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Abstract—The wireless hierarchical federated learning (HFL)
in the presence of physical layer security (PLS) issue is revisited.
Though a framework of this problem has been established in the
previous work, practical secure finite blocklength (FBL) coding
scheme remains unknown. In this paper, we extend the already
existing FBL coding scheme for the white Gaussian channel with
noisy feedback to the wireless HFL with quasi-static fading duplex
channel, and derive achievable rate and upper bound on the
eavesdropper’s uncertainty of the extended scheme. The results
of this paper are further explained via simulation results.

Index Terms—Finite blocklength coding, physical layer security,
privacy-utility trade-off, wireless federated learning

I. INTRODUCTION

The wireless federated learning has been extensively studied
in the literature [1]-[4]. Recently, with the development of edge
computing, the client-edge-cloud hierarchical federated learning
(HFL) systems receive much attention [5]-[6]. However, due to
the broadcast nature of wireless communications, the wireless
FL is susceptible to eavesdropping. In this paper, we study the
wireless HFL in the presence of eavesdropping, see Figure 1.
In Figure 1, users, edge servers and the cloud server cooperate
with each other to jointly train a learning model, and in the
meanwhile, the malicious cloud server may infer the presence
of an individual data sample from a learnt model by various
attacks. Differential privacy (DP) has been proved to be an
effective way to protect the individual data against such attacks,
and hence before aggregation of all users’ gradients to the edge
servers, the Gaussian noise which is used as local differential
privacy (LDP) mechanism [7] is added to the gradient of each
user. Moreover, each edge server communicates with the cloud
server via a duplex fading channel, and due to the broadcast
nature of wireless communication, this channel is eavesdropped
by an external eavesdropper. The main object of Figure 1 is
to minimize the information leakage to the malicious cloud
server subject to a certain mount of utility of the polluted
data gradients (added by the Gaussian noises), and protect the
transmitted data in wireless channels from eavesdropping. In
[8], the fundamental limit in the utility-privacy-physical layer
security (PLS) trade-off was established. However, note that
the secrecy capacity in [8] cannot be approached by finite

blocklength (FBL) coding scheme since it is proved by using
random binning coding scheme [9]. Then it is natural to ask:
can we design a constructive FBL coding scheme for the edge
server, and confuse the eavesdropper as much as possible?

In this paper, first, we extend an already existing FBL coding
scheme for the white Gaussian channel with noisy feedback [10]
to the model of Figure 1, then we derive achievable rate and
upper bound on the eavesdropper’s uncertainty of the extended
scheme. Finally, we show the relationship between utility,
privacy, PLS and other parameters via simulation examples.

Figure 1: The wireless HFL in the presence of eavesdroppers

II. PRELIMINARY, MODEL FORMULATION AND MAIN
RESULTS

A. Preliminary: learning protocol
In Figure 1, there are a cloud server, L edge servers indexed

by `, and K users indexed by k and `. {C`}L`=1 represents
the disjoint user sets and |C`| is the number of users in
edge domain `, {S`,k}|C`|k=1 represents the distributed datasets
and S`,k = |S`,k| is the cardinality of S`,k, where S`,k =

{(uk,j , vk,j)}
|S`,k|
j=1 , uk,j ∈ Rq is the j-th vector of covariates

with q features and vk,j ∈ R is the corresponding associated
label at user k. Denote the aggregated dataset in edge ` domain
by S`, and each edge server aggregates gradients from its users.
The global loss function F (m) is given by

F (m) =
1

S

L∑
`=1

|C`|∑
k=1

S`,kF`,k(m), (2.1)
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where m ∈ Rq is the model vector and S =
∑
`

∑
k S`,k.

