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Abstract

A new method for the visualization of huge hierarchical
data structures is presented. The method is based on the ob-
servation that we can easily see the branches, leaves, and
their arrangement in a botanical tree, despite of the large
number of elements. The strand model of Holton is used
to convert an abstract tree into a geometric model. Non-
leaf nodes are mapped to branches and child nodes to sub-
branches. A naive application of this model leads to un-
satisfactory results, hence it is tailored to suit our purposes
better. Continuing branches are emphasized, long branches
are contracted, and sets of leaves are shown as fruit. The
method is applied to the visualization of directory struc-
tures. The elements, directories and files, as well as their
relations can easily be extracted, thereby showing that the
use of methods from botanical modeling can be effective for
information visualization.

Keywords: botanical tree, logical tree, huge hierarchy,
strands, tree visualization, directory tree, phyllotaxis

1 Introduction

An effective approach to the organization of a large num-
ber of items, be it files, staff members or books, is to group
them and to repeat this step recursively. As a result, hier-
archical data structures are ubiquitous. Small hierarchical
structures are very effective to locate information, but the
content and organization of large structures is much harder
to grasp. A typical use-case is the question ’Why is my disk
full?’. To answer this question in an effective and efficient
way, the support offered by interactive visualization, show-
ing both the structure as well as the sizes of individual files
and directories, is almost indispensable.

We present a new method for the visualization of huge
hierarchical structures. The method is based on a simple
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intuition. The termtree is standard for hierarchical data.
When we observe botanical trees, we find that the leaves,
branches, and their arrangement can easily be extracted, in
spite of the very large numbers. Hence, what would happen
if we try to visualize hierarchical data as botanical trees?

We explore this intuition as follows. In section 2 we dis-
cuss related work, both for tree visualization and tree mod-
eling. In section 3 the strand model of Holton [6] is de-
scribed and adopted as a basis for our method. In section 4
this method is tuned to our particular aim. Especially, we
show that files can be visualized more effectively as fruit
than as leaves. Results are shown and discussed in section
5, followed by the conclusions in section 6.

2 Background

Many methods have been developed for the display of
hierarchical information structures, or, for short, trees. File
browsers are the best known example, but they are lim-
ited in the number of items that can be shown simultane-
ously. A second important category are node and link di-
agrams. Within the graph drawing community [13] many
algorithms have been developed to generate such diagrams
in 2D. However, these diagrams do not use display space ef-
fectively, hence their applicability is limited to small trees,
with at most a few hundred of nodes. The treemap method
of Shneiderman [12] uses a space-filling approach, and can
cope with much larger hierarchies. Also, treemaps offer a
natural way to visualize additional information via the area
of the rectangles. However, the structural information may
get lost here, although this can be remedied by adding extra
cues [14].

Another escape is to display trees in 3D instead of 2D.
We refer to [5] for an overview. The hope is that the ex-
tra dimension would give, literally, more space, and that
this would ease the problem of displaying large structures.
This is not without problems, however. Occlusion renders
parts of the model invisible, the depth of lines is hard to
grasp. Hence, real time rotation and extra depth cues are
indispensable to understand such 3D visualizations of trees.
The best known example for 3D visualization of trees is the
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Figure 1. Stem and two sub-branches.

cone tree of Robertson [11], refined and extended by oth-
ers to display larger structures [7, 2]. However, with these
methods the number of elements that can be shown simulta-
neously in a comprehensible way still seems to be limited.

We aim at a 3D visualization method that enables the
user to understand the structure of large tree structures as
well as attributes of data. Our inspiration comes from na-
ture: Botanical trees are large, but the elements and their ar-
rangements can still be extracted. How can we tailor meth-
ods from botanical modeling to our purposes?

The modeling of botanical trees has intensively been
studied in the graphics community. Besides for scientific
curiosity, it also has direct practical applications. Model-
ing trees by entering polygons or other geometric objects
directly is a tedious job, hence higher level methods are in-
dispensable to generate trees and forests automatically, for
instance for animation purposes. As a result of this research,
many methods are available to generate images and models
of botanical trees, such as fractals [9], texture mapping [1],
and L-systems [10]. Especially the L-systems and all their
extensions are an impressive machinery. L-systems enable
the user to model the structure of a wide variety of plants
and trees in a compact way. However, for our application
this is not so relevant. The structure of the tree to be gener-
ated is determined by the data to be visualized, whereas in
graphics the task is to generate the structure.

For our purposes the strand model of Holton [6], or a
similar model used by Devroye and Pruszewski [3], is very
convenient. It is particularly suitable because it can be tuned
easily to follow the structure of the input hierarchy. Also,
the strands enable a simple mapping of the size of elements
into the radii of branches.

