
ABSTRACT
The order and arrangement of dimensions (variates) is cru-
cial for the effectiveness of a large number of visualization
techniques such as parallel coordinates, scatterplots, recur-
sive pattern, and many others. In this paper, we describe a
systematic approach to arrange the dimensions according to
their similarity. The basic idea is to rearrange the data
dimensions such that dimensions showing a similar behav-
ior are positioned next to each other. For the similarity clus-
tering of dimensions we need to define similarity measures
which determine the partial or global similarity of dimen-
sions. We then consider the problem of finding an optimal
one- or two-dimensional arrangement of the dimensions
based on their similarity. Theoretical considerations show
that both, the one- and the two-dimensional arrangement
problem are surprisingly hard problems, i.e. they are NP-
complete. Our solution of the problem is therefore based on
heuristic algorithms. An empirical evaluation using a num-
ber of different visualization techniques shows the high
impact of our similarity clustering of dimensions on the
visualization results.

1. Introduction
Visualization techniques are becoming increasingly impor-
tant for the analysis and exploration of large multidimen-
sional data sets, which is also called data mining [Kei 97]. A
major advantage of visualization techniques over other
(semi-)automatic data mining techniques (from statistics,
machine learning, artificial intelligence, etc.) is that visual-
izations allow a direct interaction with the user and provide
an immediate feedback as well as user steering, which is dif-
ficult to achieve in most non-visual approaches. The practi-
cal importance of visual data mining techniques is therefore

steadily increasing, and basically all commercial data min-
ing systems try to incorporate visualization techniques of
one kind or the other (usually rather simple ones) [KDD].
There are, however, also a number of commercial data min-
ing products which use advanced visualization technology
to improve the data mining process. Examples include the
MineSet System from SGI [SGI 96], the Parallel Visual
Explorer from IBM, Diamond from SPSS, IVEE from Spot-
fire [AW 95]. There are also a number of university research
prototypes such as SPlus/Trellis [BCW 88], XGobi, and
DataDesc, which emerged from the statistics community, as
well as ExVis [GPW 89], XmDv [Ward 94], and VisDB
[KK 95], which emerged from the visualization community.
A large number of visualization techniques used in those
systems, however, suffer from a well-known problem - the
incidental arrangement of the data dimensions1 in the dis-
play. The basic problem is that the data dimensions have to
be positioned in some one- or two-dimensional arrangement
on the screen, and this is usually done more or less by
chance - namely in the order in which the dimensions hap-
pen to appear in the database. The arrangement of dimen-
sions, however, has a major impact on the expressiveness of
the visualization. Consider, for example, the parallel coordi-
nates technique [Ins 85, ID 90]. If one chooses a different
order of dimensions, the resulting visualization becomes
completely different and allows different conclusions to be
drawn. Techniques such as the parallel coordinates tech-
nique and the circle segments technique [AKK 96] require a
one-dimensional arrangement of the dimensions. In case of
other techniques — such as the recursive pattern technique
[KKA 95] or the spiral & axes techniques [Kei 94, KK 94]
— a two-dimensional arrangement of the dimensions is
required.
The basic idea of our approach for finding an effective order
of dimensions is to arrange the dimensions according to
their similarity. For this purpose, we first have to define sim-
ilarity measures which determine the similarity of two
dimensions. These similarity measures may be based on a
partial or global similarity of the considered dimensions (cf.
sections 2). For determining the similarity, a simple Euclid-

1. In the context of this paper, we use the term data dimension
exchangable with the term variates (statistics termiology) and
attributes (database termiology).

Similarity Clustering of Dimensions for
an Enhanced Visualization of Multidimensional Data

Mihael Ankerst1, Stefan Berchtold2, Daniel A. Keim3

1 University of Munich, Oettingenstr. 67, D-80538 Munich, Germany, ankerst@informatik.uni-muenchen.de
2 AT&T Laboratories, 180 Park Avenue, Florham Park, NJ 07932, berchtol@research.att.com

3 Martin-Luther-University Halle-Wittenberg, Kurt Mothes Str. 1, 06099 Halle, Germany, keim@informatik.uni-halle.de

submitted to: Information Visualization ‘98, Research Triangle Park, CA, 1998.

http://www.hpc.msstate.edu/conferences/infovis98/
http://www.ub.uni-konstanz.de/kops/volltexte/2008/7048/
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-70481

ean or more complex (e.g., Fourier-based) distance mea-
sures may be used. Based on the similarity measure, we then
have to determine the similarity arrangement of dimensions.
After formally defining the one- and two-dimensional
arrangement problems (cf. subsection 3.1), in subsection 3.2
we show that all variants of the arrangement problem are
computationally hard problems which are NP-complete. For
solving the problems, we therefore have to use heuristic
algorithms (cf. subsection 3.3). Section 4 contains an exper-
imental evaluation of our new idea, showing its impact for
the parallel coordinates, circle segments, and recursive pat-
tern technique.

2. Similarity of Dimensions
The problem of determining the similarity of dimensions
(variates) may be characterized as follows: The database
containing N objects with d-dimensions can be described as
d arrays Ai , each containing N real numbers ,

. We are interested in defining a similarity mea-
sure S, which maps two arrays to a real number
(S:). All meaningful similarity measures S
must have the following properties:

1. positivity:

2. reflexivity:

3. symmetry:

where .

