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Abstract
The Bead visualization system employs a fast algorithm
for laying out high-dimensional data in a low-dimensional
space, and a number of features added to 3D visualiza-
tions to improve imageability. Here we describe recent
work on both aspects of the system, in particular a gener-
alization of the data types laid out and the implementation
of imageability features in a 2D visualization tool. The
variety of data analyzed in a financial institution such as
UBS, and the ubiquity of spreadsheets as a medium for
analysis, led us to extend our layout tools to handle data in
a generic spreadsheet format. We describe the metrics of
similarity used for this data type, and give examples of
layouts of sets of records of financial trades. Conservatism
and scepticism with regard to 3D visualization, along with
the lack of functionality of widely available 3D web
browsers, led to the development of a 2D visualization tool
with refinements of a number of our imageability features.

1 Introduction

Bead is a visualization system which has evolved over
a number of years in both the layout and presentation of
‘maps’ of multidimensional data. Layouts are built by
means of physically-based force models [5], and we have
developed techniques intended to enhance map imageabil-
ity i.e. legibility and the model of how past searches,
selections etc. relate to each other within the layout [6].

In looking for opportunities to apply our work within
the bank, we saw several situations where our tools could
help. The monthly meeting of the foreign exchange trad-
ing group centered on a long succession of scatterplots and
bar charts on overhead projector slides, comparing each of
many attributes or dimensions against each other. This
hampered the business goal: gaining an overview of the
month’s trading activity and setting guidelines for the next
month’s trading. The manager of this group expressed his
dissatisfaction about not getting a feeling for the overall

relationships in the data and a general lack of connection
between detail and context. More recently we have been
working with the manager of a new financial product,
responsible for its adaptation to patterns of customer activ-
ity and the marketing by different parts of the bank.
Despite having available a database of accounts and their
properties, she finds the boolean query tools too limiting
when trying to interactively explore and interpret her data.
Given these observations, we began to reassess Bead and
how we could adapt and extend it to fit into the bank envi-
ronment and to help in these situations.

Up to now the representation of Bead layouts has been
realized using a 3D landscape metaphor. One major issue
in information design is the problem of occlusion and clut-
ter which obscure useful detail and structure [20]. We have
addressed this problem by developing various static and
dynamic imageability features, such as selectively ‘pop-
ping up’ detail based on stochastic sampling of the field of
view. Another area of our interest has been the concept of
computational wear as introduced by Hill et al [10]. They
point out that in analogy to physical wear, usage informa-
tion is a by-product of normal user activity and requires no
extra effort to collect. When fed back in useful ways into
the interface it may highlight aspects of phenomena which
are important for understanding and task performance but
would not otherwise be available to users.

In the Bead system users express their interests and
activities either explicitly (search, selection, etc.) or
implicitly (position, movement, field of view, etc.) as in
the spatial model of interaction of Fahlén et al [7]. By log-
ging these activities and thus making them persistent we
can later use them in the representation to enrich informa-
tion display. Possible applications of making patterns of
use evident through this historical or potential information
[21] include the dynamic adaptation of the imageability
features and the support of collaborative sharing of infor-
mation. This latter topic is at the heart of collaborative fil-
tering, for example the Tapestry system [8], where ratings
of Usenet articles and mail messages were pooled to form
recommendations shared amongst users. More generally,
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our interest in usage data is part of the trend towards hav-
ing human activity central to the design of information
systems, as has been discussed in theoretical terms in [19].

Trying to transfer this technology into the productive
parts of our corporation had various implications most
notably the shift of the representation of layouts from a 3D
virtual environment to a more conventional 2D map dis-
play. 2D maps have the advantage of being simpler to nav-
igate and that users are less likely to get lost or disoriented.
People in the business and financial world are generally
familiar with 2D graphical representations like scatter-
plots, etc. and the acceptance of such a tool will thus be
greater.

Our experience has shown that while professionals in a
financial institution acknowledge the potential of new
technologies they are under considerable pressure with
their everyday work and can not afford to take excessive
risks and experiment with unproven technology [4].

With this in mind we developed a suite of tools which
satisfies the requirements outlined above and still allows
us to refine and advance our novel techniques. These tools
make use of a mixture of readily available shrink-wrapped
applications like Excel [17] and Spotfire [12] and standard
Web technologies like Java and VRML to produce the best
combination of extensibility, platform independence,
familiarity and ease of use.

In the following sections we describe the implementa-
tion of these tools and the design criteria employed.