In the following sections we elaborate on this. As an
example of a large hierarchical structure we use directory
trees. The aim is the visualization of both the structural
information as well as the content, i.e. file type and size.

3 Method

We first explain in detail the part of the strand model
we use. Next we adapt it to suit the needs for visualizing
directory trees.

3.1 Strand model of botanical trees

Strands are used to mimic the internal vascular struc-
ture of a botanical tree. The smallest branch is assigned
one strand and each other branch has a number of strands
that equals the sum of the strands of the sub-branches. In
Holton’s model [6] strands are used to determine the tree’s
structure, branch thickness and length, as well as branch-
ing angles between a branch and a sub-branch. Below we
give a recursive function for generating a tree model as a set
of cylinders. The model is a simplified version of Holton’s
model, leaving out, for instance, gravity and phototropism.

tree(s)
stem:=cylinder ((0,0,0), (0,λ,0),ρ);
if s0=1 then return stem;
s1 :=℘*(s-2) +1; s2 :=s-s1;
α1 :=α*s2/s; α2 :=α*s1/s;
r1 :=

√
s1/s; r2 :=

√
s2/s;

return stem
∪ T(0, λ, 0) ◦ Ry(β) ◦ Rz( α1) ◦ S(r1) tree(s1)

∪ T(0, λ, 0) ◦ Ry(β) ◦ Rz(-α2) ◦ S(r2) tree(s2);

The functiontree(s)results in a model with as stem a cylin-
der with radiusρ and lengthλ and containings > 0 strands.
If s is larger than one the returned model contains the stem
plus the transformed model of two sub-trees. The number
of strands for each sub-tree is computed using some proba-
bility function ℘ which depends, for instance, on the recur-
sion level and is chosen such that the total result looks like
a real tree. One step of the recursive functiontree is shown
in figure 1. The transformation of the first sub-tree consists
of a scaling (S) with a factorr1 equal to the square root of
the ratio of the corresponding strands. Hence, the area of
the cross-section of the cylinder is proportional to the num-
ber of strands. After scaling, this sub-tree is rotated with
an angleα1 about thez-axis (Rz); the anglesα1 andα2 are
chosen such that their sum, the angle between the two sub-
trees, equals a given angleα; furthermore, they are chosen
such that the heaviest of the two sub-trees diverts the least
from the stem. Both sub-trees are rotated with an angleβ

about they-axis (Ry). Forβ often the angle 360/ϕ is used
whereϕ = (1 + √

5)/2 is the golden section. This is a re-
sult of the study of phyllotaxis, the arrangement of leaves
on a stem, and is as such also applied in [4, 8] for modeling
plants and trees.
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Figure 2. Node and link diagram (t) and corre-
sponding strands model (d).

3.2 Strand model of directory trees

In this section we describe how we can use Holton’s
model to create a three-dimensional model of a directory
tree. The original model generates a binary tree whereas in
general a directory tree is not. However, we again obtain
a binary tree by visualizing the directories as continuing
branches: At each branching point a sub-directory is split
off and the other sub-branch is now a continuation of the
parent branch. The order in which the sub-directories are
split off, is given by their sizes : The largest sub-directories
are split off first. The top figure of figure 2 shows a node
and link diagram of a directory tree where the numbers in-
dicate the size of files and directories. In the bottom figure
the corresponding strand model is shown.

As in the original model the geometrical properties of
a tree are based on numbers of strands, here we define a
number of strands for a directory, saydir , as follows:

strands(dir ) =
∑

d∈dl

strands(d) +
∑

f ∈fl

f.size

where we use the following data-structures for the directory
tree.

Directory = record dl : list of Directory;
fl : list of File;

File = record size : integer;
type : String;

Figure 3. Result of dtree1.

Hence, a continuing branch of a large directory has many
strands and is represented by a thick and long first segment.
This visual cue will help us when browsing a tree looking
for space consuming files and/or directories.

Below we give the recursive functiondtree1(d)for the
visualization of a directory treed. On the deepest level the
functionleavesis called which returns some geometry rep-
resenting the file list it gets as a parameter. To navigate
through the directory tree we use thepop function on a list
which removes the first element of a list and returns this
element as its result.

dtree1(d)
stem:=cylinder ((0,0,0),(0,λ,0),ρ);
if d.dl=∅ then return leaves(d.fl);
s :=strands(d); d1 :=d.dl.pop(); d2 :=d;
s1 :=strands(d1); s2 :=strands(d2);
G1:=Ry(β) ◦ Rz( αs2/s) ◦ S(

√
s1/s) dtree1(d1);

G2:=Ry(β) ◦ Rz(-αs1/s) ◦ S(
√

s2/s) dtree1(d2);
return stem∪ T(0, λ, 0) (G1 ∪ G2);

A first implementation of the functionleavesis similar to
dtree1: At each recursion level a leaf is split off and a stem
and a few triangles depicting a stalk and a blade are gener-
ated with the same transformations applied as for the sub-
branches indtree1. Figure 3 shows a result of the above al-
gorithm. From the figure three visualization problems come
forward : (1) the continuing branches representing a direc-
tory can not be followed easily at a branching point and as
a result it becomes unclear which sub-branch represents the
parent; (2) directories with many sub-directories and/or files
lead to thin and long branches; (3) the leaves tend to clutter
and do not give insight. In the following section we tackle
these problems.