Intuitively, the similarity measure S takes two dimension
arrays and determines the similarity of the two dimensions.
One might also call S a dissimilarity measure because large
numbers mean high dissimilarity whereas zero means identity.
Computing similarity measures in the computer is a non-
trivial task because similarity can be defined in various
ways, and often, similarity measures used in a specific
domain are a mixture of single notions of similarity. For
example when comparing images, a reasonable similarity
measure might be based purely on color [SH 94]. On the
other hand, the form and shape of objects are relevant
parameters in some applications [WW 80, MG 95]. In gen-
eral, the problem arises that one similarity measure detects a
high degree of similarity whereas another measure detects
dissimilarity. In this situation, state-of-the-art systems use
some kind of weighted sum to compute an overall result. An
example is the QBIC system [Fli 95] which implements a
variety of similarity measures and tries to trade off between
them.
Furthermore, similarity is highly domain-dependent.
Objects which are regarded very similar by a domain expert
might appear rather dissimilar to a non-expert. Recent
results [Ber 97] show that even within a specific domain
such as the similarity of industrial parts, a domain expert’s
notion of similarity depends on the class of parts which are
considered.

The accuracy (or quality) of a similarity measure usually is
determined by comparing a system’s result with the subjec-
tive notion of a domain expert. Thus both, the domain expert
and the system compute a ranking of similar objects. Then,
both rankings are compared. However, human users are not
used to determine the exact similarity of two objects. They
rather realize that there exists a similarity but they are
unable to quantify. As a consequence, it is almost impossi-
ble to reach 100% accuracy when automatically measuring
similarity. Therefore, systems try to offer a relatively small
subset of the domain experts result as an answer. Then a
user can easily scan the small set of candidates and find the
“real” hits. To avoid some of these problems, in some
domains simple similarity measure such as Euclidean Dis-
tance or Hausdorff Distance [Kah 76, HK 90] have been
applied. These are easy to handle from a theoretical point of
view, and - at least in some domains - also provide a suffi-
cient quality for practical purposes.
Similarity measures can be generally divided into two sub-
classes: global similarity measures and partial similarity
measures. Global similarity measures compare the whole
dimension such that any change in one of the dimensions
has an influence on the resulting similarity. In contrast, par-
tial similarity measures focus only on some portions of the
dimensions. For example, in case of a time-series, a global
similarity measure will take two series and compare them
value by value. An example task is “Given the course of
AT&T’s stock rate, give me the most similar stock.” Every
value has an influence on the similarity. On the other hand,
one might be interested in a similar course of the time series
focusing on one month. An example task is “During which
month behaved AT&T’s stock rate most similar to IBM’s
stock rate.” Note that the answer might be: “AT&T in Janu-
ary 1998 was very similar to IBM in December 1997”. Here,
we only focus on 20 values of a large time-series and ignore
all other values. Thus, we applied a partial similarity mea-
sure.
Another distinction of similarity measures is the invariance
against transformations. For instance, imagine the following
three time-series

U (0, 1, 1, 0, 0, 0),
V (10, 11, 11, 10, 10, 10), and
W (2, 5, 3, 4, 1, 0).

The Euclidean distance of U and V is 24.5, whereas the
Euclidean distance of U and W is 6.4. However, V seems to
be more similar to U than W. This can be expressed by mak-
ing the similarity measure invariant against translation. In
case of time-series, this can be done by subtracting the mean
of the signal from each value. Other interesting transforma-
tions are scaling in the value domain. For example under
scaling invariance, U(20, 22, 22, 20, 20, 20) is identical to
V(10, 11, 11, 10, 10, 10). Or one might even demand scaling
invariance in the time domain. Then U(0, 0, 1, 1, 0, 0)
becomes identical to V(0, 1, 0).
Concluding this discussion about similarity, we draw the
following conclusions:

0 i d<≤() ai k,
0 k N<≤()

ℜN ℜN× ℜ→

Ai Aj, ℜd∈∀ : S Ai Aj,() 0≥

Ai Aj, ℜd∈∀ : Ai Aj=() S Ai Aj,()⇔ 0=

Ai Aj, ℜd∈∀ : S Ai Aj,() S Aj Ai,()=

0 i j, d<≤()

1) As similarity is subjective and domain-dependent, we
cannot provide a single similarity measure for an appli-
cation-independent system. Rather, we have to tune our
similarity measure to adapt to the application domain.

2) Similarity in a human sense is difficult to compute. We
have to aim for a good approximation of a user’s notion
of similarity.

3) For certain domains such as time-series databases,
rather simple similarity measures such as an LP-metric
are sufficient.

4) Invariances are crucial for the effectiveness of similar-
ity measures. Note that the required invariances are
again application-dependent.

In our context, we have two possibilities for computing sim-
ilarity: We may compute the similarity of two visualizations,
or the similarity of the underlying data. Both alternatives
have to deal with the problems described above and there
are good arguments for both alternatives. On the one hand,
one might argue that when computing similarity of visual-
izations, we already lost some information about the under-
lying data and therefore, the quality will not be that good.
On the other hand, one might argue that in order to visualize
data, we already normalized the data in an adequate manner
and we should use this intelligent preprocessing. Further-
more, we actually intend to display similar visualizations in
an adjacent fashion. The final decision largely depends on
the specific application domain. For the example data sets
used in the experiments, we compute the similarity based on
the underlying data.

2.1 Global Similarity of Two Dimensions
For our purpose of adjacently depicting similar dimensions,
we use an Euclidean distance function as a basic similarity
measure. As a first step, similarity of two dimensions Ak and
Al, is determined as

As we argued in the above section, a similarity measure
which is not even translation invariant is not useful for prac-
tical purposes. Therefore, as a next step, we modify S to
being translation invariant by simply subtracting the mean1

of the dimension. Thus, we get the following modified simi-
larity measure:

where .

If one additionally demands invariance against scaling, we
can scale the dimension independently such that the maxi-

mum value of a dimension becomes 1 and the minimum
becomes -1. Thus, the scaling invariant global similarity
measure can be computed as

where . 2

Other approaches to determine the global similarity of two
dimensions have been proposed in the context of time series
databases [AFS 93, ALSS 95]. Depending on the applica-
tion, other similarity measures such as described in [Ber 97]
might be preferable.