2 The Layout Algorithm

There are many ways to visualize multivariate data
[22]. Among them is the dimensional reduction of the data
to a low-dimensional space which can then be visualized
using 2D- or 3D-graphics. The dimensional reduction can
be done with different techniques such as principal com-
ponents analysis or multi-dimensional scaling and has
been applied for example to collections of text documents
[23]. Another technique is the self-organizing map [14]
which is an unsupervised learning method to reduce multi-
dimensional data to 2D feature maps and has been applied
to various data types, including textual data [15].

As described in [5] our layout algorithm uses multi-
dimensional scaling techniques for dimensional reduction
of multivariate data. The algorithm is based on a spring
model where all the data points are mutually connected by
springs whose rest distances are proportional to the
respective similarity of the data points in high-dimen-
sional space. The algorithm starts out with a random
arrangement of the data points in low-dimensional space.
Then the system is set free and left to relax with the effect
that distant data points which are similar in high-dimen-
sional space are pulled together and close but dissimilar
ones are pushed apart by the spring forces. After a number
of iterations the system typically stabilizes, resulting in a
layout of the data in low-dimensional space where
strongly correlated dimensions are blended together, and

relationships and clustering of the data in high-dimen-
sional space are preserved.

2.1 Data Types

Our past implementations of the layout algorithm have
used specialized data types such as textual documents and
time series. In order to make this tool easily applicable to a
wider range of problems we shifted our focus to a very
general data type which is commonly used and exported
by spreadsheets and similar applications: a list of comma
separated values (CSV). Each line or record in the list rep-
resents a data point described by a set of attributes. There
are two types of attribute: numerical/continuous (floating
point or integer values like interest rates, prices, etc.) and
categorical/discrete attributes (alphanumeric strings like
currency, customer name, etc.).

For this data type we can define a generalized similarity
metric which is parameterisable and thus lends itself to
easy customization and experimentation. The similarity
metric or desired distancedij  between two pointsPi andPj
is defined in two steps.

To reduce the effect of outliers and take account of the
different numerical ranges, the values of all numerical
attributes are normalized to two standard deviations of
their means. The differences of these normalized numeri-
cal valuespin (wherepin is the value of then-th numerical
attribute of data point Pi andn iterates over all the numeri-
cal attributes) are then summed.

In a second step we look at the values of the categorical
attributespic, where c iterates over all the categorical
attributes:

and

The weights are used to adjust the

influence of individual attributes. This assumes that there
is always at least one continuous attribute and thusd’ij  is
non-zero. In the adverse case,d’ij  is set to a positive con-
stant value.

In brief, we add all the differences between the values
of the numerical attributes and then reduce this distance by
25% for each of the categorical attributes whose values are
identical. The adjustable weights for each of the attributes
are the parameters of the similarity metric and allow the
use of specific domain knowledge to tune the metric.

The multiplicative contribution of the categorical
attributes has experimentally been shown to be a good
choice for the financial data sets under our investigation.
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For data sets with a large number of categorical attributes
however, this method could lead to an overemphasis being
placed on the categorical attributes. Therefore an additive
approach (e.g. the distance is increased by 1 if the values
of a categorical attribute are not equal) to mix them with
the continuous attributes might be more reasonable in this
situation.

2.2 Example

A typical example of financial information is fixed
income trading data. Each trade which is executed is
recorded as a data point with a mixture of numerical and
categorical attributes such as time stamp, currency, yield,
amount, customer id, days to maturity, etc. Applying our
algorithm with the generalized similarity metric to this
data leads to a layout as depicted in Figure 1. Data points
are colored according to currency. At this point we would
like to acknowledge the problem of using color to effec-
tively distinguish more than a few different values. We
have made no effort so far to address this issue but are
aware of work being done in this area [9].

Among overall trends for yield, roughly increasing
from top to bottom, and amount, roughly decreasing from
left to right, we observe the formation of a few dominant
clusters. Next to these trends, their primary shape and
position are determined by the currency attribute, and their
fine structure by a combination of the remaining attributes
such as customer id or customer segment, which are corre-
lated with currency in different ways. Positioned around
these main clusters we find scattered data points which
were placed outside of the dominant clusters even though
they sometimes share many of their properties. Further
analysis turns out that there are several different reasons
for outliers in this particular data set.