F`,k(·) is the local loss function for user k, where

F`,k(m) =
1

S`,k

∑
(uk,j ,vk,j)∈S`,k

f(m;uk,j , vk,j) + λR(m), (2.2)

and f(m;uk,j , vk,j) is the sample-wise loss function. R(m) is
a strongly convex regularization function and λ ≥ 0. The model
training by minimizing the global loss function as

m? = argmin
m

F (m). (2.3)

To minimize F (m), we use a distributed gradient descent iter-
ative algorithm. Specifically, in the t-th (t ∈ {1, 2, ..., T}) com-
munication round (the overall communication round is T ), each
user k computes its own local gradient ∇F`,k(mt) and the users
send the corrupted local gradients (added by Gaussian noises
for LDP) to the edge servers. Then, the edge server ` computes
its estimation ∇̂F`(mt) of the partial gradient and ∇F`(mt) =
1
S`

∑
k∈C` S`,k∇F`,k(mt), where S` = |S`| is the total number

of S`. The cloud server’s estimation ∇̂F (mt) of the global
gradient is given by ∇F (mt) = 1

S

∑L
`=1 S`∇F`(mt). The

global model mt+1 updated by the cloud server is given by

mt+1 = mt − µ∇̂F (mt), (2.4)

where µ is the learning rate. For convenience, in the t-th
communication round, we denote Wt,k = S`,k∇F`,k(mt).

B. Model formulation

In this paper, we assume that each edge server communicates
with the cloud server without interference from other edge
servers. Besides, we assume that the downlink communication
is perfect, which is similar to [2], and eavesdropper only shows
interest in the data transmitted in the uplink communication
between the edge servers and the cloud server. Hence we only
focus on the T rounds uplink communication between one
of the edge servers and the cloud server. An information-
theoretic approach of Figure 1 is illustrated in Figure 2. For
simplification, we make the following assumptions:
• Similar to [2]-[3], we assume that the channel coefficients

stay constants during the transmission (quasi-static fading
channel).

• Similar to [3]-[4], we assume that the cloud server and the
edge server have perfect channel state information (CSI)
of the feedforward channel and feedback channel.

• From similar arguments in [11], we assume that eavesdrop-
per is an active user but it is un-trusted by the cloud server,
which indicates that the perfect CSI of eavesdropper’s
channel is known by the eavesdropper and the edge server.
Moreover, we assume that the eavesdropper also knows the
perfect CSI of the edge server-cloud server’s channels.

Information source: In Figure 2(a), we assume that Wt,k ∈
Rq is the k-th (k ∈ {1, 2, ...,K}) user’s overall local gradient
vector in t-th (t ∈ {1, 2, ..., T}) communication round, where
Wt,k = (Wt,k,1, ...,Wt,k,q)

T . Similar to [12], the elements
of Wt,k are independent and identically distributed (i.i.d.)
and Wt,k ∼ N (0, S`,kσ

2
w,tI). Let ηt,k = (ηt,k,1, ..., ηt,k,q)

T

be local artificial Gaussian noise i.i.d. according to distri-
bution N (0, σ2I). The corrupted local gradient W′

t,k =

(a) An information-theoretic approach of Figure 1:
encoding

(b) An information-theoretic approach of Figure 1: decoding

Figure 2: An information-theoretic approach of Figure 1

(W ′t,k,1, ...,W
′
t,k,q)

T that is aggregated by the edge server is
given by

W′
t,k = Wt,k + ηt,k, (2.5)

where W′
t,k ∼ N (0, (S`,kσ

2
w,t + σ2)I) for k ∈ {1, 2, ...,K}.

The overall local gradients and the overall noises are defined
as Wt = (Wt,1, ...,Wt,q)

T and ηt = (ηt,1, ..., ηt,q)
T , re-

spectively, where Wt,i =
∑K
k=1Wt,k,i, ηt,i =

∑K
k=1 ηt,k,i

(i ∈ {1, 2, ..., q}). According to (2.5), we define the over-
all corrupted local gradients sent to the edge server as
W′

t = (W ′t,1, ...,W
′
t,q)
T , where W ′t,i =

∑K
k=1W

′
t,k,i (i ∈

{1, 2, ..., q}). Here note that since Wt,k and ηt,k are i.i.d.
generated, W′

t is also composed of i.i.d. components, where
W′

t ∼ N (0, (S`σ
2
w,t +Kσ2)I).

Definition 1 (Privacy by mutual information [13]): If
the mutual information between Wt and W′

t satisfies
1
qT

∑T
t=1 I(Wt;W

′
t) ≤ ε, we say the LDP mechanism satisfies

ε-mutual-information privacy for some ε > 0.
Definition 2 (Utility by quadratic distortion [14]): The

utility of W′
t is characterized by d(Wt,W

′
t) = ||W′

t −
Wt||2, where ||X|| represents the l2-norm of the vector X. If
1
qT

∑T
t=1E(d(Wt,W

′
t)) ≤ U , we say the utility of W′

t is up
to U .