2.2 Partial Similarity of Two Dimensions
For most real-life applications, partial similarity measures
are more appropriate than global ones. Imagine two stock
rates over time, say AT&T and IBM. Of course there will be
weeks or even months, where the two stocks show a similar
behavior e.g. because some global development (such as a
black friday) is going on. However, it is very unlikely that
the AT&T and IBM stocks behave similar over a period of
10 years. Therefore, we are actually interested in periods
where the AT&T and IBM stocks behaved similar. Thus,
given the two dimensions Ak and Al, in the most simple case
we are looking for

where bx,y is defined as above and ε is some maximum
allowed dissimilarity.
This partial similarity measure uses the length of the longest
sequence which is at least ε-similar (under scaling and trans-
lation invariance). We call this similarity measure “Synchro-
nized partial similarity”.
Depending on the application, the partial similarity may also
be an “Unsynchronized partial similarity”. In this case, we
do not force the two dimensions to be similar at the same
“time” but in an arbitrary time frame of the same length.
More formally,

1. Note that one could also use the median of the dimension which is
statistically more robust, but more difficult to compute.

S Ak Al,() ak i, al i,–()2

i 0=

N 1–

∑=

Strans Ak Al,() ak i, mean Ak()–() al i, mean Al()–()–()2

i 0=

N 1–

∑=

mean Ai() 1
N
---- ai k,

k 0=

N 1–

∑=

2. In order to become more robust against outliers, instead of using MAX
(the 100%-quantile) and MIN (the 0%-quantile), we use the 98% and 2%
quantile of Ai.

Sscaling Ak Al,() bk i, bl i,–()2

i 0=

N 1–

∑=

bi j,
ai j, MIN Ai()–

MAX Ai() MIN Ai()–
---=

Ssync Ak Al,() =

MAX
i j, j i–() 0 i≤ j N< <() bk z, bl z,–()2

z i=

j

∑ ε<∧

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

Sunsync Ak Al,() =

MAX
i j x y, , , j i–() 0 i≤ j N< <() 0 x≤ y N< <() ∧ ∧

⎩
⎨
⎧

j i–() y x–() = bk z, bl z i– x+(),–()2

z i=

j

∑ ε<∧

⎭
⎪
⎬
⎪
⎫

2.3 Efficiency Considerations
The synchronized partial similarity can naively be computed
in O(N2) time and the unsynchronized partial similarity in
O(N3). In order to make both similarity measures computa-
tionally tractable, one might restrict the choices for i, j, x, y
to some constant length u, i.e., , and
search for the subsequence having the lowest Euclidean dis-
tance. More formally,

.

Naively, this can be done in O(N2) time by using all possible
values of i and j. However, with some precomputations, this
can be optimized to O(N log(N)): For each dimension, we
precompute the set of all subsequences of length u. There
exist such subsequences. The subsequences
can be accurately (but lossy) encoded into a w-dimensional
feature vector (with w much smaller than u) by applying a
transformation such as the Fourier-transformation
[WW 80] or the Discrete-Cosine transformation [Fal 95??].
Thus for each dimension, we get a set of w-
dimensional feature vectors which we store in an appropri-
ate high-dimensional index structure such as the X-Tree
[BKK 96] or the Pyramid-Tree [BBK 98]. The preprocess-
ing step requires O(n log(n)) time. The feature vector has
the nice property that it can be used to estimate the distance
between two subsequences such that the distance is always
underestimated (see [Fal 95 ??] for a proof of this property).
Therefore, the vectors can be used for an efficient but still
correct filter step. In order to determine Sconst for two
dimensions Ak and Al, we have two choices: First, we may
compute all subsequences of Ak and perform a nearest-
neighbor query for each of the subsequences using the index
for Al. In low-dimensional feature space, this leads to a com-
putational cost of O(N log(N)). The second possibility is to
perform the nearest-neighbor queries simultaneously which
leads to an operation similar to a spatial-join [Bri 95]
between the indexes of Ak and Al.

3. Similarity Arrangement of Dimensions
The mapping of the dimensions into the visual representation
is fundamental for the perception of the user. Especially the
arrangement of dimensions plays a significant role, e.g., for
the detection of functional dependencies and correlations. It
is therefore important to adequately arrange the dimensions.
In the following, we define the dimension arrangement prob-
lem mathematically as an optimization problem which
ensures that the most similar dimensions are placed next to
each other.

3.1 Definition of the Arrangement Problems
Depending on the considered visualization technique, we
have to distinguish between the one-dimensional and the

two-dimensional arrangement problem. The one-dimen-
sional arrangement problem occurs, for example, for the
parallel coordinate and circle segment techniques and the
two-dimensional problem occurs, for example, for the recur-
sive pattern and spiral techniques. In case of the one-dimen-
sional arrangement problem, there are two slightly different
variants of the problem - the linear and the circular problem
(cf. Figure 1). In case of the linear one-dimensional arrange-
ment problem, the first and last dimensions do not have to
be similar, whereas in case of the circular problem, the
dimensions form a closed circle, i.e. first and last dimension
have to be similar. In the following, we assume to have a
symmetric similarity matrix

where and
.

 describes the similarity between dimension i and
dimension j. The similarity matrix is the result of applying
the global or partial similarity measures introduced in sec-
tion 2. In addition, we need a neighborhood matrix

which describes the neighborhood relation between the
dimensions in the arrangement. The matrix N is also sym-
metric (i.e.,) and

.

Now, we are able to define the general arrangement problem
as follows.

Definition 1 (General Arrangement Problem)
For a given similarity matrix S, the optimal arrangement of
dimensions is given by a neighborhood matrix N such that

 is minimal.