The lonely dark green data point at the very bottom of
the display for instance is an ordinary Swiss Franc bond
whose attributes are comparatively similar to the other
Swiss Franc trades in the dark green main cluster, except
for its yield of 35%, which is clearly an error and is the
reason for its being pushed to the bottom of the map. Since
at least part of this data is keyed in manually there is
always a potential for data entry errors. These errors
promptly become visible in the layouts which can thus
become a valuable tool for quickly spotting and separating
them from real anomalies. Another reason for outliers are
data inconsistencies such as products for which there is no
yield and so this attribute is assigned an arbitrary value.
This is evidenced by the group of data points in the lower
right corner of the display in Figure 1. These are derivative
products (futures, etc.) which don’t quite fit the data model
which was designed for ordinary bond trades.

Data quality and consistency is an important issue and
we believe that the combination of these layout techniques
together with exploratory visualization tools, such as the
visualization tool described in the next section of this
paper, are well suited to attack this problem. They allow

users to quickly spot anomalies and relationships in their
data and help with the interpretation of these features by
making the context in the overall layout explicit.

2.3 Implementation

Our first implementation of the layout algorithm which
worked with the CSV data type and used this general met-
ric, was done inside Microsoft Excel using the Visual
Basic language. The advantage of this approach is the tight
coupling between the data source, the layout engine and
the analysis tools. On the downside however, Excel has
limitations in terms of interactive graphics and user inter-
face capabilities which are needed to enable exploratory
data analysis through visualization.

The second implementation of the layout algorithm
takes a more general modular approach. It is written using
the Java language and thus has the immediate advantage
of being platform independent. This is very useful in mak-
ing these techniques spread to different areas inside the
bank. Through an object-oriented architecture based on
design patterns we can conveniently divide the problem
into three flexible modules which are able to support par-
allel object hierarchies and thus handle the CSV and arbi-
trary other data types: the similarity metric or distance
function, the container for the data objects and the layout
engine.

3 Visualization of Layouts

In [6], the primary tool for visualization of Bead lay-
outs was a shared 3D virtual environment. The focus of
this work was adding imageability features to the visual-
ization, in an effort to make the visualization more easily
explored, navigated and remembered. Clusters, usage
discs, pop-up titles and topics offered useful detail and
abstractions over the visualized data but avoided excessive
image clutter.

We began to present and discuss our work with col-
leagues inside the bank, with a view to transferring some
of our visualization technology to them. We thus hoped to
gain feedback for ourselves while aiding their analyses.
We first translated some of our models to VRML, and tried
to regenerate the interaction facilities which had been the
focal point of our earlier work. Unfortunately, while we
could construct static 3D scenes that appeared similar to
our earlier VR models, the browsers and APIs available
did not yet offer sufficient functionality and performance
to support useful dynamic imageability features.

At the same time we grew increasingly sceptical about
the use and value of three-dimensional structures in infor-
mation visualization. We think that 2D structures are more
familiar to most people because, with the possible excep-
tion of jet pilots in a dog fight, most of our everyday infor-
mation and navigation tasks are two-dimensional in nature
– even though they are set in a three-dimensional world.
We therefore prefer 2D information structures viewed in



either 2D (e.g. scatter plot) or 3D (e.g. information land-
scape) over 3D structures (e.g. point clouds) as the latter
typically invite clutter, occlusion and the lost-in-cyber-
space syndrome, and we thus decided to concentrate on
2D visualizations.

We had already been using a commercial scatterplot-
based visualizer to show 2D visualizations to people in the
bank. This tool was Spotfire, formerly known as IVEE [1].
Spotfire offers powerful interaction facilities based on
sliders and dynamic queries, offering direct coupling to
the display.

We noticed, however, that Spotfire had imageability
problems. Spotfire offers an option of only showing
detailed labels or names of objects when there are a small
number of objects (e.g. 20 or less) visible on the screen. If
all labels are shown for large numbers of objects then the
display is usually illegible. On the other hand, Spotfire is
intended to be particularly useful for larger numbers of
objects. Its policy on detail makes such visualizations
either relatively sparse and under-detailed or cluttered
with too much information. Also comparing all the differ-
ent attributes of two points is not well supported as users

Figure 1. An example of the visualization tool’s display. The main canvas shows a layout of fixed
income trading data, while the control panel to the left offers facilities for, from top to bottom: control-
ling the size of individual objects in the display, zooming in and out (although mouse buttons can also
be used for this), display of neighbors, object coloration based on data attributes, queries, and pop-up
controls. At the bottom of the display is a panel used to show details of an object selected with the
mouse and a button to open the parallel coordinates window. At the top of the display is a series of
sequential world-in-miniature maps representing the history of searches.



have to first click on one data point to get its full list of
details, remember all these values, click on the second
data point and then mentally compare this list to the previ-
ous set of values.