Channels: At time instant i (i ∈ {1, 2, ..., Nt} of t-th
communication round, channel inputs and outputs are given by

Yi(t) = hXi(t) + η1,i(t), i = 1, 2, ..., Nt, (2.6)
Ỹi(t) = h̃X̃i(t) + η2,i(t), i = 1, 2, ..., Nt − 1, (2.7)

Zi(t) = gXi(t) + g̃X̃i(t) + ηe,i(t), i = 1, 2, ..., Nt, (2.8)

where Xi(t) and X̃i(t) respectively are the feedforward
and feedback channel inputs, which satisfy the average
power constraints 1

Nt

∑Nt
i=1E[Xi(t)Xi(t)

H] ≤ P and
1

Nt−1

∑Nt−1
i=1 E[X̃i(t)X̃i(t)

H] ≤ P̃ . h, h̃, g, g̃ ∈ C are the CSI
of the feedforward and feedback channels of the cloud server,
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the feedforward and feedback channels of the eavesdropping
channel, respectively, here note that |h|, |h̃|, |g| and |g̃| represent
the modulus of h, h̃, g and g̃. Yi(t), Ỹi(t) and Zi(t) respectively
are the channel outputs of the cloud server, the edge server
and the eavesdropper, η1,i(t), η2,i(t) and ηe,i(t) are i.i.d. as
CN (0, σ2

1), CN (0, σ2
2) and CN (0, σ2

e), respectively. The signal-
to-noise ratios of the feedforward and feedback channels are
denoted by SNR = P

σ2
1

and ˜SNR = P̃
σ2
2

.
Source coding: We consider a lossy Gaussian source coding

with quadratic distortion measure d(W′
t,Ŵ

′
t) = ||W′

t−Ŵ′
t||2,

where Ŵ′
t is the estimation of source decoder. According to [14,

Chapter 3.8, pp. 64-65], there exists a source encoder mapping
W′

t → {1, 2, ..., 2qRt(D)}, it compresses W′
t into an index W ′′t

which is uniformly distributed inW ′′t = {1, 2, ..., 2qRt(D)}, and
the rate-distortion function Rt(D) is given by

Rt(D) =

{
1
2

log
S`σ

2
w,t+Kσ

2

D
0 ≤ D < S`σ

2
w,t +Kσ2

0 D ≥ S`σ2
w,t +Kσ2

(2.9)

where 1
qT

∑T
t=1E(d(W′

t,Ŵ
′
t)) ≤ D. For the source decoder,

a source decoding mapping maps {1, 2, ..., 2qRt(D)} to Ŵ′
t.

Channel encoder: At time i (i ∈ {1, 2, ..., Nt}) in t-th (t ∈
{1, 2, ..., T}) communication round, the transmitted codeword
Xi(t) is a stochastic function of the W ′′t , h, h̃ and Ỹ i−1

1 (t) =

(Ỹ1(t), ..., Ỹi−1(t)), i.e., Xi(t) = ft,i(W
′′
t , h, h̃, Ỹ

i−1
1 (t)).

Channel decoder: The channel decoder’s estimation ŵ′′t =
ϕ(h, h̃, Y Nt), where ϕ is the channel decoder’s decod-
ing function. The channel decoder with outputs X̃i(t) =
f̃t,i(h, h̃, Y

i
1 (t)), where f̃t,i(·) is a stochastic function. The

average decoding error probability of message w′′t is given by

Pe,t =
1

|W ′′t |
∑

w′′t ∈W
′′
t

Pr{ϕ(h, h̃, Y Nt ) 6= w′′t |w′′t sent}. (2.10)

Definition 3 The uncertainty of the eavesdropper (also called
the secrecy level, which is first adopted in [15]) is defined as

∆ =
H(W ′′1 , ...,W

′′
T |Z

N1 , ..., ZNT , h, h̃, g, g̃)

H(W ′′1 , ...,W
′′
T )

, 0 ≤ ∆ ≤ 1. (2.11)

