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Abstract

We describe a visualization tool which allows a biologist
to explore a large set of hypothetical evolutionary trees. In-
teracting with such a dataset allows the biologist to identify
distinct hypotheses about how different species or organ-
isms evolved, which would not have been clear from tra-
ditional analyses. Our system integrates a point-set visu-
alization of the distribution of hypothetical trees with detail
views of an individual tree, or of a consensus tree summariz-
ing a subset of trees. Efficient algorithms were required for
the key tasks of computing distances between trees, finding
consensus trees, and laying out the point-set visualization.

1 Introduction

Systematic biology:Systematic biologists study evolution
and construct evolutionary trees, also calledphylogenies.
Although they expect that all life belongs to a single evo-
lutionary tree, its specific topology and even most of its de-
tails (e.g. the evolutionary tree for frogs) are far from clear.
The most common methods for constructing phylogenies
are based on DNA and RNA sequence data and are heavily
computational. As more specimens are collected, sequenc-
ing methods improve, and algorithms and computer systems
become more sophisticated, the datasets used in phyloge-
netic reconstruction become larger and more complex.

Constructing reliable phylogenies is important. They are
used to answer questions like, “Where did human beings
originate?”, and, “Which strain of anthrax is this?”. More
fundamentally, evolutionary trees provide a framework in
which other biological knowledge can be organized, and are
used by biologists to search for pharmaceuticals, evaluate
the threat of an invasive species to an environmental niche,
and so on.

Application: The datasets involved in the process of com-
puting phylogenies present a number of visualization chal-
lenges; our system addresses one in particular. Typically
the genetic sequence data for a group of species or organ-
isms (thetaxa) are used as input to an optimization program
that searches for the evolutionary tree that best explains the
data, generally by “walking” from tree to tree. Whatever
optimality criterion is used to define the “best” tree (maxi-
mum parsimony and maximum likelihood are two popular
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choices), the optimization program typically returns not one
tree, but a set of hundreds or thousands of near-optimal or
equally-optimal trees.

Traditionally, this rich and expensive dataset of optimal
trees has been summarized with a singleconsensus treeand
then thrown away. The consensus tree presents the features
shared by all or most of the trees. If all the trees agree that a
group of taxa have a common ancestor, a node correspond-
ing to that common ancestor appears in the consensus tree.
A consensus tree which iswell resolved(that is, with many
internal nodes, so that the tree is nearly binary) shows that
the original data strongly support a single hypothesis about
the evolutionary relationships of the taxa. If, on the other
hand, the set of trees contains subsets which differ consid-
erably from each other, the consensus tree of the whole set
will contain very few internal nodes, all of high degree; in
the extreme case, all of the taxa are connected to a single
common ancestor and the consensus tree conveys no infor-
mation. Our tool allows the biologist to interactively visual-
ize and explore the whole set of trees, providing insight into
the overall distribution and possible conflicting hypotheses.

We have also found that our system is useful for explor-
ing sets which include non-optimal trees. In particular, biol-
ogists are interested in monitoring the computational search
for optimal trees, to better understand the heuristics and per-
haps to enable computational steering. Our tool can be used
to visualize the search process, after-the-fact, as in Figure 2;
we added coloring and animation features specifically for
this application.

System Overview: As the visual interface, our tool pro-
vides two linked views of the data. Thepoint-set view
shows the overall distribution of trees. Each tree is rep-
resented as a point. The layout is computed using multi-
dimensional scaling (MDS), a heuristic which places points
so that the distances in the image reflect, as well as possi-
ble, the distances between the corresponding trees. We use
a distance metric on trees which is related to the definition
of the consensus tree, so that a set of points which are close
together in the point-set view tends to have a consensus tree
which is well-resolved. In many of the datasets we have
examined, groups and clusters of trees in the point-set view
produce well-resolved consensus trees.

The linked tree viewsare used to attach meaning to
points or groups of points. When the user selects a single
point, the corresponding tree is displayed. When a group of
points is selected, the consensus tree is displayed. Selecting
multiple points or groups allows for side-by-side compari-
son of the trees.

As an example, in Figure 1, the fact that there are three
distinct groups of trees is apparent. The consensus tree of
the small selected set of trees, on the left, is much less re-
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solved than the tree on the right, belonging to the larger
selected cluster, indicating that the larger cluster in some
sense gives a more coherent evolutionary hypothesis.

Previous work: Our system is the first to address this ap-
plication, but it includes existing elements from information
visualization and computational biology.

