
Mamdouh Farouk, Mitsuru Ishizuka
Creative Informatics Department

Graduate School of Information Science & Technology, The University of Tokyo
Tokyo, Japan

mamdouh@mi.ci.i.u-tokyo.ac.jp, ishizuka@i.u-tokyo.ac.jp

I. INTRODUCTION

Maturity of semantic web languages helps the start of
linked data evolution [1]. In the web of data, data represented
as RDF triples <subject, predicate, object>. These triples are
linked to each other constructing linked data cloud. The new
web should be completely machine-understandable [2]. Since
the start of Linking Open Data project, more and more
providers publish linked data causing fast growing to linked
data cloud.

On the other hand, one of the most important tools of
Internet is web search. Almost all Internet users use web search
to get their needs. The users want to write a query and find the
exact answers. Consequently, improving searching RDF data
is an urgent task. One challenge of searching web of data is
getting implicit answers. In other words, search engines should
go behind the raw data to understand web data and get query
answers. Moreover, there is urgent need for a smart search
techniques that make the use of the new evolution of linked
data.

There are a lot of woke in searching RDF data. Many of
these research based on SPARQL query language [3][4].
SPARQL is a query language for RDF. There is a similarity
between SPARQL and SQL [1]. There are many SPARQL
endpoints attached to linked data sets to facilitate querying
RDF data sets. The user can submit SPARQL query to these
endpoints and get the results via http.

The main objective of converting web data to RDF is to
enable web agent to understand this data. However, web
agents, that query linked data, cannot deeply understand RDF
data. For example, consider a user queries the corpus of
semantic web conferences, which contains information about

some conferences in semantic web filed, to get information
about authors who are interested in semantic data
representation. Although, the corpus contains the needed
information, the user may obtain no results. This is because a
query engine cannot get the implicit answers.

Moreover, there are some issues should be considered in
publishing and querying linked data. Selecting ontology is a
difficult issue when someone wants to publish his data as
Linked data. This is because there are different ontologies
covering same vocabularies. Same situation when the user
queries a dataset. The user has to know the ontology, which is
used to represent the dataset, and he cannot use different
equivalent vocabularies. Moreover, SPARQL endpoints return
no result for the queries that uses different vocabulary, even
though the dataset contains the answers. For example, the
datasets in Dog Food server, http://data.semanticweb.org, uses
swc:hasTopic property to represent the topics of a paper.
However, if the user queries these data sets using dc:subject
which is equivalent to swc:hasTopic, he will receive no result
answer. In such case, the user is restricted to use same
vocabulary as dataset. Furthermore, if the user wants to query
different datasets with same query, the user has to write a
different query for each datasets depending on the used
vocabularies in each dataset. The search engine should allow
some tolerance to query vocabularies especially because both
human and machines are the users of this search service.
Another important issue is that the search engine may return no
result even the data contains the answer implicitly. This is
because of the lack of inference.

This paper proposes adding inference to normal search
engine to infer implicit data. Using inference enables search
engine to answer some queries cannot be answered by normal
engine. The proposed engine gets the implicit data based on a
set of predefined rules. The proposed engine can query RDF
data set or SPARQL endpoint. It is developed based on Jena
SPARQL API with additional inference step. Using the
implemented inference step the engine expand user query to a
more detailed queries that can be answered with the normal
engines.

SPIN is a set of ontology properties that enable user to
attach rules to ontology [5]. Using these rules infers more
knowledge or generates data dynamically. However, our
approach separates between ontology level and rule level.
Therefore, our approach avoids rules conflicts in ontology
level.

Abstract— Since the start of linked data project, more and more
people publish their data in the linked data cloud as RDF data.
Searching RDF data is important to exploit this massive amount
of well-represented data. Finding implicit data is one challenge in
searching RDF data. This work proposes an inference-based
engine for SPARQL queries. Using inference our engine can
answer some queries that cannot be answered by the normal
SPARQL engines. The proposed engine expands the user query
using the set predefined rules. The prototype for the proposed
approach shows the effectiveness of adding inference to SPARQL
engine.