For fixed source encoding-decoding procedure, a rate R
is said to be (N, τ, U, ε, δ,D) achievable, if for given de-
coding error probability τ , blocklength N , secrecy leve δ,
1
qT

∑T
t=1 I(Wt;W

′
t) ≤ ε and 1

qT

∑T
t=1E(d(Wt,W

′
t)) ≤ U ,

there exists a channel code described above such that

H(W ′′1 , ...,W
′′
T )

N
= R,

1

T

T∑
t=1

Pe,t ≤ τ, ∆ ≥ δ, (2.12)

where N =
∑T
t=1Nt. The secrecy capacity C(N, τ, U, ε, δ,D)

is composed of all the secrecy achievable rates
R(N, τ, U, ε, δ,D) defined above. Here note that δ ∈ [0, 1], and
δ = 1 corresponds to perfect secrecy.

C. Main result
Theorem 1. For given N , τ , U , ε, δ and D, a lower bound on
the secrecy capacity C(N, τ, U, ε, δ,D) is given by

C(N, τ, U, ε, δ,D) ≥ R(N, τ, U, ε, δ,D), (2.13)

where

R(N, τ, U, ε, δ,D) =

∑T
t=1NtRt

N
, N =

T∑
t=1

Nt (2.14)

Rt =
1

Nt
log

(
3SNR|h|2[
Q−1( τ

8
)
]2 (1 +

SNR|h|2

Ψ1Ψ2

)Nt−1
)
, (2.15)

Ψ1 = 1 + L
|h|2SNR

|h̃|2 ˜SNR
, Ψ2 =

(
1−

L

|h̃|2 ˜SNR

)−1

, (2.16)

L =
1

3

[
Q−1(

τ

8(Nt − 1)
)

]2
, (2.17)

Q−1(·) is the inverse function of the Gaussian Q-function
Q(x)

def
= 1√

2π

∫∞
x

exp(−u
2

2 )du, and the uncertainty of the
eavesdropper (the secrecy level) is upper bounded by

δ ≤ min
t∈{1,..,T}

[1−
log
(

1 +
|g|2P
σ2
e

)
qRt(D)

]+, [x]+ = max(x, 0), (2.18)

where Rt(D) is defined in (2.9), and

max
t∈{1,..,T}

{
S`σ

2
w,t

K(22ε − 1)

}
≤ σ2 ≤

U

K
. (2.19)

Proof: Theorem 1 is proved by a FBL approach, which
will be explained in the next section. The formal proof is also
given in the next section.

III. A FBL APPROACH FOR WIRELESS HFL

Since the FBL approach of each communication round is
similar, we only describe the FBL approach of t-th (t ∈
{1, 2, ..., T}) communication round. Therefore, for simplify the
notation, we omit the index t of the signals and the noises in
this section.

A. Channel re-presentation
At time i (i ∈ {1, 2, ..., Nt}) in t-th communication round,

since the elements in (2.6)-(2.7) are complex numbers, (2.6)-
(2.7) can be re-written as

YR,i + jYI,i = (hR + jhI)(XR,i + jXI,i) + ηR,1,i + jηI,1,i,

ỸR,i + jỸI,i = (h̃R + jh̃I)(X̃R,i + jX̃I,i) + ηR,2,i + jηI,2,i, (3.1)

where j =
√
−1, YR,i = Re(Yi), YI,i = Im(Yi), hR = Re(h),

hI = Im(h), XR,i = Re(Xi), XI,i = Im(Xi), ηR,1,i =

Re(η1,i), ηI,1,i = Im(η1,i), ỸR,i = Re(Ỹi), ỸI,i = Im(Ỹi),
h̃R = Re(h̃), h̃I = Im(h̃), X̃R,i = Re(X̃i), X̃I,i = Im(X̃i),
ηR,2,i = Re(η2,i), ηI,2,i = Im(η2,i), where Re(·) and Im(·)
denote the real and imaginary parts of a complex element,
respectively. Here note that E(X2

