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ABSTRACT

We present IVORY, a newly developed, platform-independent
framework for physics-based visualization. IVORY is especially
designed for information visualization applications and multidi-
mensional graph layout. It is fully implemented in Java 1.1 and its
architecture features client-server setup, which allows to run the
visualization even on thin clients. In addition, VRML 2.0 exports
can be viewed by any VRML plugged-in WWW-browser. Indi-
vidual visual metaphors are invoked into IVORY via an advanced
plug-in mechanism, where plug-ins can be implemented by any
experienced user. The configuration of IVORY is accomplished
using a script language, called IVML. Some interactive visualiza-
tion examples, such as the integration of an haptic interface illus-
trate the performance and versatility of our system. Our current
implementation supports NT 4.0.1

keywords: three-dimensional information visualization,
physics-based graph layout, object-oriented visualization toolkit,
multidimensional information modeling, time varying data.

1 INTRODUCTION
Visual communication had always been of fundamental impor-
tance to mediate information and to understand complex relation-
ships. With the advent of the computer, scientific visualization
was born as a discipline [1] and conquered many science and
engineering applications. However, whereas in the past, research
was mostly focussed on the visualization of spatial data sets and
metric spaces, the design of new visual metaphors for abstract,
complex information spaces has recently emerged as a challeng-
ing research topic. Applications are manifold and range from
web/network visualization and document retrieval, via software
engineering to risk and portfolio management in the financial ser-
vices [11].

Due to the tremendous importance of visualization methods
various systems and toolkits had successfully been designed in
the past, part of which are available as commercial products. One
of the pioneers is AVS/Exress [2] that uses a data flow paradigm
and allows the user to compose a visualization application inter-
actively by definition of data flow paths between individual mod-
ules. Similar paradigms have been implemented in the IRIS
Explorer [3] or in IBM’s DataExplorer [4]. Another elegant visu-
alization library is provided by General Electric’s VTK [5] and
can be customized in TCL/TK. However, most of the general pur-
pose toolkits and libraries target at classical scientific visualiza-
tion of spatial data.

For information visualization and visual data mining sophisti-
cated algorithms and metaphors had been devised in recent years
to visually inspect abstract and multidimensional information
spaces. Cone trees [6] and their hyperbolic projections [7] are
only one prominent example. Physics-based graph layout is
another important paradigm and has been successfully exploited

in various applications [8], [9], [10]. Good surveys of contempo-
rary information visualization methods can be found in [11] or
[12]. However, generic toolkits and systems are rare or mostly
focussed, such as statistics packages, like Bell Lab’s XGobi [13],
IVEE [14] or the hierarchical algorithms in SGI’s SiteManager.
Conversely, visual data mining tools, like SGI’s MineSet [15]
often comprise visualization functionality, however, have limited
flexibility regarding the integration new metaphors.

2 OUR APPROACH
Our toolkit IVORY has been developed as an open and flexible
system for information visualization to fill the gap between gen-
eral purpose visualization tools and application specific systems.
Although it is primarily designed for physics-based approaches to
multidimensional information spaces and for the visual analysis
of large financial data volumes, the underlying design principles
make it a versatile framework for the investigation and applica-
tion of new visual metaphors. Some algorithmic details of the
visualization paradigm currently used in IVORY have been pre-
sented by the authors in [9] and [16].

Our essential design and engineering goals for IVORY can be
summarized as follows:
• Client-Server setup: This allows the separation of any visual-

ization mapping engine from the client and the user interface.
• Java programming language: Despite of all hype, Java fea-

tures object-oriented programing paradigms and stands for
platform independence.

• Clustering and hierarchies: In order to manage complexity of
information objects IVORY supports specifically multireso-
lution visualization methods, such as hierarchies and cluster-
ing [9].

• 4 layered abstraction model for users: In order to offer an
appropriate interface for different types of users, IVORY can
be configured at 4 different levels of abstraction, depicted in
Figure 1. The standard user, such as a financial analyst, will
apply preconfigured instances of IVORY in his everyday
work. The more advanced power user can customize existing
configurations using the script language IVML. On an admin-1 IVORY will be made available in short.

Figure 1: User abstraction model and system architecture
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istrators level Java plug-ins can be programmed to imple-
ment individual visual metaphors and layout algorithms.
Finally, the systems designer can modify and extend the
IVORY kernel to add new classes for solvers, particle engines
or other kernel methods.