Low-dimensional visualization of point-sets in high-
dimensional or other difficult metric spaces, in particular
by using MDS, is a textbook technique [3]. We were par-
ticularly inspired by the interface in the general-purpose
MDS toolXGvis [4], which we used in initial experiments.
Tree visualization is another central information visualiza-
tion topic [15, 12], although systematic biologists use spe-
cialized programs for drawing evolutionary trees [11, 13].
Linking of the two views, including the computation of con-
sensus trees on the fly, was needed to convey the meaning of
the distribution. A design based on multiple linked views,
with interaction via brushing [2], has worked well in other
applications [9, 5].

Since efficiency is essential, we use a linear-time algo-
rithm due to Day [8] for computing consensus trees and
inter-tree distances. To our knowledge ours is the first im-
plementation. We use sampling to speed up MDS [6]. In
combining these elements, we chose to integrate MDS into
an existing platform for phylogenetic computation and vi-
sualization, rather than adding the computational biology
elements to an existing general-purpose MDS tool such as
XGvis. We use theMesquite platform [10], which provides
tree visualization and other application-specific functional-
ity. More importantly, it makes our tool convenient for bi-
ologists to find and use.

2 System design decisions

We tried to choose elements in our design, such as the
distance metric and consensus tree definition, which are fa-
miliar and meaningful to the biologists as well as computa-
tionally efficient.

Evolutionary Trees: The leaves of an evolutionary tree are
always labeled with the taxa, and permuting the labels on
a tree with fixed topology generally produces a very dif-
ferent evolutionary tree. Internal nodes—the hypothetical
ancestors—are generally unlabeled. Evolutionary trees may
be rooted or unrooted, and edges may be weighted (with
positive weights) or unweighted. Order is unimportant; for
example, for a node in a rooted tree, swapping the left and
the right child does not change the tree.

Computational biologists find it useful to represent evo-
lutionary trees in terms ofbipartitions. Removing an edge
ei from a tree separates the leaves on one side from the
leaves on the other; this division of the leaves into two sub-
sets is the bipartitionbi associated with edgeei . An evo-
lutionary tree is uniquely and completely represented by its
set of bipartitions.

Consensus tree:Biologists define several kinds of consen-
sus tree, including strict consensus, semi-strict consensus,
and majority tree. Since we need to compute the consen-
sus tree whenever the user brushes a new set of points, effi-
ciency was our major decision criterion, and the strict con-
sensus is the simplest to compute. The strict consensus tree
of a setT of trees includes only those edges whose bipar-
titions are included inall the trees ofT . The linear-time
algorithm below computes the strict consensus tree in time

Θ(nm), wheren is the number of taxa andm is the number
of trees. This is optimal since just readingm trees onn taxa
requiresΘ(nm) time.

Metric on Trees: There are several metrics on trees of
interest to biologists; we use the Robinson-Foulds dis-
tance [14] (RF-distance). Like the strict consensus tree, RF-
distance is defined in terms of bipartitions; hence trees close
together with respect to RF-distance tend to have a well-
resolved strict consensus tree. In addition, computing most
alternative distances, such as nearest neighbor interchange
distance (NNI) or tree bisection and reconnection distance
(TBR), is NP-complete [7, 1].

The RF-distance between two trees counts the number
bipartitions that arenotshared by the two trees:

jfbi 2 T1;bi 62 T2gj+ jfbi 62 T1;bi 2 T2gj

n

The distance is normalized byn, the number of taxa. Since
RF distance is a particular kind of Hamming distance, it is
a metric.

Layout: The point-set visualization is done with multi-
dimensional scaling (MDS), a technique which takes a ma-
trix of dissimilaritiesδi; j as input and produces a layout of
points in a low-dimensional space IRk, attempting to make
the the Euclidean interpoint distancesdi; j in the layout re-
flect theδi; j as well as possible. We currently lay out the
point distribution only in IR2.

The other option we considered is Principal Compo-
nents Analysis (PCA), which computes a linear mapping
of the points into the IRk. The mapping produced by PCA
is guaranteed to minimize∑i; j j δ2

i j � d2
i; j j. This tends to

weight large dissimilarities more strongly than one might
like. With MDS we are free to choose a more natural op-
timization function, so as to produce better layouts. We
used the popularStressor Kruskal-1function [3], which is
equivalent to optimizing∑i; j(δi; j � di; j)

2. The drawbacks
of MDS are that it is slow and that it may get stuck in local
minima.

3 Efficient algorithms

Efficiency is essential to a successful interactive experi-
ence. The three computational bottlenecks in our system are
the computation of the inter-tree distance matrix, the lay-
out of points using MDS and the computation of consensus
trees in response to user queries. The brute-force algorithms
for these problems are allΩ(n2); MDS is an iterative algo-
rithm which isΘ(n2) per iteration. We require interactive
performance on sets of thousands of trees and hundreds of
taxa. To achieve this, we implemented a linear-time algo-
rithm from the computational biology literature for the dis-
tance matrix and consensus tree computation, and we used
sampling to reduce the time per iteration of MDS.