This definition is a general notion of the problem which
defines the optimal arrangement of dimensions. The specific
one- and two-dimensional arrangement problems of the
existing visualization techniques such as the parallel coordi-
nates, circle segments, and spiral techniques are instantia-
tions of the problem. In case of the one-dimensional
arrangement problem, the neighborhood matrix reflects
either the linear (cf. Figure 1a) or the circular arrangement
of the dimensions (cf. Figure 1b). The linear arrangement
problem occurs, for example, in case of the parallel coordi-
nate technique and the circular arrangement problem occurs,
for example, in case of the circle segments technique.

j i–() y x–() u= =

Sconst Ak Al u, ,() =

MIN
i j, x 0 i≤ j N u–() < < x bk i x+(), bl j x+(),–()2

x 0=

u 1–

∑=∧

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

d N u– 1+()⋅

N u– 1+()

d d×()

S
S A0 A0,() … S Ad 1– A0,()

… … …
S A0 Ad 1–,() … S Ad 1– Ad 1–,()

=

S Ai Aj,() S Aj Ai,()= i j,∀ 0 … d 1–(),=
S Ai Ai,() 0= i∀ 0 … d 1–(),=

S Ai Aj,()

d d×()

N
n00 … n d 1–()0

… … …
n0 d 1–() … n d 1–() d 1–()

=

nij nji = nii 0=∧() i j,∀ 0 … d 1–(),=

nij
1 if dimensions i and j are neighbors
0 otherwise ⎩

⎨
⎧

=

nij S Ai Aj,()⋅

j 0=

d 1–

∑
i 0=

d 1–

∑

Definition 2 (One-Dimensional Arrangement Problem)
In addition to the minimality requirement of definition 1, the
optimal one-dimensional arrangement requires a neighbor-
hood matrix N with the following properties:

1. Circular Case:

2. Linear Case:

.

In the circular case, every dimension has two neighbors and
therefore the neighborhood matrix N has two times a „1“ in
each row and each column. In contrast, in the linear case
there are two dimensions k and l which only have one neigh-
boring dimension since they are the start and end dimension.
In case of the two-dimensional arrangement of dimensions,
in addition we need the number of rows R and number of
columns C of the two-dimensional arrangement. Without
loss of generality, we assume . Then, the neigh-
borhood matrix N of the two-dimensional arrangement can
be defined as follows.

Definition 3 (Two-Dimensional Arrangement Problem)
In addition to the minimality requirement of definition 1, the
optimal two-dimensional arrangement requires a neighbor-
hood matrix N with the following properties:

(1) for rows i

(2) for other rows i

(3) for 4 other rows i.

The reason for these constraints are that each of the dimen-
sions belongs to one of the following three neighborhood
types: There are four dimensions lying in the corners, thus

having only two neighbors. The remaining dimensions on
the borders have 3 neighbors, and the inner dimensions have
4 neighbors. Note that in addition to the direct vertical and
horizontal neighbors, the two-dimensional arrangement
problem could also be defined to include, for example, the
diagonal neighbors. Since similarity is usually at least
locally transitive, for practical purposes it is sufficient to
consider the two-dimensional arrangement problem as
defined above.

3.2 Complexity of the Arrangement Problems

In this chapter, we discuss the complexity of the one- and
two-dimensional arrangement problem. We show that even
the one-dimensional arrangement problems are computa-
tionally hard problems, i.e. they are NP-complete.

Lemma 1 (NP-Completeness of the Circular 1D Problem)

The circular variant of the one-dimensional arrangement
problem according to definition 2 is NP-complete.

Proof:

We can also describe the circular 1D arrangement problem
as:

Given a similarity matrix S, find a permutation
 of the dimensions such that

 is minimal.

If we use this description of the problem, it becomes obvi-
ous that the problem is equivalent to the well-known travel-
ling salesman problem (TSP) which is known to be NP-
complete. We just have to map the dimensions to cities, the
similarity between the dimensions to the cost of travelling
between cities, and the solution back to the arrangement of
dimensions. q.e.d.

In case of the linear one-dimensional and the two-dimen-
sional arrangement problems, the proof of the NP-complete-
ness is more complex. Let us therefore recall the notion of
„polynomial reduction“ and the „reduction lemma“ from
complexity theory.

Definition 4 (Polynomial Reduction)

A problem can be polynomially reduced to a prob-
lem (notation) if there exists a transforma-
tion which can be determined in polynomial
time such that : .

Lemma 2 (Reduction [GJ 79])

P1 ∈ NP P2 NP-complete P2 ≤ P1 ⇒ P1 NP-complete.

The principle idea of the reduction is to show that the problem

nij

j 0=

d 1–

∑ 2= i∀ 0 … d 1–(), ,=

nij

j 0= j k l,≠,

d 1–

∑ 2= i∀ 0 … d 1–() , ,= ∧

nkj

j 0=

d 1–

∑ nlj

j 0=

d 1–

∑ 1= = nkl∧ nlk 0= =

Figure 1: One- and Two-dimensional
Arrangement Problem

a. Linear 1D b. Circular 1D c. 2D

d R C⋅=

nij

j 1=

C

∑ 4= (R-2) (C-2)⋅

nij

j 1=

C

∑ 3= 2 (R-2)⋅ 2 (C-2)⋅+

nij

j 1=

C

∑ 2=

π 0() … π d 1–(), ,{ }

S Aπ i() Aπ i 1+() mod d(),()

j 0=

d 1–

∑

P1 Σ⊆ 1
*

P2 Σ2
*⊆ P2 P1≤

f: Σ1
* Σ2

*→

x Σ1
*∈∀ x P1∈ f x() P2∈⇔

 ∧ ∧

can be reduced to a known NP-complete problem. A precon-
dition is that the new problem can be solved in non-deter-
ministic polynomial time. If we assume that we have a
solution of the problem and show that in this case, we can
use the solution to also solve the NP-complete problem ,
then it implies that is at least as complex as and there-
fore, has also to be NP-complete. Note that the transfor-
mation of the problem and solution in the reduction step have
to be of polynomial time and space complexity.