The remainder of the paper is organized as follows: In section
3 we elaborate on general design and architectural issues underly-
ing our system. Section 4 addresses the plug-in mechanism,
which allows to implement new visualization paradigms. Next,
we discuss the scripting language, where, however, for brevity,
the complete EBNF is omitted. Finally, an example using a force-
feedback interaction model illustrates the flexibility and versatil-
ity of our approach.

3 ARCHITECTURAL ISSUES
To implement the introduced system architecture shown in Figure
1 we choose an object-oriented framework. Our basic design
goals include a fast, compact kernel and a powerful interface
which can be flexibly expanded for a wide range of user-specific
problems.

3.1 Framework Concepts
When designing our toolkit, we focused specifically on physics-
based information visualization, since it provides a promising and
intuitive paradigm enabling the user to map abstract multidimen-
sional information spaces onto appropriate subspaces, that can be
visualized in 3D or 2D. 

Double Separation
As illustrated by the horizontal separation in Figure 2 we
employed a frontend/backend-concept, where the backend is
responsible for efficient number crunching and the frontend han-
dles the graphical user interface and user interactions. In addition,
we distinguish between data-dependent and data-independent
components (vertical separation in Figure 2). For this reason we
distill all data-dependent components into so-called plug-ins. The
script language IVML handles configurations of individual plug-
ins. That is, in order to visualize a new data-type, the user has
essentially to write an appropriate plug-in. The remainder of the
system is not affected at all. For a more detailed discussion of the
plug-in concept we refer to Section 4.

System Configuration using IVML
The configuration and parametrization of the kernel and the plug-
ins to be loaded, has both to be comfortable for the users and to
exhibit small turn-around times. Therefore, the framework is
equipped with a high-level script language, called IVML (Infor-
mation Visualization Modeling Language). In contrast to all other
system components which are build by using a compiled lan-
guage providing a maximum of speed, the configuration scripts
are handled by an interpreter. Since they execute only once at
start-up time we balance time against flexibility.

All in all, the fundamental question of compiled or inter-
preted components is solved by a compromise: On the one hand
the interpreted approach is used wherever the execution repetition
is very low and therefore the demand for speed is of secondary
interest. On the other hand compiled code is used for all low-level
and often-run-through program segments.

Some Arguments pro Java
Two important aspect have to bear in mind to give a framework
the chance for general acceptance: First the system should base
on already established standards. Second, the implementation
should be as independent of operating systems as possible.

In this context, a new trend in portability emerges with Java
[17] and its “write once, run everywhere” philosophy. In this way
applications run (almost) on any operating system supporting
Java. We believe that the leak of performance compared to C++
will get obsolete over time. Here, the performance improvements
made with every new Java release and the availability of native
code Java compilers [18], [19] are good evidences.

In addition, besides all the euphoria, Java is widely accepted
as a highly portable quasi-standard in the computer community
and is available on many operating systems. Furthermore Java is
strongly object-oriented, which is critical for a well structured
implementation of a complex framework.

For 3D graphic output we selected the system independent
modeling language VRML 2.0 [20] to provide a high-level
description of the scene. Specifically, there are many viewers and
APIs available supporting VRML 2.0. Each of them handles
basic object management such as adding, removing and picking
of an object. 

3.2 Information Flow
In our terminology an information flow affects the visual repre-
sentation of our input data. Consequently, one stream of informa-
tion flow is the data itself. It starts with the data acquisition and
ends up in the visual representation. If we connect, for instance,
real-time data feeds, such as a Reuters ticker, to the system the
visualization will be continuously driven by the data. A second
important flow of information is defined by the user interactions.
The information contained in this flow range from mouse clicks
to cursor updates of a connected haptical device. 

Data Acquisition
The data acquisition is the starting point of every visualization or
visual mining procedure and supplies the system with raw mate-
rial. In the simplest case the data can be read from an ASCII-file.
Since the acquisition process obviously belongs to the data-
dependent components and is therefore settled in the data plug-in
components, IVORY does not impose any further restrictions on
data access. Each instance of a data plug-in is responsible for its
own data acquisition, which is thus fully transparent to the rest of
the system. This mechanism enables us to tap any data-source by
a specifically designed method and conversely to access one data-
type through different methods without changing the rest of the

Figure 2: Schematic overview of the system-components in IVORY
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system. Typical data-sources encompass conventional data bases
(SQL, DB2, DBase, ...), search-engines in the internet, the World
Wide Web (WWW) or real-time data tickers.