A general characteristic of multi-dimensional scaling
techniques is that due to the nature of the layout process,
the axes of the resulting two-dimensional space have no
inherent meaning. Patterns and relationships in a layout
have to be interpreted in view of the global high-dimen-
sional similarities and do not allow direct quantitative
statements about data attributes as in conventional scatter
plots.

This may lead to confusion with novice users. We tried
to avoid this problem by externalizing the layout process
and showing an animation of the multi-dimensional scal-
ing algorithm as an introduction, so people could see how
a map was iteratively being built. By doing this and by
consistently referring to the layouts as ‘maps’ and not
showing any axes at all we could moderate this issue.
Indeed, of the roughly 30 people we showed our tool to so
far, we only received a couple of questions about what the
axis labels are, and were able to resolve the confusion
quite easily. These experiences however show the need for
visualization tools and techniques which are specifically
geared towards interpretation of such layouts and is one of
the reasons why we found off-the-shelf applications to be
inadequate.

We saw our imageability features as a way to resolve
some of these problems. Since Spotfire was a closed sys-
tem at the time of our evaluation and could not be
extended, we decided to develop a 2D visualizer which
would offer similar basic data manipulation facilities to
Spotfire, allow experimentation with imageability features
and other techniques to assist interpretation of layouts and,
by being written in Java, be easy to run on a variety of
platforms. An example visualization is shown in Figure 1,
and the following subsections describe details of this tool.

3.1 Pop-ups

A button on the main control panel of the tool toggles
the display of pop-up detail. As the user zooms and pans
around the display, a small number of objects currently
within the field of view are randomly chosen to be high-
lighted and have a number of attributes written out beside
them on the main display. Every second, a new object is
chosen from the set of visible objects and popped up in
this way. Simultaneously, the oldest pop-up is removed.
The particular attributes to be displayed are chosen from a
list on the main control panel. The number of pop-ups
simultaneously visible can be chosen also. We do not
make an effort to ensure that pop-ups don’t overlap
because this happens infrequently enough that it has not
been found to be a problem.

With our earlier 3D pop-ups, a random pixel was cho-
sen and the nearest object chosen for display. This favored
closer objects because perspective made them be drawn

with a greater number of pixels. In the 2D case all objects
are the same distance and apparent size, and we decided to
allow pop-up sampling either to be random or to be
weighted by relative usage frequency. These frequencies
are represented graphically by the usage discs described in
the following subsection. By integrating usage discs and
pop-ups, as shown in Figure 1, we favor more active areas
of the data set, a feature found to be useful for novice users
[13].

We have experimented with two techniques for weight-
based sampling. The first approach is much the same as
with our 3D pop-ups. A pixel is chosen at random, the
nearest disc found, and the associated object is chosen for
the next pop-up. This tends to distribute pop-ups over the
display, favoring more isolated or peripheral objects. The
second approach uses the order of the array of objects
alone. We total the weights for all objects, choose a ran-
dom numberx between zero and this total, and then go
through the objects in array index order. Ifx is less than
the current object’s weight then we choose it for the next
pop-up. Otherwise we subtract the weight fromx, and go
on to the next object. This technique tends to concentrate
pop-ups in areas of high layout density.

The previously mentioned lack of a perspective field of
view in the 2D display has as a consequence that it is not
obvious which implicit information should be used to steer
the pop-up of detail. While the above two approaches try
to address this problem, experience with users has shown
that the process is too random and that a more active use
of pop-ups should produce better results. This is evidenced
for example by the fact that the integration of pop-ups
with search hits resulting from a query – as described in
section 3.3 – was well received by users. Another idea is
to base the display of detail on the location of the mouse
pointer. This could then be used to indicate general areas
in which more detail is desired. In our future work we will
collect more user feedback on these various approaches to
find the right mixture of implicit and explicit steering of
the stochastic pop-up process.