Lemma 3 (NP-Completeness of the Linear 1D Problem)
The linear variant of the one-dimensional arrangement prob-
lem according to definition 2 is NP-complete.

Proof:
For proving the NP-completeness of the problem, we have
to show that (1) the problem can be solved in non-determin-
istic time, and (2) we have to find a related NP-complete
problem and a polynomial transformation (reduction)
between the original and the NP-complete problem.
1. To show that the problem can be solved in non-determin-
istic time we have to define the corresponding decision
problem:
Given an arrangement and some real
number X. Decide whether

.

This problem is obviously in NP (we can non-deterministi-
cally guess a solution and then calculate the sum in polyno-
mial time). If we are able to solve this problem, we can also
solve the original problem in non-deterministic polynomial
time since we can use a binary partitioning for the X value
range and iteratively apply the decision problem to deter-
mine the correct X which corresponds to the correct solu-
tion.
2. A related problem NP-complete problem is the TSP prob-
lem. The reduction, however, is not straight-forward. We
have to show that the linear problem is at least as complex
as the TSP problem, i.e. if we can solve the linear problem,
then we also have a solution of the TSP problem. Let us
assume that we have an algorithm for solving the linear
problem. For solving the TSP problem (for an arbitrary set
of dimensions with an arbitrary similar-
ity matrix), we now define a transformation

where and is a matrix
which is defined as

(1)

(2)

(3) .

where .

Without loss of generality, we split such that becomes
the start dimension and the additional dimension becomes
the end dimension of the linear solution (cf. Figure 2a). The
distance (similarity) values of the new dimension are set to
the same values as the distances for , and the distance
between and is set to a very high value ,
which is larger than all similarity values in the similarity
matrix together. By this choice, we ensure that the path
between and will not become part of the solution and
therefore, and will be the start and end point. If we now
use the linear algorithm to determine a solution, then we also
have a solution of the TSP problem, since in the back transfor-
mation we just have to ignore the dimension and connect

 directly to the neighbor of . The transformation
between the linear problem and the TSP problem as well as
the back transformation of the solution can be done in polyno-
mial time and space. q.e.d.

Lemma 4 (NP-Completeness of the 2D Arr. Problem)
The two-dimensional arrangement problem according to
definition 3 is NP-complete.

Proof:
The structure of the proof is analogous to the proof of
lemma 3. Again we have to show that (1) the problem can
be solved in non-deterministic time, and (2) we have to find
a related NP-complete problem and a polynomial transfor-
mation (reduction) between the original and the NP-com-
plete problem.
1. Analogously to the proof of lemma 3, we have to define
the corresponding decision problem and then, the rest works
as shown in proof of lemma 3. The decision is:
Given a two-dimensional arrangement

and some real number X. Decide whether

.
The first portion of the formula corresponds to the sum of
the distances in the rows and the second portion to the sum
of the distances in the columns of the two-dimensional
arrangement.
2. Again, we use the TSP problem as the related NP-com-
plete problem. In this case, the reduction, however, gets
more complex. Again, let us assume that we have an algo-
rithm for solving the two-dimensional arrangement prob-
lem. Without loss of generality, we assume that the two-

Figure 2: Ideas of the NP-Completeness Proofs

a. Linear 1D Arrangement b. 2D Arrangement

A0
A0
˜

additional
nodes

P1

P1
P2

P1 P2
P1

π 0() … π d 1–(), ,{ }

S Aπ i() Aπ i 1+() mod d(),()

j 0=

d 1–

∑ X≤

A A0 … Ad 1–, ,{ }=
S

f A S,() Ã S̃,()=

Ã A A0
˜{ }∪= S̃ d 1+() d 1+()×

S̃ Ai Aj,() S Ai Aj,() i j,∀ 0 … d 1–(),==

S̃ A0
˜ Ai,() S̃ Ai A0

˜,() S A0 Ai,()= = i∀ 0 … d 1–(),=

S̃ A0 A0
˜,() S̃ A0

˜ A0,() LARGE= =

LARGE S Ai Aj,() 1+
j 0=
d 1–

∑i 0=
d 1–

∑=

A0 A0
A0
˜

A0
˜

A0
A0 A0

˜ LARGE()

A0 A0
˜

A0 A0
˜

A0
˜

A0 A0
˜

π 0 0,() … π r 1– c 1–,(), ,{ }

S Aπ i j,() Aπ i 1 j,+(),() S Aπ i j,() Aπ i j 1+,(),()

j 0=

C 2–

∑
i 0=

R 1–

∑+
j 0=

C 1–

∑
i 0=

R 2–

∑ X≤

dimensional arrangement consists of rows and col-
umns and we assume 1. For solving the
TSP problem (for an arbitrary set of dimensions

 with an arbitrary similarity matrix),
we now define a transformation

where and is a
matrix which is defined as

(1)

(2)
.

(3)

The basic idea of the proof is to introduce
new dimensions, for which the distances (similarity values)
are chosen such that those dimensions will be positioned by
the two-dimensional arrangement algorithm as inner nodes
of the arrangement, while the dimensions of the original
problem will be positioned as outer nodes (cf. Figure 2b).
This is achieved by giving the new dimensions very small
distances to all other new dimensions while the distances of
the outer dimensions are increased by a high value

 that they do not interfere with the inner dimen-
sions. The distance between inner and outer dimension is set
to a very high value to prevent a jumping
between the inner and outer dimensions.
If the algorithm for the two-dimensional arrangement prob-
lem is now applied, we also obtain a solution of the TSP
problem, since in the back transformation we just have to
ignore the additional dimensions . Again,
the transformation between the linear and the TSP problem
as well as the mapping between the solutions can be done in
polynomial time and with polynomial space since at most

 dimensions are added and since the sum-
mations can also be done in polynomial time. Therefore, if
we have a solution for the two-dimensional arrangement
problem, we are able to construct a solution of the TSP
problem in polynomial time and space. Thus, the two-
dimensional arrangement problem must also be NP-com-
plete. q.e.d.