Configuration of the Layout System
In many graph-based visualization methods, data units, as repre-
sented in the system by instances of plug-ins, are considered as
entities in a physical world and relations between them can be
mapped onto interacting forces. However, the configuration of an
individual layout algorithm takes a direct influence on the result-
ing object arrangement in 3D space [8], [10] and [16].

In IVORY, the configuration of the interacting forces is done
by a second type of plug-in, the connection plug-ins. They pro-
vide two adjustable parameters, rest length and the spring stiff-
ness . Their values are defined through the metric method of the
connection plug-in. This method calculates a scalar value depend-
ing on similarity of the two connected data plug-ins  and

. The definition of expressive metric functions is still an ongo-
ing research issue in information retrieval and can therefore be
individually adjusted. 

In the current setting we propose four different mapping mod-
els summarized as follows:

• Similarity  mapped onto the rest length  only:

 (Chose  sufficiently large)

 (Rest length inverse proportional to stiffness)

• Similarity  mapped onto the spring stiffness  only:

 (Stiffness proportional to rest length)

.

• Similarity  mapped onto both parameters  and :

 and .

• Similarity  mapped onto the rest length  and the reliabil-
ity  of the value of  mapped on the spring stiffness :

 and .

All methods mentioned above are aiming at a mapping of object
similarities onto the parameters of the physics-based metaphor.
That means, similar data objects will be tighten together by a
large  and/or a small . The last version especially considers
the reliability of individual similarity values and is used for the
visualization of uncertain or unreliable data.

Relaxed Layouts

Self-organizing layouts are results of a simulation process relax-
ing the configured system into an energy minimum. This process
eventually performs the dimensionality reduction and discovers
knowledge in data or confirms existing hypotheses about the data.
Specifically, in explorative data analysis, clustering and aggrega-
tion of data objects are extremely important methods. The layout
algorithms used perform implicit cluster-based object arrange-
ments, a more detailed discussion of which is given in [9].

3D Representation

The 3D representation is the essential step in the data information
flow. In order to assign color, material, texture, geometry or other
features to the data objects or aggregations IVORY provides the
plug-in mechanism, where a data-specific property mapping
could be defined for each data-type. The mapping from data prop-
erties to visual attributes is done by the visualizer task. In addi-
tion, IVORY provides a powerful set of user interactions
described in the following subsection.

User interactions

The user interaction closes the feed-back loop by which the user
can optimize the visual data analysis process. Besides generic
interaction methods, such as free or constraint navigation in the
3D-representation or object picking, IVORY supports specifically
a so-called “drill-through” mechanism. That is, when picking an
object we can invoke any data-dependent operation on it, such as
requesting a 2D-visualization of the underlying data or direct data
editing. This is accomplished by implementing the appropriate
method in the objects plug-in. In this way, for each data-type
there are various data-specific interaction methods provided for
the user. Generally, IVORY advocates the same intuitive interac-
tion methods many users are used to from modern desktop win-
dowing systems.

Another class of user interactions are the computer aided
analysis methods. By the use of view filtering, for instance, the
user can select interesting subsets of objects. Conversely, cluster-
ing is used as a method to handle complex visualizations, where
groups of objects are condensed to one meta-object, a cluster.
Applying this process recursively we can build hierarchical
object arrangements. This enhances the overview and simulta-
neously reduces the computational efforts. A third class of meth-
ods are pathfinders. They are specifically designed for graph-
based visualizations and enable to identify paths between individ-
ual nodes in a graph [21].

Figure 3: IVORY’s information flow pipeline. 1) Data driven informa-
tion flow. 2) User interaction (feed-back) information flow
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3.3 Framework Kernel
The abstract framework kernel of IVORY contains generic imple-
mentations of all common components underlying to our physics-
based visualization paradigms and belongs to the set of data-inde-
pendent components of the framework. Thus, kernel methods are
highly reusable and shorten the design cycles of novel visual met-
aphors. Unlike most visualization systems, where the fron-
tend/backend-separation is introduced to detach system-
dependent from system-independent code segments, we
employed this notion primarily to run the system in client-server
setup over a network.