R,i) = PR, E(X2
I,i) = PI ,

E(X̃2
R,i) = P̃R and E(X̃2

I,i) = P̃I , where PR = PI = 1
2P and

P̃R = P̃I = 1
2 P̃ . From (3.1), we have

XR(I),i = Y ′R(I),i − η
′
R(I),1,i, X̃R(I),i = Ỹ ′R(I),i − η

′
R(I),2,i, (3.2)

where Y ′R,i = (hRYR,i + hIYI,i)/|h|2, Y ′I,i = (hRYI,i −
hIYR,i)/|h|2, Ỹ ′R,i = (h̃RỸR,i+ h̃I ỸI,i)/|h̃|2, Ỹ ′I,i = (h̃RỸI,i−
h̃I ỸR,i)/|h̃|2, η′R,1,i = (hRηR,1,i + hIηI,1,i)/|h|2, η′I,1,i =

(hRηI,1,i − hIηR,1,i)/|h|2, η′R,2,i = (h̃RηR,2,i + h̃IηI,2,i)/|h̃|2

and η′I,2,i = (h̃RηI,2,i− h̃IηR,2,i)/|h̃|2. Hence, (3.2) is equiva-
lent to (3.1), which indicates that the feedforward and feedback
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channels are divide into the two sub-channels. In addition,
we conclude that Var(η′R,1,i) = Var(η′I,1,i) = σ2

1/2|h|2 and
Var(η′R,2,i) = Var(η′I,2,i) = σ2

2/2|h̃|2.

B. Message splitting
First, for given D, Nt, τ , ε and U , let

|W ′′t | = 2NtRt = 2qRt(D), (3.3)

where Rt =
H(W ′′t )
Nt

. Here note that when Rt(D) = 0, we do not
transmit messages and choose Ŵ′

t = 0. Then, the message W ′′t
is divided into two independent parts (W ′′t,R,W

′′
t,I), where W ′′t,R

and W ′′t,I respectively take values inW ′′t,R = {1, 2, ..., 2NtRt,R}
and W ′′t,I = {1, 2, ..., 2NtRt,I}, and Rt,R + Rt,I = Rt. Divide
the interval [−

√
3,
√

3] into 2NtRt,R(2NtRt,I ) equally spaced
sub-intervals, and the center of each sub-interval is mapped to
a message value in W ′′t,R(W ′′t,I). Let θR(θI) be the center of the
sub-interval with respect to (w.r.t) the message W ′′t,R(W ′′t,I), and
E(θ2

R) = E(θ2
I ) = 1.

C. Coding scheme

For simplification, we only describe the coding scheme of
message W ′′t,R, and the coding scheme of message W ′′t,I is
similar to the coding scheme of message W ′′t,R.

Initialization: At time instant 1, the channel encoder maps
the messages W ′′t,R to θR, and sends

XR,1 =
√
PRθR, (3.4)

at the end of time 1, the channel decoder of cloud server
receives Y1. Then, the decoder obtains Y ′R,1 and computes the
first estimation θ̂R,1 of θR by

θ̂R,1 =
Y ′R,1√
PR

= θR +
η′R,1,1√
PR

= θR + εR,1, (3.5)

where εR,1 = θ̂R,1 − θR =
η′R,1,1√
PR

is the decoding error of

decoder at time instant 1. Define αR,1 = Var(εR,1) =
σ2
1

2|h|2PR .
Iteration: From the second time instant, we first introduce the

dither signal sequence V Nt−1 = (V1, ..., VNt−1), which follows
from the extended SK-type feedback scheme in [10]. We assume
that the i.i.d generated sequence V Nt−1 is perfectly known by
the edge server and the cloud server, where Vi ∼ Unif[−d2 ,

d
2 ],

d =
√

6P̃ . The dither signals ensure that the encoded codeword
of cloud server satisfies the power constraint.

At time instant i (2 ≤ i ≤ Nt), the channel decoder of cloud
server computes and sends

X̃R,i−1 = Md[γR,i−1θ̂R,i−1 + Vi−1], (3.6)

where γR,i−1 is the modulation coefficient of cloud server, Md
is the modulo-d function and it is defined in [10]. From property
v of proposition 1 in [10], we have E(X̃2

R,i−1) = P̃
2 = P̃R.