3.3 Dimension Arrangement Algorithms
Since the dimension arrangement problems are NP-com-
plete, we have to use heuristic algorithms to solve the prob-
lem. Since the problems are all similar to the traveling
salesman problem, we can use variants of the existing heu-
ristic algorithm proposed for the traveling salesman problem
such as memetic and genetic algorithms, tabu search, ant
colony optimization, neural networks, space-filling heuris-
tics or simulated annealing. For an overview of these

approaches including an extensive bibliography see [TSP].
In our implementation, we use a variant of the ant system
algorithm which is inspired by the behavior of real ants
[DG 97]. Ants are able to find good solutions to shortest
path problems between a food source and their home col-
ony. Ants deposit a certain amount of pheromone while
walking, and each ant probabilistically prefers to follow a
direction rich in pheromone. The pheromone trail evapo-
rates over time, i.e., it looses intensity if no more pheromone
is laid down by other ants.
In our variant of the algorithm we have transferred three
ideas from natural ant behavior to our artificial ant colony:
(1) the trail mediated communication among ants, (2) the
preference for paths with a high pheromone level, and (3)
the higher rate of growth of the amount of pheromone on
shorter paths. An artificial ant is an agent which moves from
dimension to dimension on the neighborhood graph where
the length of the edges equals to the distance between the
corresponding dimension nodes. Initially, m artificial ants
are placed on randomly selected dimensions. At each time
step they move to new dimensions and modify the phero-
mone trail on the edges passed. The ants choose the next
dimension by using a probabilistic function depending both
an the trail accumulated on edges and on a heuristic value
which is chosen as a function of the edge length. Obviously,
the ants must have a working memory used to memorize the
dimensions already visited. When all ants have completed a
tour, the ant which made the shortest tour modifies the edges
belonging to its tour by adding an amount of pheromone
trail which is inversely proportional to the tour length. This
procedure is repeated for a given number of cycles.
In our version of the ant colony system, an artificial ant k at
dimension r chooses dimension s to move to (s is among the
dimensions which do not belong to its working memory Mk)
by applying the following probabilistic formula:

where is the amount of pheromone trail on edge (r,u),
 is a heuristic function which is chosen to be the

inverse of the distance between dimensions r and u, β is a
parameter which weighs the relative importance of phero-
mone trail and of closeness, q is a value chosen randomly
with uniform probability in [0,1], q0 (0≤q0≤1) is a parame-
ter, and T is a random variable selected according to the fol-
lowing probability distribution, favoring dimensions with
small distances and higher levels of pheromone trail:

where pk(r,s) is the probability that ant k chooses to move
from dimension r to dimension s.
We applied this heuristic to arrange the dimensions accord-
ing to their distances. In the one-dimensional arrangement

1. This assumption is only necessary to technically simplify the proof, since oth-
erwise we would have to introduce additional dimensions to fill up the gap and
we would have to define specific distances to ensure an appropriate arrangement
of those dimensions.

R C
d 2 R C+()⋅ 4–=

A A0 … Ad 1–, ,{ }= S

f A S,() Ã S̃,()=

Ã A Ad … AR C⋅ 1–, ,{ }∪= S̃ R C⋅() R C⋅()×

S̃ Ai Aj,() S Ai Aj,() LARGE+ i j,∀ 0 … d 1–(), ,==

S̃ Ai Aj,() S̃ Aj Ai,() 2= LARGE⋅=
i∀ 0 … d 1–() j∀, ,= d … R C 1–⋅, ,=

S̃ Ai Aj,() 0= i∀ d … R C 1–⋅, , j∀= d … R C 1–⋅, ,=

R 2–() C 2–()⋅

LARGE()

2 L⋅ ARGE()

Ad … AR C⋅ 1–, ,{ }

O R C⋅() O d2()=
s

max
u

τ r u,()[] η r u,()[]β⋅{ } if q q0≤()

T otherwise⎩
⎪
⎨
⎪
⎧

=

τ r u,()
η r u,()

pk r s,()

τ r u,()[] η r u,()[]β⋅

τ r u,()[] η r u,()[]β⋅
u Mk∉
∑

--- if s Mk∉()

0 otherwise⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

case, the only difference between the linear and the circular
variant is that the tour consists of one more dimension and
that the ants move back to the starting dimension. For the
two-dimensional arrangement problem, we have to slightly
modify the algorithm described above. Let R be the number
of rows and C the number of columns of the two-dimen-
sional arrangement and let us assume that we map the sorted
dimensions on the arrangement in a row-wise manner,
always filling the row from the left to right. Thus, the

 ordered dimensions are mapped to the arrange-
ment such that the dimension number n is mapped to col-
umn number and to row number

. Let be the distance between dimension Ai
and dimension Aj and Mk(n) be the dimension in the n-th
position in the working memory. Then, we modify the heu-
ristic function as

In the two-dimensional version of the algorithm the heuris-
tic function also depends of n which is the number
of dimensions already in working memory. This function
results in the inverse of the distance to the next dimension in
case of arranging the first uppermost row. The second con-
dition is fulfilled if a dimension for the first or last column is
chosen. In this case, we consider the inverse of the distance
to the dimension located in the same column one row above.
In all other cases, we consider the average of the inverse of
the distances to its already known neighbors.