Frontend
The frontend is designed to run in a Java enabled WWW-browser.
It consists of three parts: The visualization subsystem, which is
responsible for all visual system outputs, as well as for the han-
dling of user inputs. The 2D graphical user interface (GUI),

shown on the left side of Figure 5, covers all standard I/O tasks
with appropriate menus and dialog boxes. Per default, an outline
of all loaded objects (plug-ins) is shown as a collapsible tree
structure. The 3D viewer is presented on the right side of Figure
5. Note that the visualized objects do not belong to the frontend.
They manage the visualization of the calculated object arrange-
ments and basic navigation functions. In order to decouple the
frontend from the viewer we defined a generic 3D viewer inter-
face. Thus, only the defined interface has to be re-implemented
when changing the VRML viewer.

In addition we introduce two messenger components. The
propagator is responsible to inform the backend, if a user interac-
tion has invalidated the integrity of the frontend and the backend
data-structures. E.g. whenever the user manipulates the layout
parameters, the backend has to recalculate the corresponding
object arrangement and synchronize itself with the frontend. The
visualizer performs in a similar manner, but in the opposite direc-
tion from the backend data-structure to the frontend visualization.

Backend
The backend supports two different execution modes: Either it is
directly attached to the frontend and runs in the same address
space or it runs as a separate server-application on a different
machine. In the second case the frontend and backend communi-
cate over a Java socket connection.

One of the main design goals for the backend was a respon-
sive care data-structure, where all the instantiated objects (plug-
ins) are stored. It is strictly optimized for fast object insertion,
deletion and look up. The structure is initialized by the IVML

subsystem, which is responsible for dynamic object instantiating
according to the parsed configuration script. Hence, this sub-
system must be able to load and link unknown plug-ins at run-
time. 

As indicated by Figure 2, we distinguish between two differ-
ent subsystem components accessing the core data-structure
directly. The layout subsystem builds up a mass-spring-network
based on the objects stored in the core structure. It also contains
state-of-the-art differential-equation-solvers to simulate networks
relaxation over time. This includes specifically gradient (Euler,
Runge-Kutta) or stochastic (annealing) based-methods, where, in
practice, gradient algorithms are much more suitable to treat
time-varying data. The second subsystem type is provided by the
analysis component comprising selection filters, pathfinders and
clustering algorithms. The subsystem interfaces allow users at a
systems designer level to easily extended kernel algorithms.

Transparent Network-Layer
All communication between frontend and backend is streamed
over the transparent network-layer. Hence, the communication is
generally transparent to all system components from above and
guarantees full independence of the IVORY execution mode
(stand-alone or client/server).

4 PLUG-IN MODEL
While defining the abstraction level of IVORY’s plug-ins, we
focussed on productivity and ease of use. Since Plug-ins only
contain functions which implement a specific metaphor or rule
the plug-in programmer can concentrate his efforts on the data-
specific issues. Recalling the information flow pipeline shown in
Figure 3, a plug-in contains, for instance, the similarity metrics
and the property- and behavior-mappers driving the visualizers.

For reasons of simplicity, plug-ins contain both frontend- and
backend-components. Conceptional, the separation is reflected by
two groups of methods. Unlike AVS 5 [2], where separate compu-
tation and description modules exist, an IVORY plug-in is always
viewed as one entity even though individual classes belong either
to the client or to the server.

The design of new plug-ins takes advantage of the object-ori-
ented approach of the framework, where we make extensive use
of object inheritance. All plug-ins are derived from a small set of
base classes and are thus organized in a hierarchical structure,
illustrated in Figure 6. The most important classes are discussed
in the following subsections.

Figure 5: Screenshot of the IVORY frontend running on a Windows
NT 4.0 machine under Netscape 4.04 with AWT 1.1 support.
(See also Color Plates: Figure CP-2)

Figure 6: IVORY’s plug-in hierarchy: The base classes.

SimpleCompute

HapticDevice

EllipsoidCluster

BlobCluster

...

SimpleData

TimevarMultichData

...

SimpleConn

Interface abstract ClassClass extends
implements

TimevarMultichConn

Displayable

Editable

Netobj

BaseConn

BaseObj

BaseAbstract

BaseData

BaseCluster

...

InterestIndexData

CurrencyData

...

InterestIndexConn

CurrencyConn



4.1 Base Objects
The base object class (BaseObj) builds the root of all plug-ins.
Practically it’s the only object class known in the abstract infor-
mation visualization kernel of the system. It essentially deter-
mines the set of methods, the plug-ins could be accessed through.

A selection of the most important (abstract) methods are
given below:

Frontend Methods
• getIcon (abstract) 

Optionally returns a reference to an icon resource. If avail-
able, it will be displayed in the 2D outline window.