After the channel encoder receives Ỹi−1, the channel encoder
obtains Ỹ ′R,i−1 and computes the noisy version of decoding error
εR,i−1 = θ̂R,i−1 − θR by

ε̃R,i−1 =
1

γR,i−1
Md[Ỹ ′R,i−1 − γR,i−1θR − Vi−1]

(a)
=

1

γR,i−1
Md[γR,i−1εR,i−1 + η′R,2,i−1], (3.7)

where (a) is due to property ii of proposition 1 in [10]. The
modulo-aliasing errors do not occur in channel encoder, if
suitable γR,i−1 is chosen such that γR,i−1εR,i−1 + η′R,2,i−1 ∈
[−d2 ,

d
2 ). Hence, the channel encoder obtains ε̃R,i−1 = εR,i−1+

η′R,2,i−1

γR,i−1
. Then, the channel encoder sends

XR,i = λR,i−1γR,i−1ε̃R,i−1, (3.8)
where λR,i−1 is chosen to satisfy the input power constraints PR
(E[(XR,i)

2] = PR). Analogously, the channel decoder receives
Yi and computes Y ′R,i. Then, the channel decoder updates θ̂R,i
by computing

θ̂R,i = θ̂R,i−1 − ε̂R,i−1 = θ̂R,i−1 − βR,iY ′R,i, (3.9)

where ε̂R,i−1 = βR,iY
′
R,i, and βR,i =

E(Y ′R,iεR,i−1)

E(Y ′R,i)
2 is the

Minimum Mean Square Error (MMSE) estimation coefficient,
which ensures that εR,i−1 is correctly estimated from Y ′R,i.
Define εR,i = θ̂R,i − θR, (3.9) yield that

εR,i = εR,i−1 − βR,iY ′R,i, (3.10)

and define αR,i = Var(εR,i).
Decoding: At time instant Nt, the channel decoder obtains

the final estimation θ̂R,Nt = θR + εR,Nt . Then the channel
decoder declares the center of sub-interval which θ̂R,Nt belongs
to as the final estimation of the θR. The channel decoder
successfully decodes the message W ′′t,R if θ̂R,Nt is in the sub-
interval of θR, i.e., εR,Nt ∈ [−

√
3

2NtRt,R
,
√

3

2NtRt,R
).

The following algorithm 1 further explains the encoding-
decoding scheme described above.

Algorithm 1 Encoding-decoding procedure of a sub-channel

Input: W ′′t,R, τ,Nt, PR, P̃R, σ2
1 , σ

2
2 , h, h̃, V

Nt−1, d =
√

6P̃

Output: XR,Nt , θ̂R,Nt
Initialization:
Map W ′′t,R → θR
The edge server encodes XR,1 =

√
PRθR

The cloud server computes θ̂R,1 from (3.5)
Iteration:

1: for 2 ≤ i ≤ Nt do
2: Compute λR,i−1, γR,i−1, βR,i from (3.13)-(3.15)
3: The cloud server encodes X̃R,i−1 from (3.6)
4: The edge server computes ε̃R,i−1 from (3.7)
5: The edge server encodes XR,i from (3.8)
6: The cloud server computes θ̂R,i from (3.9)
7: end for

D. Performance analysis
1) Utility and privacy analysis: First, note that since Wt,

ηt and W′
t are i.i.d. generated, from Definition 1, we conclude

that
1

qT

T∑
t=1

I(Wt;W
′
t) ≤ max

t∈{1,..,T}

1

2
log

(
1 +

S`σ
2
w,t

Kσ2

)
≤ ε, (3.11)

On the other hand, from Definition 2, we conclude that

1

qT

T∑
t=1

E(d(Wt,W
′
t)) =

1

qT

T∑
t=1

E(||ηt||2) = Kσ2 ≤ U. (3.12)

Combining (3.11) and (3.12), (2.19) in Theorem 1 is proved.
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2) Parameter analysis: In our proposed scheme, we define
the parameters λR,i, βR,i, and γR,i as follows, and the trans-
mission performance of our scheme is determined by these
parameters.

λR,i =

√
L ·

P

P̃
, γR,i =

√√√√ 1

αR,i

(
P̃

2L
−

σ2
2

2|h̃|2

)
, (3.13)

βR,i =

√
2αR,i−1

σ1

√
SNR(1− L · ˜SNR

−1|h̃|−2)

SNR + |h|−2
, (3.14)

αR,i = |h|−2SNR−1

(
1 +

SNR|h|2

Ψ1Ψ2

)1−i
, (3.15)

and Ψ1, Ψ2 and L are defined in (2.16)-(2.17). Combining
the above definitions of parameters, and through the error
probability analysis, the achievable rate of this FBL scheme
in t-th communication round is given by

Rt =
1

Nt
log

(
3SNR|h|2[
Q−1( τ

8
)
]2 (1 +

SNR|h|2

Ψ1Ψ2

)Nt−1
)
. (3.16)

The parameters derivation and error probability analysis of the
FBL scheme are similar to those in [10], hence we omit it here.