Keywords— SAPRQL query; search RDF; inference

 978-1-4673-1090-1/12/$31.00 ©2012 IEEE

An Inference based Query Engine for RDF data

Linked Data

Linked Rules

Searching RDF
data

Query Expansion SPARQL query

Query result

Figure 1. System architecture

The reminder of this paper is organized as follows: section 2
shows a general overview to the proposed system. Section 3
explains the idea of adding user-defined rules. The proposed
search engine is described in section 4. Section 5 discusses the
results of the proposed approach. Section 4 concludes the
work

II. SYSTEM ARCHITECTURE

Improving web understandability is an important step after
maturity of linked data. Web agents should reason over RDF
data to go behind the raw data and infer the implicit
information. Based on better understanding to RDF data web
agents will behave smartly. In order to improve
understandability of RDF data, two main things are required.
These things are inference engines and reasonable amount of
knowledge (rules). This paper focuses on inference on RDF
data based on user defined rules.

Inference on semantic web is vital to enable agents to deeply
understand the web of data. Moreover, inference on semantic
web is characteristic by discovering new relationships between
web resources. Using inference in linked data search improves
query result and enables search to get the implicit answers.

The proposed system is a search engine for RDF data. The
proposed search engine exploits the user-defined rules to get
better answers for user queries. However, backward chaining
is used to expand SPARQL query.

The proposed system consists of two main parts as shown in
figure 1. The first component is normal query execution. The
second component in which our contribution is applied is
query expansion based on backward chaining of a predefined
set of rules. The query expansion outputs a list of new queries.
The proposed engine recursively run the new queries and
accumulates the results of all these queries.

III. ADDING RULES

Data publisher may add extra knowledge (rules), which
considered as an extension for the original data. Moreover,
adding this kind of enables the data admin, who selects
specific vocabularies to represent the published data into RDF,
to suggest alternatives vocabularies and expresses them in
rules instead of duplicate RDF data with different
vocabularies. The SPARQL endpoint admin should add a set
of rules depending on the meaning of RDF dataset and
common queries that users used to ask.

Moreover, there are two types of rules that can be added to the
proposed wrapper. The first type focuses on discovering new
RDF triples to get the implicit data, for example, the rules that
infers the relation between topics and authors. This rules
defined as: if a person X is an author for the paper Y and the
topic of the paper Y is T then the person X is interested in the
topic T. The other type of rules focuses on vocabularies
mapping to allow client to use some different equivalent
vocabularies. This will not restrict the user to use the same
vocabulary as RDF dataset.

The format of user-defined rule is a simple production rule,
“condition  action”, designed to be easy for reasoning. The
condition part syntax is the same as SPARQL query condition
syntax. The action part is also represented into SPARQL
syntax. Figure 2 shows an example for the rule: If a person A
is an author to a paper Y, and a person B is an author to the
paper Y, then  A knows B. The first part of the rule format
is xml namespaces for the used vocabularies. The second part

<rule id="2" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"

xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:iswc="http://annotation.semanticweb.org/iswc/iswc.daml#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" >
<text>
if two people are authors for the same paper, then they know

each others.
</text>

<condition>
<con>
{

?ppr rdf:type iswc:InProceedings.
?person rdf:type foaf:Person.
?person2 rdf:type foaf:Person.
?ppr dc:Creator ?person.
?ppr dc:Creator ?person2.
FILTER (?person != ?person2)

}
</con>
</condition>
<action>
{ ?person foaf:knows ?person2. }
</action>

</rule>

Figure 2. Example of user-defined rules

is the condition of the rule. The last part is the action part,
which should be true if the conditions are true.