3.2 Usage Data

As with our earlier work, user activity is logged and
accumulated to form relative frequencies of use for each
object. We have extended our previous approach [6], com-
bining different activities by assigning them different
weights. The intention is to give more weight to those
activities which have involved more attention. With each
such activity, relative use frequencies and disc radii are
adjusted, and discs redrawn accordingly. Currently the
activities and weights used are as follows:

• selection: 1.0
• search hit: 1.0 / n
• neighbor: 1.0 / n
• pop-up: 0.5 / n
• view: 0.01



Thex / n division tries to take account of the size of hit
sets, assuming that attention per object is less when there
are many search hits or neighbors [18]. Selection with a
mouse is given most weight. When this happens full
details for all its data attributes are written out in a panel at
the bottom of the display. Word or attribute searches,
described below, are next in the weighting order, before
neighbor searches. Once an object has been selected with
the mouse its closest neighbors – either in 2D space or the
original high-D space – can be highlighted by using
another section of the control panel. When an object is
popped up for the first time, a little weight is given to it.
Finally, each time we zoom in, all objects visible in the
new view have a small weight added.

3.3 Searches

We have two search facilities. On the main panel is a
simple text field which triggers a search through all cate-
gorical attributes for a string. In our earlier work we
noticed that displaying the results of such searches can
lead to image clutter. When search hits are close to each
other, and detail on all hits is shown simultaneously, then
the names or titles of objects tend to overwrite and occlude
each other. We decided to integrate searches with the pop-
up process so as to avoid this problem.

When a search is initiated using the control panel, each
member of the set of matching objects is highlighted.
Existing pop-ups are removed and the set of matching
objects is used as the population used for sampling new
pop-ups. Sampling continues on the set of visible match-
ing objects until either 30 seconds have passed, another
search is initiated, or a button has been pressed which trig-
gers a return to normal pop-ups.

An additional panel for advanced queries allows one to
limit searches to individual attributes or perform com-
pound searches with different queries for chosen
attributes. It also allows selection of the colors used in
showing matching and non-matching objects. Particular
colors can be chosen, or the original object coloration
based on data attributes can be used.

Figure 2. By using ‘ghosting’, objects which do
not match a query can be shown along with
matches. By diminishing object size and making
usage discs hollow, non-matches continue to
serve a contextual role in display of search
results.

The history of string searches is made visible by repre-
senting them as a series of world-in-miniature displays.
For each search a small version of the map with the search
results highlighted in green, is shown at the top of the
main display area (Figure 1). Successive searches result in
the previous maps being pushed to the left while the cur-
rent search result is inserted on the right side of the row of
maps. The history of searches is thus preserved and made
visible, allowing users to visually combine them and
express more complex questions.

The second search facility is controlled through a sepa-
rate panel which allows specification of search criteria for
each attribute. Specification is done using a set of range
sliders, allowing dynamic queries of the map. One slider is
set up for each attribute in the CSV file, so that ranges of
selected values are AND’d together to form a compound
query. Non-matching objects, as shown in Figure 2, have
their squares shrunken and usage discs filled with back-
ground white to produce a ‘ghosting’ effect.

Figure 3. Specification of search criteria using
range sliders. The slider widgets are combined
with a display of histograms showing the distri-
bution of values for the respective attributes. For
categorical attributes there is a choice of range
sliders (as shown for CUSTOMER_SEGMENT) or
steppers (FULLNAME).

The slider widgets are combined with a display of the
histograms showing the distribution of values for each of
the attributes (Figure 3). This combination offers addi-
tional visual feedback and aids with the formulation of the
query and the interpretation of its results.

3.4 Layout Quality

Building a layout is an iterative and non-linear process
which tries to lay out multivariate data into a two-dimen-
sional space while preserving the high-dimensional rela-
tionships between the data points. The optimization
process may not be able to reflect the high-dimensional
configuration of similarities accurately in two dimensions.
This may result, for example, in some objects’ positions
not being stable but rather oscillating between different
locations.

There are two features which help users assess the qual-
ity of a layout, ‘jitter discs’ and neighbor display.



The layout shown in the visualization tool represents a
static snapshot taken after a certain number of iterations
met the termination criteria. One way to visualize the
dynamic nature of the optimization process is to animate it
[2]. For large data sets however this method has the disad-
vantage of being either slow, if done in real-time, or
requiring a lot of space if all the positions have to be
stored for each iteration. In order to capture the dynamics
present at the final stage of the layout process we record a
reference position for all the data points at a timets - n ,
wherets is the time when the snapshot is taken, and then
accumulate the distances between these reference posi-
tions and the positions of the data points during the suc-
cessiven iterations. We then compute the maximum and
average separation of each data point from its reference
position and use these values to characterize the dynamics
that governed the final stages of the layout process. These
values are visualized as ‘jitter discs’ and thus allow users
to visually judge the stability of the layout (Figure 4). If
the majority of objects have large discs and circles, it
means that the layout is far from stability and some more
iterations are necessary. If only few objects have large
discs then these can be interpreted as data points for which
no single low-dimensional configuration exists. The ‘jitter
discs’ can be shown alternatively with the usage discs and
are switched on and off in a section at the top of the con-
trol panel.