3) Security analysis: First, we will perform a security anal-
ysis of our FBL scheme within the FBL regime, the eavesdrop-
per’s equivocation rate ∆ can be re-written as

∆ =
H(W ′′1 , ...,W

′′
T |Z

N1 , ..., ZNT , h, h̃, g, g̃)

H(W ′′1 , ...,W
′′
T )

(b)
=

∑T
t=1H(W ′′t |ZNt , h, h̃, g, g̃)∑T

t=1H(W ′′t )
, (3.17)

where (b) is due to the fact that W′
t is mapped into W ′′t at

each communication round, which indicates that (W ′′1 , ...,W
′′
T )

and (ZN1 , ..., ZNT ) are independent of each other, and
H(W ′′t |ZNt , h, h̃, g, g̃) is given by

H(W ′′t |ZNt , h, h̃, g, g̃)
(c)

≥ H(W ′′t |gX1(t) + g̃X̃1(t) + ηe,1(t), ..., gXNt−1(t) + g̃X̃Nt−1(t)+

ηe,Nt−1(t), gXNt (t) + ηe,Nt (t), η1,1(t), ..., η1,Nt (t), η2,1(t), ..., η2,Nt (t),

ηe,2(t), ..., ηe,Nt (t), X̃1(t), ..., X̃Nt−1(t), h, h̃, g, g̃)

(d)
= H(W ′′t |gX1(t) + ηe,1(t), η1,1(t), ..., η1,Nt (t), η2,1(t), ..., η2,Nt (t),

ηe,2(t), ..., ηe,Nt (t), X̃1(t), ..., X̃Nt−1(t), h, h̃, g, g̃)

(e)
= H(W ′′t |gX1(t) + ηe,1(t))

(f)
= H(W ′′t ) + h(ηe,1(t))− h(gX1(t) + ηe,1(t))

(g)
= H(W ′′t )− log(1 +

|g|2P
σ2
e

), (3.18)

where (c) follows from (2.8), (d) follows from Xi(t) =
XR,i(t) + jXI,i(t) (i = 2, ..., Nt) is a function of
h, h̃, η1,1(t), ..., η1,i−1(t), η2,1(t), ..., η2,i−1(t), (e) follows from
the fact that X̃i(t) = X̃R,i(t) + jX̃I,i(t) (i = 1, ..., Nt − 1)

is only related to Vi [16, Chapter 4.1, pp. 61-63], and h, h̃, g,
g̃, η1,1(t), ..., η1,Nt(t), η2,1(t), ..., η2,Nt(t), ηe,2(t), ..., ηe,Nt(t),
V1, ..., VNt−1 are independent of W ′′t , X1(t), ηe,1(t), (f) is
due to the fact that X1(t) =

√
PRθR + j

√
PIθI , and W ′′t =

(W ′′t,R,W
′′
t,I) are mapped into θR and θI , respectively, and (g)

is follows from
h(gX1(t) + ηe,1(t))− h(ηe,1(t))

≤ log det{πe[E(g(
√
PRθR + j

√
PIθI)(

√
PRθR + j

√
PIθI)HgH)

+ E(ηe,1(t)ηe,1(t)H)]} − log det{πeE(ηe,1(t)ηe,1(t)H)}

= log(1 +
|g|2P
σ2
e

). (3.19)

Substituting (3.18) into (3.17), we have

∆ ≥

∑T
t=1H(W ′′t )(1−

log(1+
|g|2P
σ2e

)

H(W ′′t )
)∑T

t=1H(W ′′t )
≥ min
t∈{1,...,T}

(1−
log(1 +

|g|2P
σ2e

)

H(W ′′t )
).