• getAppearance (abstract) 
Returns the description of the representation of the object in
the 3D viewer and is described in native VRML 2.0 [20].

• getDisplayComponent (implemented)
This method provides the dialog component, which displays
the information contained in the corresponding object. This
includes administrative information (id, position, flags, ...) as
well as stored user data.

• getEditComponent  (abstract)
If the object features editing, the method provides an editor
component for the above information. This enables specifi-
cally data editing at runtime.

• getVisPar (implemented)
Returns the previously calculated visual parameters by call-
ing the method calcVisPar.

Backend Methods
• calcVisPar (abstract)

Calculates the visual parameters (position, scale, orientation
and color) of an object depending on the underlying data.
This way, specific data-properties can be mapped onto visual
attributes.

4.2 Data Objects
Data objects are directly derived from the base object class and
serve as an access interface to the explored data. The data man-
agement is individually solved by the current implementation of a
data object. For each instance of a data object a corresponding
particle-mass is automatically created in the layout-subsystem.
The setup of particle parameters is handled by the additional
backend method explained below.

Due to its paramount importance for many applications we
support time-variant data and multiple data channels per data
object in our implementation. A good example is the analysis of a
set of critical interest rates of different countries over the last
years. In this case, a data object is allocated for each country. In
each data object one channel is opened for each data feed [9]. 

Additional Backend Methods
• calcParticle (abstract)

In this method non-visual parameters of the particle attached
to the data object could be parametrized. In this way the
object behavior during the layout process can be defined.

4.3 Connection Objects 
Connection objects are of the same inheritance level as the data
objects. This object type serves as a binding object, which repre-
sents the relation of two data objects and is of fundamental rele-
vance for the resulting object layout.

For each connection object instance a corresponding spring is
created in the layout-subsystem. The physical parameters of the
spring are defined via the additional backend method described
below.

Additional Backend Methods
• calcConnection (abstract)

In this method non-visual parameters of the spring corre-
sponding to the connection object can be parametrized. 

4.4 Cluster Objects 
Another object type of the first derivation level are the cluster
objects. They enable a hierarchical organization of the visualiza-
tion and can be looked at as data object containers.

Note, that they are created by the corresponding clustering
algorithm located in the analysis subsystem. For each identified
cluster a new instance is allocated. The appearance of this
instance is a result of the cluster analysis calculations. In Figure 7
the resulting appearances of two different clustering methods are
illustrated.

4.5 Abstract System Object
Our experience has shown that generic objects without a visual
appearance are very helpful for efficient solutions. Thus, we
introduce so-called abstract system objects. Examples are param-
eterized global functions, such as data or currency converters. 

Another area of application is the attachment of additional
I/O-devices. For example, our physics-based system is predesti-
nated for the use of force-feedback devices. In the example pre-
sented in Section 7, for instance, an object representing the device
is derived from the abstract system class and helps to seamlessly
integrate it into IVORY.

5 THE INFORMATION VISUALIZATION 
MODELLING LANGUAGE (IVML)

5.1 Scope
As already explained in Section 2, the purpose of the script lan-
guage developed for IVORY is to configure and parameterize
individual visual metaphors implemented by the plug-ins. Since
VRML 2.0 is not sufficient to specify the topology of large
graphs, we had to devise a proprietary extension called IVML. As
an interpreted high-level language it enables users on the power
level to elegantly describe individual visualization problems and
to build fast prototypes. The language is open, object-oriented
and features scene graphs. In order to describe the geometry and
visual appearance of layouts VRML 2.0 code can be embedded
into IVML.

Figure 7: Two implemented types of clustering. a) Blob Cluster and
b) Ellipsoid Cluster. (See also Color Plates: Figure CP-3)
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Similar to VRML 2.0 the basic building blocks describing the
scene are objects defined by fields. The following example out-
lines a typical IVML object:

DEF myObj SampleData {
label "Hello world!"
num (23+7)/sin(0.334)
visual IVVisual {
color <0, 0, 1> * settings.intensity

}
appearance INLINE "file:/vrml/lora.wrl"
datapath system.scriptbase + "/dbase"

}

The object type SampleData is implemented by the corre-
sponding IVORY plug-in. Thus, we do not impose any restric-
tions to the number of object types in IVML. Other features
comprise inline arithmetic expressions and references (set-
tings.intensity), which replace the route mechanism along with
JavaScript. 

