

positive, in Algorithm 2, we change the coefficient if it is

strictly negative. Next, we state the optimality of Algorithm 2.

Theorem 7. For a given transmission power choosing pmf e,

Algorithm 2 gives an optimal blocking power pmf d.

Next, we present a counter example which suggests that

when the transmission power choosing pmf and the blocking

power choosing pmf are not fixed and are part of the action

space of the BS and the action space of the adversary,

respectively, then a Nash equilibrium may not exist. Consider a

system where the BS has three power levels and the adversary

has also three power levels, i.e., n = m = 3. Both the power

constraint for the BS and the adversary is 3.5 watts. The

feasible powers for the BS and for the adversary are the same,

which is [1, 3, 5]. The matrix F is chosen as

F =





0.5 0.35 0.2
0.6 0.55 0.4
0.8 0.7 0.65



 (17)

We can show that for this example, for a given d, e cannot

be of the form [e1, e2, e3], where ei > 0, i ∈ {1, 2, 3} and

satisfy
∑3

i=1 eipi ≤ p̄. Now, from Algorithm 1, we know that

Algorithm 2 For a given e finding an optimal d

Inputs: e, F , p, p̄

Define: g = (g1, g2, · · · , gm), where gi =
∑n

j=1 ejfj,i, x = argmaxi∈{1,2,··· ,m},p′

i
<p̃ i and

y = argmini∈{1,2,··· ,m},p′

i
>p̃ i, zi is the ith basis

function for Rn, x1 = x, y1 = y

if p̃ < p′1 then

Return: Solution does not exist

else if p′n < p̃ then

Return: zn

for i = y + 1 : n do

if
(

gi + gx
p′

y−p′

i

p′

x−p′

y
− gy

p′

x−p′

i

p′

x−p′

y

)

< 0 then

y = i

for i = 1 : x− 1 do

if
(

gi + gx
p′

y−p′

i

p′

x−p′

y
− gy

p′

x−p′

i

p′

x−p′

y

)

< 0 then

x = i

Define: d =
(

p̃−p′

y

p′

x−p′

y
zx +

p′

x−p̃

p′

x−p′

y
zy

)

if x1 + 1 = y1 − 1 then

if
∑m

j=1 dj
∑n

i=1 eifi,j ≤
∑n

i=1 eifi,x1+1 then

Return: d

else

Return: zx+1

else

Return: d

if the adversary chooses powers 3 and 5, then the optimal

choice for the BS is to choose powers 3 and 5, similarly, if

the adversary chooses powers 1 and 5, then the optimal choice

for the BS is to choose powers 1 and 5. From Algorithm 2,

we know that if the BS chooses powers 1 and 5, then the

optimal choice for the adversary is to choose powers 3 and 5,

similarly, if the BS chooses powers 3 and 5, then the optimal

choice for the adversary is to choose powers 1 and 5. Thus, a

Nash equilibrium does not exist for this example.

In the next theorem, we consider the Nash equilibrium when

the transmission power choosing pmf and the blocking power

choosing pmf are not included in the action space of the BS

and in the action space of the adversary, respectively.

Theorem 8. The triplet of actions (û, ŝ, â) is the Nash

equilibrium point, where â and ŝ are the uniform pmfs over

Ns sub-carriers and û is the uniform pmf over N users.

Next, we present a special case in which the Nash equi-

librium exists even when the transmission power choosing

pmf and the blocking power choosing pmf are part of the

action space of the BS and the action space of the adversary,

respectively. Consider that the matrix F has the property,

fi,j − f1,j = li, j ∈ {1, · · · ,m}, i ∈ {1, · · · , n} (18)

where li are non-negative constants. Consider a fixed blocking

power choosing pmf d. Then, gi in Algorithm 1 is

gi =

m
∑

j=1

djfi,j =

m
∑

j=1

djf1,j + li (19)



Thus,

gi + gx
py − pi

px − py
− gy

px − pi

px − py

=





m
∑

j=1

djf1,j





(

1 +
py − pi

px − py
−
px − pi

px − py

)

+ lx
py − pi

px − py

− ly
px − pi

px − py
+ li (20)

Thus, the sign of gi+gx
py−pi

px−py
−gy

px−pi

px−py
does not depend on

d, which implies that the optimal transmission power choosing

pmf is the same for all d. Similarly, the sign of gi+gx
p′

y−p′

i

p′

x−p′

y
−

gy
p′

x−p′

i

p′

x−p′

y
in Algorithm 2 does not depend on e, in other words

the optimal blocking power choosing pmf is independent of

e. Now, run Algorithm 1 for any arbitrary d and denote the

output as ê, similarly run Algorithm 2 for any arbitrary e and

denote the output as d̂. Then, using Theorem 8, we have that

the 5-tuple (b̂, ĉ, ê, â, d̂) is the unique Nash equilibrium.
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