4. Experimental Evaluation
In this section, we provide a number of example visualiza-
tions showing the influence of our new similarity arrange-
ment of the dimensions on the overall perception. We
demonstrate the effect of different arrangements in visualiz-
ing a stock exchange database containing the stock prices
from Jan ‘74 to Apr. ‘95 on a daily basis (5329 data items)
using three different visualization techniques — the parallel
coordinates, circle segments, and recursive pattern tech-
niques. The similarity measure used is based on the transla-
tion- and scaling-invariant global as well as the translation-
and scaling-invariant synchronized partial similarity mea-
sure described in section 2.
Figure 3 presents the result of using the parallel coordinate
technique for visualizing eight different stock prices in the
sequential (cf. Figure 3a) and similarity arrangement (cf.
Figure 3b). It is interesting that even for this small number
of dimensions our approach leads to an improvement. Con-
sider, for example, dimensions 1 and 2, dimensions 3 and 4,
and dimensions 6 and 7 where correlations can be identified
more easily. The significant amount of nearly horizontal
lines between the corresponding axes indicates a similar
behavior of the stock prices over the same period of time.

When visualizing the database using the circle segments
technique which was designed to visualize databases with
high dimensionality, we clearly see the relevance of our
similarity-based dimension arrangement. In comparison to
the sequentially arranged visualization (cf. Figure 4a), our
new arrangement allows the user to see clusters, correlations
and functional dependencies more easily (cf. Figure 4b).
The segments on the right side of the circle, for example, all
seem to have a peak (light color) at the outside, which corre-
sponds to approximately the same period of time. Seven
dimensions on the upper left side seem to have their peaks in
a different period of time and — because they are placed
next to each other — it is easy to compare them and to find
differences between them.
In Figure 5, we show the results of visualizing the database
using the recursive pattern technique with slightly different
parameter settings. The recursive pattern technique is a
visualization technique which requires a two-dimensional
arrangement of dimensions. Again, the results clearly show
the superiority of our similarity arrangement. Whereas the
sequentially arrangement of dimensions (cf. Figure 5a)
tends to confuse the user’s perception, the similarity
arrangement (cf. Figure 5b) clearly shows clusters in the
upper left and right and the lower right where about 9-12
dimensions show a similar development. At the same time,
there are some dimensions in the lower left which seem to
fit better at some another position. This fact is just a conse-
quence of the NP-completeness of the arrangement problem
and the necessity to use a heuristic solution. It is, however,
obvious that even a simple similarity arrangement provides
significantly better visualizations than a sequential arrange-
ment This is true not only for visualization techniques
requiring a linear or circular one-dimensional arrangement
but also for visualization techniques which require a two-
dimensional arrangement.

5. Conclusions
In this paper, we introduce the similarity clustering of
dimensions as an important possibility to enhance the results
of a number of different multidimensional visualization
techniques. We introduce a number of different similarity
measures which can be used to determine the (global or par-
tial) similarity of dimensions. The similarity of dimensions
is an important prerequisite for finding the optimal one- or
two-dimensional arrangement. All variants of the dimension
arrangement problem, however, are shown to be computa-
tionally complex problem, i.e. they are NP-complete. In our
implementation to solve the dimension arrangement prob-
lem we therefore have to use a heuristic solution which is
based on an intelligent ant system. The experimental com-
parison of the sequential and similarity arrangement clearly
shows the advantage of our new approach. In our future
work, we will try to apply the similarity-based dimension
arrangement to other visualization techniques and use the
new method to improve the exploration of data sets with a
very high number of dimensions.

d R C⋅=

1 n 1–()mod C()+
n C⁄ S Ai Aj,()

η r u n, ,()

1
S Ar Au,()
----------------------- if n C⁄ 1 =

1
S Au AMk n 1 C–+(),()
--- if n 1–()mod C C 1–=

1
2
--- 1

S Ar Au,()
----------------------- 1

S Au AMk n 1 C–+(),()
---+

⎝ ⎠
⎜ ⎟
⎛ ⎞

 else ⋅
⎝
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

=

η r u n, ,()

Acknowledgments
We thank Professor L. Staiger and Dr. R. Winter for their
help in developing the NP-completeness proofs of the linear
one-dimensional and two-dimensional arrangement prob-
lems.

REFERENCES
[AKK 96] Ankerst M., Keim D. A., Kriegel H.-P.: ‘Circle Seg-

ments: A Technique for Visually Exploring Large Mul-
tidimensional Data Sets’, Visualization ‘96, Hot Topic
Session, San Francisco, CA, 1996.

[AFS 93] Agrawal R., Faloutsos C., Swami A.: ‘Efficient Simi-
larity Search in Sequence Databases’, Proc. Int. Conf.
on Foundations of Data Organization and Algorithms,
Evanston, ILL, 1993, in: Lecture Notes in Computer
Science, Vol. 730, Springer, 1993, pp. 69-84.

[ALSS 95] Agrawal R., Lin K., Sawhney H., Shim K.: ‘Fast Simi-
larity Search in the Presence of Noise, Scaling, and
Translation in Time-Series Databases’, Proc. 21st
Conf. on Very Large Databases, Zurich, Switzerland,
1995, pp. 490-501.

[AW 95] Ahlberg C., Wistrand E.: ‘IVEE: An Environment for
Automatic Creation of Dynamic Queries Applications’,
Proc. ACM CHI Conf. Demo Program (CHI95), 1995.

[BBK 98] Berchtold S., Böhm C., Kriegel H.-P.: ‘The Pyramid-
Tree: Towards Breaking the Curse of Dimensionality’,
Proc. Int. Conf. on Management of Data (SIG-
MOD’98), Seattle, 1998, to appear.

[BCW 88] Becker R., Chambers J. M., Wilks A. R.: ‘The New S
Language’, Wadsworth & Brooks/Cole Advanced
Books and Software, Pacific Grove, CA, 1988.