5.2 IVML specific Nodes
In essence, the following IVML-specific nodes, whose hierarchy
is presented in Figure 8, make up the extensions to VRML 2.0:

The header identifies the IVML script and version. 
#IVML 1.0

Constants are represented as strings in IvoryConst objects.
DEF myconst IvoryConst {
myTitle “Hello World!”
myURL “http://hello.world.ch/basics.html”

}

System parameters are stored in an IvorySystem object,
which is automatically initialized at parse time. It contains vari-
ous fields, which are omitted here for brevity.

DEF system IvorySystem {
cluster BaseCluster {
visible TRUE
transparency 0.8

}
layout BaseLayout {
series IVTimeSeries {
start 1.1.75
stop 31.12.95

}
}

 info IVInfo {
title "Economic indices"
info ["Example for Ivory V2.0"]

}
}

Environment objects contain VRML inlays to define individual
backgrounds, light sources, cursors and static scene parameters.

DEF env IvoryEnvironment {
lights INLINE "brightLight.wrl"
cursor INLINE "crossCursor.wrl"
environment INLINE "financeEnv.wrl"
billboards  INLINE "extendetBboard.wrl"

}

Connectors are objects which support the automatic description
of the graph topology of the visualization problem. We distin-
guish between so-called NameConnector and TypeConnec-
tor. Both support wildcards to simplify the generation of object
connections in very complex environments. 

5.3 The Plug-in Interface

In order to reflect the plug-in mechanism, IVML features
dynamic loading to invoke plug-in classes at runtime. It is similar
to SGI’s OpenInventor. 

The following example illustrates the idea. Here, we define a
simple, static graph consisting of 6 data objects and 12 intercon-
nections. The associated connectivity matrix is given by:

The IVML code fragment depicted below gives the full defi-
nition of the graph. We start with a prototype definition of a
generic data object from which all subsequent instances are
derived. The prototype contains a default initialization of infor-
mation assigned to all objects, such as color or scale factors. Note
that the geometry of the prototype object is hardwired in the plug-
in SimpleData, which itself is derived from the BaseData class
(see also Section 4). Next, two individual objects (ellipses in Fig-
ure 9) are instantiated overwriting some of the default parameters
of the prototype. In particular, we overwrite the object appearance
by an VRML 2.0 expression, which can be either inline or URL.
Likewise, we generate the four spherical objects. The subsequent
prototype definition of connection objects is used by the follow-
ing expression, which describe the links between all objects. It
can be seen, that the wildcard expressions in IVML, such as "R*"
tremendously simplify the definition of the graph topology of our
example.

Figure 8: Hierarchy of IVML specific Classes

abstract ClassClass Interface
extends
implements

IvoryFieldContainer

Connector

NameConnector

TypeConnector

IVGravity

IVInfo

IVVisual

IvoryConst

IvorySystem

IvoryEnvironment

Table 1: Connectivity matrix of the example shown below

T1 T2 R1 R2 R3 R4
T1 1 1 1 1
T2 1 1 1 1
R1 1 1 1 1
R2 1 1 1 1
R3 1 1 1 1
R4 1 1 1 1

Figure 9: Layout computed from IVML script presented above



6 IMPLEMENTATION ISSUES
The IVORY implementation takes full advantage of all sophisti-
cated features provided by Java 1.1. Each plug-in is mapped onto
a Java class. Thus, the loading of individual plug-ins at runtime
can be accomplished by the dynamic class loading mechanism of
Java. The Java reflection model is used by the IVML interpreter
to check, read and set the field values of plug-in objects.

We use the naming convention for setter and getter methods
of Java Beans to access the underlying Java member variables.
The Beans compliance enable to use all advanced Beans features,
such as property editing. Although our current client-server
implementation is based on a proprietary object serialization pro-
tocol, we are currently working on an RMI-based method invoca-
tion.

One of the critical implementation issues of IVORY was (and
still is) the 3D API. The OpenGL bindings, available in beta-ver-
sion from [22], are fast, however, are on a low abstraction level
and do not support advanced object management by scene graphs.
In addition, some rendering features, such as texture mapping are
not implemented. In addition, VRML parsing has to be provided
by the user.

Unlike OpenGL, Sun’s Java3D [23] provides a powerful API
for 3D graphics including scene graph optimization and VRML
extensions. The platforms comprise SUN and Windows 95/NT,
however, the API has not been available during the implementa-
tion of IVORY. 