Figure 4. Continuation without (l) and with (r)
extrusion.

4 Refinements

4.1 Continuing branches

The visualization of a directory by a continuing branch
should be clearly visible in the three-dimensional model. In
[6, 1] sophisticated solutions are given, here we use a simple
solution since we are not interested in modeling a tree but in
visualizing directory data. We refine our model by adding
a smooth transition between two cylinders. This geometric
transition is simply created by adding an extrusion, along a
suitably chosen spine, of the top circle of the parent cylinder
to the bottom circle of the next cylinder in the continuing
branch (see figure 4). The difference between the smooth
and the abrupt transitions makes clear what the status of
each branch is. As an extra cue, branches at different levels
in the hierarchy are assigned different colors.

4.2 Contraction of long branches

When for each sub-directory or file a separate stem and
sub-branch are used, a large number of those leads to a
long sequence of stems, visible as a long and thin contin-
uing branch. We improve the behavior of our model in
this respect by conditionally removing the stem in the sub-
branch of the continuing branch. Effectively, this replaces
the binary tree with a general tree. The functiondtree2(d,e)
results in a three-dimensional model of a directory treed
where only a stem is introduced ife ≤ 0. At the high-
est leveldtree2 is called withe = 0 indicating that the
stem must be drawn, in the continuation of a branche is
set toεstrands(d) indicating that a stem (in the continuing
branch) is only drawn after at least a fractionε ∈ [0, 1]

Figure 5. Model without (l) and with (r) con-
traction.

of the strands ofd is split off. As a result the length of a
continuing branch is limited to at mostλ/ε.

dtree2(d,e)
stem:=cylinder ((0,0,0),(0,λ,0),ρ);
if d.dl=∅ then return leaves(d.fl);
s :=strands(d); d1 :=d.dl.pop(); d2 :=d;
s1 :=strands(d1); s2 :=strands(d2);
if e ≤ 0 then f :=ε*s else f :=e;
G1:=Ry(β)◦Rz( αs2/s)◦S(

√
s1/s) dtree2(d1, 0));

G2:=Ry(β)◦Rz(-αs1/s)◦S(
√

s2/s) dtree2(d2, f -s1));
if e > 0 then return G1 ∪ G2
else returnstem∪ T(0, λ, 0)(G1 ∪ G2);

Figure 5 shows an example: Long branches are eliminated
without sacrificing the clarity of the structure.

4.3 Files as fruit

To prevent cluttering of leaves we introduce an icon to
represent a list of files and their sizes. We model this icon
as a fruit consisting of a sphere with spots for each file.
The positioning of the, possibly different sized, spots on the
sphere is done again with a method from botanical mod-
eling. In [4] such a method is given, here we use a less
involved method given in [8]. In this last method items are
placed on a sphere using a so-called phi-ball, a sphere that is
divided in as many horizontal slices as there are items (here
files) to be placed. The area of the slices (and equivalently
their height) is proportional to the size of the corresponding
files. At each of the slices a spot is placed and each slice
is rotatedβ degrees with respect to the slice above it. The
spots may be represented by disks with an area in proportion
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Figure 7. Computation of cone parameters.

to the size of the corresponding files. However, planar disks
pasted on the sphere look irregular. Mapping of disks to the
surface of the sphere requires many polygons or an involved
texture generation step. The use of cones is more efficient
and leads to an attractive result, especially if the dimensions
and the position of the cones are chosen such that they are
tangent to the sphere. Below a functionphiball(fl,bot,top)
is given that produces a sphere and cones for each file in the
list fl. Thebot andtop parameters, both in [−1, 1] indicate
which part of the sphere is sliced for positioning spots.

phiball(fl,bot,top)
size:=

∑
f ∈ f l f.size;

P :=(0,0,1); O :=(0,0,0); h :=top; G :=∅;
for each f ∈ f l

Q :=(0,h,
√

1 − h2);
c :=

√
f.size/size; t:=

√
c2 + 1;

B :=(0,0,1/t); T :=(0,0,t);
G :=Rx(- 6 POQ)(cone(B, T, c/t)) ∪ Ry(β)G;
dh :=(top− bot) f.size/size; h:=h − dh;

return G ∪ sphere(O, 1);

The sphere is positioned in the origin and has radius 1 (see
figure 6). Each file’s cone has its axis along thez-axis and
a hypotenuse with lengthc equal to the square root of the
ratio of the file size and the total size of the file list. From
this the top (T) and base point (B) as well as the cone’s

Figure 8. Phi-ball with one (l) and many (r)
files.

radius can be computed (see figure 7). A cone is positioned
by rotating it along thex-axis over the angle6 POQ. In the
subsequent iterations of the loop a cone is rotated along the
y-axis overβ degrees. Forβ the use of 360/ϕ gives good
results.