Figure 4. ‘Jitter discs’ are a measure of the
dynamics present at the final stage of the optimi-
zation process and help with judging the quality
of a layout. The discs represent the average and
the circles the maximum separation of data
points from their reference positions recorded at
an earlier iteration of the layout process.

Another section of the control panel controls the dis-
play of the neighbors of a selected object. Once an object
has been selected with the mouse, we can highlight a spec-
ified number of its neighbors in the layout i.e. the closest
objects in the map. We can also show the closest objects
according to the high-dimensional similarity metric that
was used to generate the map. In this way we can obtain a
feel for the correspondence between these two types of
neighbor. This has been useful in assessing our layout
algorithms, but it also gives users a cue as to the local con-
sistency of objects’ attributes within a localized area of the
layout.

3.5 Comparisons

While the imageability features introduced so far help
with legibility of the information displays and allow the
investigation of details in the context of the overall struc-
tures, they don’t support comparisons among details. The
importance of this functionality is increased by the fact
that as opposed to standard scatter plots, the axes of the
layouts don’t have an explicit meaning and thus the posi-
tions of individual objects don’t allow quantitative inter-
pretations.

We chose the method of parallel coordinates [11] in
combination with brushing and linking [3] to support this
functionality. With this technique n-dimensional data
points are visualized as polygonal lines across a set of par-
allel axes and can directly be compared quantitatively.
Users can select points in the layout and assign different
colors in the parallel coordinate display. This allows for
example the comparison of outliers against data points in a
reference cluster and thus help interpretation of which par-
ticular attributes caused a point to be an outlier in the lay-
out. The parallel coordinate display is linked with the
layout display and selected points in either of the panels
are highlighted in the other to maintain a coherent overall
view.

4 Conclusion and Future Work

We have outlined our approach for adapting an experi-
mental information visualization system to the needs of
the business environment in a financial institution while
still being able to include novel techniques and research
ideas during the process. Utilizing standard technology to
ensure platform independence and acceptance, the main
focus of this work has been the generalization of our lay-
out algorithm and the adaptation of imageability features
from a 3D VR environment to a 2D viewer.

The generalization of the layout algorithm allows
investigation of varied data sets with no additional devel-
opment effort and its modular implementation enables
easy experimentation and adaptation to different prob-
lems. Our future work will take advantage of this flexibil-
ity by extending the layout system to manage dynamic
data and by investigating the integration of usage data into
the layout process.

Another area which needs more attention is the charac-
teristics of the generalized similarity metric, in particular
how aspects like weights, the ratio of discrete versus con-
tinuous attributes, the number of dimensions, the number
of data points, etc. affect layouts, and how users can be
supported in experimenting with these parameters and tun-
ing the metric [16]. It will only be possible to satisfactorily
answer these questions however if we can gain access to
problems along with the specific domain knowledge
needed to judge the results.

On the visualization side we have shifted our focus
from 3D landscape to 2D map representations. The image-



ability features of our earlier 3D work are all concerned
with user awareness and legibility of detail. In adapting
these features to the 2D case we have explored various
advances and refinements such as the integration of
searches and queries with the stochastic pop-up process,
and widening of the range of user activity factors affecting
usage logs, and an acknowledgment of their commonness.
We will continue to look at usage data and to develop visu-
alization features which specifically support the interpreta-
tion of layouts.

The original collaboration with the group from inside
the bank which sparked off this work has been discontin-
ued because of their section going through a major restruc-
turing period. We therefore did not reach a conclusion on
whether our tools and techniques solve their particular
business problem. The intermediate results and experi-
ences however were encouraging enough to set directions
and to seek contacts with other groups. We are currently
engaged in various collaborations which will allow us to
continue receiving feedback about the significance of our
work.

In summary we are trying to shape our work in a way to
combine its relevance to conservative corporate users with
the novelty of research in the lab. This may require the use
of different technology but the problems remain the same
– imageability, expression of queries, navigation, explora-
tion and making data meaningful. We see our work as
becoming decreasingly centered on experimenting with
technology and more concerned with issues of perception,
meaning and activity.
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