Therefore, an early version of IVORY was based on Dimen-
sion X’s Liquid Reality class library [25], which was the only
appropriate 3D Java API at that time. The robust beta version
supported VRML and has been ported onto many platforms.
Since the scene graph data structures are maintained in Java, the
system performance is low. 

Our current implementation uses SGI’s CosmoPlayer [24] for
visualization. Unlike the libraries from above, the software is
essentially a VRML 2.0 viewer plug-in for WWW browsers
which has no immediate 3D API for Java. However, viewer con-
trol and callback-functions can be invoked through the LifeCon-
nect mechanism of the WWW-browser and the External Author
Interface (EAI) of CosmoPlayer. The scene rendering is based on
OpenGL and thus supported by a wide range of hardware acceler-
ators. At this time CosmoPlayer is available for SGI, Windows
95/NT and Apple Macintosh.

7 EXAMPLE
In physics-based visualization environments force-feedback

provides a natural human-computer interface and mediates an
additional sensoric cue to the user. Therefore, we invoked a Phan-
tom® as 3D haptic interface. The Phantom enables to pick indi-
vidual objects in 3D and to pull or push to “feel” the connection
strength of objects for a given graph layout.

Further examples can be seen on our IVORY project home-
page [26].

8 CONCLUSIONS AND FUTURE WORK
We presented a new approach towards a portable, object-oriented
framework especially designed for physics-based information
visualization. The system is open and expandable by adding new
plug-ins. With the 4 layered abstraction model for users we pro-
vide adequate interfaces to configure our system at different
abstraction levels. This covers a fast visualization prototyping
using predefined plug-ins, but also a very flexible low-level sys-
tem access. We also introduce a new script language named Infor-
mation Visualization Modeling Language (IVML), which is
distinctively proposed to describe information visualization prob-
lems. Future work has to encompass the development of hierachi-

#IVML V1.0
# Example: Simple Objects

# First set some global parameters
IvorySystem {
info IVInfo {

title "Simple Objects"
info  ["Ivory V2.0 Example"]

}
}

# Define a prototype for our 
# data objects
PROTO data {
SimpleData {

label "Simple Object "+me.name
spaceFactor 5.0
visual IVVisual {

color <1,0.5,0.5>
}

}
}

# Define the 2 Top-Objects special
DEF T1 data {
visual IVVisual {

color <1,1,0.5>
}
appearance INLINE “ellipse.wrl”

}
DEF T2 data {
visual IVVisual {

color <1,1,0.5>
}
appearance INLINE “ellipse.wrl”

}

# Define the ring objects
DEF R1 data {}
DEF R2 data {}
DEF R3 data {}
DEF R4 data {}

# Define a prototype for our 
# connection object
PROTO conn {

SimpleConn {
defaultLength 10.0

}
}

# make the connections
# connect first top with all
# objects in ring
NameConnector{

template conn {}
names ["T1","R*"]

}

# connect second top with all
# objects in ring
NameConnector{

template conn {}
names ["T2","R*"]

}

# connect the ring objects
conn {

label "R1_R2"
leftObj R1
rightObj R2

}
conn {

label "R2_R3"
leftObj R2
rightObj R3

} 
conn {

label "R3_R4"
leftObj R3
rightObj R4

}
conn {

label "R4_R1"
leftObj R4
rightObj R1

}

Figure 10: a) User sitting in front of the haptical device. b) View on the
virtual representation of the haptical workspace. The layout
shows the influence of four economic indicators onto the long
term interest rates of different countries; Canada is currently
being dragged by the user.

b)

a)



cally organized layout subsystems, which make use of the object
clustering analysis embedded into the system. We expect a tre-
mendous speedup for the layout. Secondly, a widely strewn
usability test including daily-business cases in the areas of our
cooperation partner will validate IVORY’s performance in prac-
tice.
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Figure CP-1: Results of possible user interactions. a) “Drill-through” the data provided by a currency plug-in. b) 3D Arrangement of a HTML-page do-
main (similarity criterion is the URL) after invoking the Blob-clustering algorithm from [9].

Figure CP-2: Screenshot of the IVORY frontend running on a Windows NT 4.0 machine under Netscape 4.04 with AWT 1.1 support.

Figure CP-3: Two implemented types of clustering. a) Blob Cluster and b) Ellipsoid Cluster

a) b)
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