Using SPARQL-syntax query contributes solving the
problem of user restriction in using ontologies. The user can
use equivalent ontology properties to query RDF datasets. For
example, if a rule is added to the RDF dataset which gives
some alternative to the property swc:hasTopic such as
foaf:topic, or dc:subject, this will give the query party some
flexibility to ask with any of these properties.

Moreover, using these rules during the processing of original
data to infer more data on the fly costs overhead processing
time. However, using inference rules during searching give
better results. In addition, the proposed approach avoids data
duplication and keeps the data size. The size of data should be
in a reasonable range that does not affect the web agent
performance [6].

IV. SPARQL ENGINE+

The proposed engine is an extension to the normal
SPAQRQL engine. An inference step is added to the SPARQL
engine to make the use of the user-defined rules and answer
some queries that cannot be answered using normal engines.
Without a simple inference step, the engine cannot answer
some query that can be answer based on the available datasets.
Sometime the dataset contains the desired result but the engine
cannot extract it. Using inference, the engine goes behind the
raw data to find query answer.

The proposed engine can query RDF data set or SPARQL
endpoint. It is developed based on Jena SPARQL API [10]
with additional inference step. The actual usage of the added
inference step is not to infer more data. However, the inference
step is used for query expansion process to get more detailed
queries that can be answered using the normal engines.

The user can custom the engine behavior though options
panel. The user determines when the engine should apply
inference and to what extent. For example, the engine can be
adapted to run inference only in case of no result returned by
normal search. In addition, the user may stop the inference
whenever a result comes. The default is that the engine will get
all possible solutions.

There are some advantages of using the selected rule
syntax. It is easy for user to write his rules with no need to
learn a new syntax. SPARQL syntax rules are very convenient
to do data driven on RDF datasets. In addition, SPARQL
syntax rules are much easier to make SPARQL query
expansion.

A. Backward chaining

The proposed approach applies backward chaining in query
answering process for query expansion. The algorithm of
SPARQL query expansion is a recursive algorithm that gets all
possible queries based on a set of selected rules a set of
predefined rules. Indexing for the published rules are
established to link different rules based on the inferred
relations. This index for the published rules facilitates finding
the appropriate rules to expand a SPARQL query. The basic

Figure 3 proposed SPARQL engine interface

idea of this query expansion is to replace query condition with
other conditions based on backward chaining of the rules.

Query expansion based on backward chining algorithm is as
follows:
Input: SPARQL query, rules in shared rule cloud
Output: list of new queries equivalent to the inputted query

- Get list of properties used in query conditions.
- Get related rules that can be used to expand the inputted

query
- For each rule in the related rules list

o Match between rule actions and query conditions
o Bind matched variables and keep in a mapping state
o Replace the matched query conditions with rule

premises
o Recursive call to expand the new query // this call

start matching the new query and only the rest of rule
set

- Combine all new queries in one list

The matching process in this algorithm depends on between
corresponding component in the triples. This means subject
with subject and so on. After matching a rule with a query, new
conditions should be constructed for the new query. In these
conditions, matched variables should be substitute to be like
the ones that are used in the original query. Also the prefixes of
the newly added condition should be included in the
constructed query.

A mapping state holds the mapping between different
matched objects in order to construct a proper query that gets
the answer of the user query.

V. EXPERIMENT

The proposed SPARQL engine is implemented using Java,
figure 3. In order to show the effectiveness of the proposed
approach, the developed prototype is tested on real data sets. It
is used to query semantic web conferences corpus. This corpus

Number Query

Q1 Who knows Prof. Chris Bizer
Q2 Who is interested in Semantic web
Q3 Get all papers in Application software
Q4 Who is interested in and Application software and

knows Prof. Bizer
Q5 Who is interested in semantic web and speaks French

language
Q6 Get all papers in ISWC 2010
Q7 Who is interested in semantic web and speaks French

and knows Prof. Anthony Ventresque

exits in Dog food server, www.data.semanticweb.org, which
contains a large RDF datasets. It contains 180445 unique
triples. It provides SPARQL endpoint, which is used to query
the contained datasets. These datasets contain information
about some conferences related to semantic web field. They
contain data about 3000 paper, 7500 people, and 2100
organization at 28 conferences and 148 workshops.