With the functionphiball the functionleavescan be re-
implemented by adding a stem to a phi-ball resulting in the
models in figure 8. The use of cones and their parameteriza-
tion lead to the effect that large files emerge as large, though
bounded cones, whereas small files appear as small disks.
Color is used to indicate the file type. The parameterbot is
set slightly higher than -1 in these examples to prevent the
stem to obscure file cones.

Showing a list of files by means of fruit as a phi-ball
enhanced with cones, turned out to structure the massive
information in the visualization of directories. The use of
icons for showing the information was advised in [2] in the
context of cone trees. Our solution with phi-balls is also
viable in that context.

5 Results

Figure 9 shows the results of the refined model and
can be compared to figure 3. The model represents
the C: \Winnt directory on a windows NT machine,
the prominently visible ball shows thesystem32 sub-
directory. Each cone with a yellow color on this ball rep-
resents a dll file in this folder. The model in this figure is
comprehensive and clean compared to the model in figure
3. It is hence feasible to show even larger directory trees
in one model. This is shown in figure 10 where the com-
pleteC: \ folder of the same machine is shown. The largest
and first sub-directory that is split of in this model is the



Figure 9. Final model with contraction, extru-
sion, and phi-balls.

C: \Program Files folder. The large green cone on top
of the tree represents a file of more than 500 megabytes in
C: \. The total tree consists of 47.551 files in 2.265 folders.
Figure 11 shows a model of the same directory but with a
different setting forα andβ. The figures 12 and 13 show
the unix directory of one of the authors. The first directory
that is split off contains a big sub-branch with mostly blue
cones representing postscript and pdf files. The phi-balls
with mostly red cones represent directories with image files.

Three-dimensional models can only be judged fairly in
an interactive environment where an inherent problem as
occlusion can be overcome by interaction on the model. All
images were generated with an interactive system we have
implemented to generate and visualize these models. Real-
time performance could be achieved on a modern PC with
a 3D-graphics card using some straightforward level of de-
tail methods, such as adaptive accuracy and removal of very
small elements.

Hands-on experience with this system indicated that
users are intrigued and stimulated by the visualization. Fea-
tures such as large files (big cones), directories with many
and/or large files (big spheres), and directories with a large
overall content (thick branches) could easily be spotted.
The pattern and color of the cones on the phi-balls provide
a direct cue for the distribution and type of files. Finally,
the resulting trees effectively show the files, the directories
and their arrangements; in contrast to tree maps where this
information is harder to extract.

Figure 10. Complete hard disk with α = 45and
β = 360/ϕ.

Figure 11. Complete harddisk with α = 90and
β = 0.

6 Conclusions

We have presented a new method for the visualization
of huge hierarchical data structures, based on methods from



Figure 12. Unix home-directory.

botanical modeling, specifically the strand model of Holton
[6] and the phi-ball of Lintermannet al. [8]. Naive appli-
cation of such botanical models gives unsatisfactory results,
but we have shown they can be customized to visualize large
hierarchical structures in a clear and compact way.

Two aspects deserve special attention. Firstly, the cone
covered phi-ball is an effective icon for the visualization of
the properties of a list of items, which we expect to be use-
ful for other applications as well. Secondly, the branches
of the tree and the cones on the phi-ball hardly ever col-
lide, despite the fact that no special measures were taken
to prevent this. Efficient use of space is an important topic
in information visualization. To this end, nowadays math-
ematical methods (such as hyperbolic scaling), algorithmic
methods (such as the tree map algorithm), and physically
based models (such as mass-spring models) are used. The
methods of botanical modeling and especially the concept
of phyllotaxis provide a surprisingly simple and very effec-
tive alternative solution.

We have only just started to apply methods from botani-
cal modeling for information visualization, and expect that
many other applications can take advantage of this rich
source of inspiration. Using our own work as an exam-
ple, only a part of Holton’s original strand model has been
used. Texture and gravity could for instance be used to vi-
sualize other aspects of the data, such as the creation date
of files and directories; for other types of hierarchies the
parametrization of for instance branching angles to the level
of hierarchy could be beneficial. In summary,natura artis
magistra.

Figure 13. Detail of figure 12.
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