(3.20)

From (3.3) and (3.20), ∆ ≥ δ in (2.12) is guaranteed if

δ ≤ min
t∈{1,...,T}

[1−
log(1 +

|g|2P
σ2
e

)

qRt(D)
]+. (3.21)

Then, the secrecy achievable rate R(N, τ, U, ε, δ,D) is given
by

R(N, τ, U, ε, δ,D) =
H(W ′′1 , ...,W

′′
T )

N

(h)
=

∑T
t=1H(W ′′t )

N
=

∑T
t=1NtRt

N
,

(3.22)

where (h) is similar to (b). Finally, combining the (3.11), (3.12),
(3.16), (3.21) and (3.22), we complete the proof of Theorem 1.

IV. SIMULATION RESULTS

Similar to [1] and [4], we assume that the channel coefficients
are i.i.d. as CN (0, 1), here note simulation results are based
on an average of 1000 independent channel realizations. We
consider a wireless HFL system with K = 10 users, a edge
server and a cloud server, and the training samples are uniformly
distributed across the 10 users. The regularization function
R(m) = ||m||2 with λ = 5×10−5. Before the channel coding,
the edge server compresses the quantified data via Lempel Ziv
Welch (LZW) source coding [17], and the total data amount
to be transmitted is defined as M bits. The wireless data
transmission latency for uploading information of edge server
can be calculated by Tc = M/Reg [1], where Reg represents
the transmission rate of edge server. We train a neural network
on the MNIST data set1, and the neural network consists of
784 input nodes, a single hidden layer with 20 hidden nodes,
and 10 output nodes. We use the cross entropy as the loss
function, and the rectified linear unit (ReLU) and the softmax
functions are the activation functions of the hidden and output
layers, respectively. The total number of parameters in the
neural network is q = 15910 and the learning rate be µ = 1.

From Figure 3(a) and Figure 3(b), we see that the channel
coding does not affect the learning performance of HFL, and
the eavesdropper has a poor learning performance when using
our proposed FBL scheme, which indicates that the PLS of
the data is guaranteed by the proposed FBL scheme. In Figure
4, we conclude that the transmission latency of the proposed
FBL scheme is significantly low compared with LDPC codes
(10x less latency). Figure 5 plots the learning performance of
our FBL scheme under different privacy-utility constraints, we
conclude that more stringent privacy-utility constraints (smaller
ε and larger U ) lead to lower learning performance. The
different privacy-utility constraints do not affect the achievable
secrecy rates, as shown in Figure 6(a), because the achievable
secrecy rate approaches a constant as blocklength increases.
Figure 6(b) shows that the secrecy level increases as the privacy-
utility constraints become more stringent. Moreover, as the

1http://yann.lecun.com/exdb/mnist/
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communication round increases, the secrecy level decreases
because the variance of the gradient decreases as the training
continues [12].

(a) Test accuracy (b) Training loss

Figure 3: Performance comparison between the different
schemes (U = 5, ε = 0.1, D = 10−4, ˜SNR = 15dB, τ = 10−6,
σ2 = 0.5, σ2

1 = σ2
2 = σ2

e = 1, P = 10, S` = 60000)

Figure 4: Transmission latency with different schemes (U = 5,
ε = 0.1, D = 10−4, ˜SNR = 15dB, τ = 10−6, σ2 = 0.5,
σ2

1 = σ2
2 = σ2

e = 1, T = 200, S` = 60000)

(a) Test accuracy (b) Training loss

Figure 5: Performance comparison between the different U and
ε of proposed FBL scheme ( ˜SNR = 15dB, τ = 10−6, σ2

1 =
σ2

2 = σ2
e = 1, P = 10, D = 10−4, S` = 60000)

V. CONCLUSION AND FUTURE WORK

This paper proposes a practical FBL coding scheme for the
wireless HFL in the presence of PLS, which almost achieves
perfect secrecy without affecting learning performance. Besides
this, simulation results show that the coding blocklength of
our proposed scheme is significantly shorter than classical
LDPC code. One possible future work is to study the case that
imperfect CSI is obtained by all parties.

(a) Achievable secrecy rates (b) Secrecy level

Figure 6: Performance of proposed FBL scheme ( ˜SNR = 15dB,
τ = 10−6, σ2

1 = σ2
2 = σ2

e = 1, P = 10, D = 10−4, S` =
60000)
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