In this experiment, the developed wrapper uses a set of five
rules. Example of these rules is:
• If a person A is an author to a paper Y, and a person B is

an author to the same paper Y  A knows B.
• If a person A is an author to a paper Y, and the main topic

of Y is T then A is interested in T.
• If a topic X is a keyword for a paper Y  topic X is a

subject of Y.
The first two rules infer implicit data. However, the third rule
maps ontology vocabularies to facilitate finding query
answer.

Table 1. List of Queries used in the experiment

During this experiment, we run seven different queries
using our approach and using normal SPARQL engine. These
queries were selected to test different cases. Table 1 shows the
list of queries used in this experiment. Results are shown in
table 2.

The first query in the above list asks about the people who
know prof. Charis Bizer. The proposed engine returns 17
results for this SPARQL query. However, the normal engine
does not return any result.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT DISTINCT ?person
{?person foaf:knows
<http://data.semanticweb.org/person/christian-bizer>.}

Using the user-defined rules in SPARQL engine gets better
result and improves the query answer process. Moreover, the
proposed engine can answer some queries that cannot be
answered by normal search engines. Execution time almost the
same in case of no matched rules. Even though we did not pay
much care about improving performance of the developed

engine, the overhead in execution time in case of rule matching
is still in the acceptable range.

Table 2. Query result using normal engine and the proposed approach

Query
number

Normal search Proposed search

Number
of

results

Execution
time

of
generated
queries

Total
number

of
results

Execution
time

Q1 0 0.54 1 17 1.299
Q2 0 0.56 1 831 3.342
Q3 17 0.843 0 17 0.855
Q4 0 0.55 3 9 16.908
Q5 0 0.56 5 17 5.028
Q6 87 1.092 0 87 1.103
Q7 0 0.56 11 8 8.133

VI. CONCLUSION

One of the main objectives of using RDF to represent web
data is to enable machines to understand web data. However,
searching RDF is lake of an inference to understand RDF data
deeply. This paper proposes using inference in SPARQL query
answering to enables search engine to find more answers and
improve the recall of searching technique. Using inference
facilitates understanding web data. The proposed engine
expands SPARQL queries based on backward chaining of a set
of predefined rules. The developed prototype shows the
effectiveness of using inference during searching RDF data.

REFERENCES

[1] Axel Polleres, From SPARQL to rules (and back), Proceedings of the
16th international conference on World Wide Web (WWW2007),, May
2007, Banff, Canada pages 787–796

[2] Arup Sarkar --- Ujjal Marjit --- Utpal Biswas “linked data generation for
the university data from legacy database” International Journal of Web
& Semantic Technology Year: 2011 Vol: 2 Issue: 3 Pages/record No.:
21-31

[3] S. Elbassuoni, M. Ramanath, R. Schenkel, and G. Weikum. Searching
rdf graphs with SPARQL and keywords. IEEE Data Engineering
Bulletin, 33(1), 2010

[4] Olaf Hartig, Christian Bizer, and Johann-Christoph Freytag: Executing
SPARQL Queries over the Web of Linked Data. In Proceedings of the
8th International Semantic Web Conference (ISWC), Washington, DC,
USA, Oct. 2009

[5] 9. Holger Knublauch, James A. Hendler, Kingsley Idehen “SPIN -
Overview and Motivation”,
http://www.w3.org/Submission/2011/SUBM-spin-overview-20110222/ ,
February 2011

[6] J. Minsu and J.C Sohn, "Bossam: An Extended Rule Engine for OWL
Inferencing," In Proc. RuleML 2004, pp. 128-138, 2004.