Consensus trees:The strict consensus tree for a set of
n trees can be computed by finding the consensus treeT
for the first two, finding the consensus tree ofT and the
third, and so on; hence we focus on finding the consensus
tree for two trees. The brute-force algorithm represents the
two trees by their sets of bipartitions and compares the two
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sets. Although there are only a linear number of biparti-
tions in each tree, writing down a bipartition in the obvious
way requiresΘ(n) time, so overall the brute-force approach
requiresΘ(n2) time. Day’s linear-time algorithm [8] im-
proves on this by using a sufficiently specific constant-size
representation for bipartitions. We first index the taxa based
on their order in a traversal of the first tree. A subtree cor-
responding to a bipartition is then represented by the min-
imum indeximin and maximum indeximax contained in the
subtree, as well as the number of leavesl in the subtree. For
a bipartion in the first tree,l = imax� imin+1, so it is the
only bipartition given this representation. Representations
for which l < imax� imin+1 may be used by many possible
bipartitions, but no such bipartition can belong to the con-
sensus tree since it cannot belong to the first tree. Given
this representation, the algorithm is simply to store the bi-
partitions of the first tree in a dictionary, and look up the
bipartitions of the other tree.

Distance computation: The algorithm for computing the
RF-distance between two trees is very similar. Since we
need to compute the distances between all pairs of trees in
the input set, we can arrange for some additional efficien-
cies. The dictionary for each tree is computed only once,
and each tree needs to compute its distance only to trees
following it in the file. Nonetheless, computing the distance
matrix, which is done once on start-up, requiresO(nm2)
time, form trees andn taxa.

Linear-iteration MDS: Each iteration of MDS adjusts each
point’s position slightly in a direction that decreases the lay-
out’s stress, requiringΘ(n2) time.

Our approach to scaling up the algorithm is to optimize
the low-dimensional layout with respect to only a fixed-size
subset of the interpoint dissimilarities, on the assumption
that the full dissimilarity matrix is generally very redundant.
Certainly on our data, the layouts we computed based on a
subset of dissimilarities resembled those computed using all
the distances, e.g. in Figure 3. We tried several ways of se-
lecting this subset of dissimilarities. The simplest was to
select a random subset of the points as ananchor setΨ, so
that only dissimilaritiesfdi j : pi 2 Ψg are considered. A
second method takes into account only thek largest andk
smallest dissimilarities involving each point, for some fixed
k. With this method, the layout’s overall structure is out-
lined by the large dissimilarities, and the the fine detail of
each point’s position is determined by its near neighbors.
Our third method, similar to that of [6], uses all the dissimi-
larities among points in the anchor set as well as the biggest
and smallest dissimilarities for each of the rest of the points.
In addition, membership in the anchor set is reassigned ran-
domly for each new iteration of MDS, so that over time all
dissimilarities among points are eventually taken into ac-
count.

We evaluated the performance of these different sam-
pling methods by comparing the layouts they generated
against those produced by the original MDS algorithm. We
looked at both the increase in stress for the sampled-MDS
layouts as well as the degree to which they were distorted
with respect to the full-MDS layouts, where we define dis-
tortion as the average error in inter-point distances between
two layouts: ∑i; j jd1i j �d2i j j, divided by n(n� 1)=2, the
number of interpoint distances. Of our three sampling tech-
niques, we found that the third method gives the best trade-
off between layout quality and the speed of MDS.
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Figure 1. A sceenshot of our tree set visualization tool. On the left, the point-set layout of the distribution
of trees. Each point represents a tree, and distances between points reflect distances between trees in an
appropriate metric. Two subsets of trees are selected, and their consensus trees appear in the windows on the
right. A consensus tree includes only the branches which are agreed upon by all of the trees in the subset. The
dataset is a collection of optimal evolutionary trees for a group of animals, computed from RNA sequence data.

Figure 2. A layout in which points are colored by
the optimality of the corresponding trees. The dis-
tribution of optimality scores is shown by the ar-
rows on the scale bar to the right, and the black
line represents the mean. The dataset consists
of a regular sample of the trees computed dur-
ing a Markov-Chain Monte-Carlo search for a max-
imum liklihood tree for New World frogs. An anima-
tion mode adds points to the display in the order
in which the corresponding trees were computed,
displaying the progress of the heuristic search pro-
cess.

Figure 3. On the left, a layout given by normal MDS,
using all of the interpoint dissimilarities at each it-
eration. On the right, the same points are arranged
using only the dissimilarities involving a randomly
selected anchor set of 100 out of the 1000 points.
This layout is distorted but can be computed more
quickly.
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