[Ber 97] Berchtold S.: ‘Geometry-based Search of Similar
Parts’ (in German), Ph.D. Thesis, University of
Munich, 1997.

[BKK 96] Berchtold S., Keim D. A., Kriegel H.-P.: ‘The X-Tree:
An Index Structure for High-Dimensional Data’, Proc.
Int. Conf. on Very Large Databases (VLDB’96), Bom-
bay, India, 1996, pp. 28-39.

[Bri 95] Brinkhoff T.: ‘The Spatial Join in Geo-Databases’ (in
German), Shaker Publishing Company, Aachen, 1995.

[DG 97] Dorigo M., Gambardella L.M.: ‘Ant Colony System: A
Cooperative Learning Approach to the Traveling
Salesman Problem’, IEEE Trans. on Evolutionary
Computation, Vol. 1, No. 1, 1997.

[Fli 95] Flickner M., Sawhney H., Niblack W., Ashley J.,
Huang Q., Dom B., Gorkani M., Hafner J., Lee D., Pet-
kovic D., Steele D., Yanker P.: ‘Query by Image and
Video Content: The QBIC System’, IEEE Computer,
Vol. 28, No. 9, 1995, pp. 23-32.

[Fal 95] Faloutsos SIGMOD 1995 ???
[GPW 89] Grinstein G., Pickett R., Williams M. G.: ‘EXVIS: An

Exploratory Visualization Environment’, Proc. Graph-
ics Interface ‘89, London, Ontario, Canada, 1989.

[GJ 79] Garey M.R., Johnson D.S.: ‘Computers and Intracta-
bility: A Guide to the Theory of NP-completeness‘,
W.H. Freemann, 1979.

[HK 90] Huttenlocher D. P., Kedem K.: ‘Computing the Mini-
mum Hausdorff Distance For Point Sets Under Trans-
lation’, Proc. 6th Annual ACM Symp. on
Computational Geometry, 1990, pp. 340-349.

[ID 90] Inselberg A., Dimsdale B.: ‘Parallel Coordinates: A
Tool for Visualizing Multi-Dimensional Geometry’,
Visualization ‘90, San Francisco, CA, 1990,
pp. 361-370.

[Ins 85] Inselberg A.: ‘The Plane with Parallel Coordinates,
Special Issue on Computational Geometry’, The Visual
Computer, Vol. 1, 1985, pp. 69-97.

[Kah 76] Kahnert D.: ‘Haar Measure and Hausdorff Measure’,
(in German), in: Lecture Notes in Mathematics, Vol.
541, 1976, pp. 13-23.

[Kei 94] Keim D. A.: ‘Visual Support for Query Specification
and Data Mining’, Ph.D. thesis, University of Munich,
July 1994, Shaker Publishing Company, 1995.

[Kei 97] Keim D. A.: ‘Visual Techniques for Exploring Data-
bases’, Invited Tutorial, Int. Conference on Knowl-
edge Discovery in Databases (KDD’97), Newport
Beach, CA, 1997.

[KDD] Software for Data Exploration and Data Mining:
http://www.kdnuggets.com/siftware.html

[KK 94] Keim D. A., Kriegel H.-P.: ‘VisDB: Database Explora-
tion using Multidimensional Visualization’, Computer
Graphics & Applications Journal, Sept. 1994,
pp. 40-49.

[KK 95] Keim D. A., Kriegel H.-P.: ‘VisDB: A System for Visu-
alizing Large Databases’, System Demonstration,
Proc. ACM SIGMOD Int. Conf. on Management of
Data, San Jose, CA, 1995, p. 482.

[KKA 95] Keim D. A., Kriegel H.-P., Ankerst M.: ‘Recursive
Pattern: A Technique for Visualizing Very Large
Amounts of Data’, Proc. Visualization ‘95, Atlanta,
GA, 1995, pp. 279-286.

[MG 95] Mehrotra R., Gary J. E.: ‘Feature-Index-Based Similar
Shape Retrieval’, Proc. 3rd Working Conf. on Visual
Database Systems, 1995.

[SGI 96] Database Mining and Visualisation Group - SGI Inc.:
‘MineSet(tm): A System for High-End Data Mining
and Visualization’, Int. Conf. on Very Large Data
Bases (VLDB’96), Bombay, India, p. 595.

[SH 94] Shawney H., Hafner J.: ‘Efficient Color Histogram
Indexing’, Proc. Int. Conf. on Image Processing, 1994,
pp. 66-70.

[TSP] Overview over Research on the Traveling Salesman
Problem:
http:// ???

[Ward 94] Ward M. O.: ‘XmdvTool M. G.: Integrating Multiple
Methods for Visualizing Multivariate Data’, Proc.
Visualization ’94, Washington, DC, 1994, pp. 326-336.

[WW 80] Wallace T., Wintz P.: ‘An Efficient Three-Dimensional
Aircraft Recognition Algorithm Using Normalized
Fourier Descriptors’, Computer Graphics and Image
Processing, Vol. 13, pp. 99-126, 1980.

Figure 3: Visualizations Generated Using the Parallel Coordinates Visualization Technique

Figure 4: Visualizations Generated Using the Circle Segments Visualization Technique

b. Similarity Arrangementa. Sequential Arrangement

Figure 5: Visualizations Generated Using the Recursive Pattern Visualization Technique

b. Similarity Arrangementa. Sequential Arrangement

b. Similarity Arrangementa. Sequential Arrangement

	Text3: First publ. in: Proceedings of the International Conference on Information Visualization '98 (INFOVIS'98), Research Triangle Park, NC, September, 1998, pp. 52-60
	Text4: Konstanzer Online-Publikations-System (KOPS)URL: http://www.ub.uni-konstanz.de/kops/volltexte/2008/7048/URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-70481
	Text5:

