
 
A Hybrid Layout Algorithm for Sub-Quadratic Multidimensional Scaling 

  
 

Alistair Morrison, Greg Ross and Matthew Chalmers 
Department of Computing Science, University of Glasgow 

http://www.dcs.gla.ac.uk 
{morrisaj, gr, matthew}@dcs.gla.ac.uk 

 
 

 

Abstract 
 

 Many clustering and layout techniques have been 
used for structuring and visualising complex data. This 
paper is inspired by a number of such contemporary 
techniques and presents a novel hybrid approach based 
upon stochastic sampling, interpolation and spring 
models.  We use Chalmers’ 1996 O(N2) spring model as 
a benchmark when evaluating our technique, comparing 
layout quality and run times using data sets of synthetic 
and real data. Our algorithm runs in O(N√N) and 
executes significantly faster than Chalmers’ 1996 
algorithm, whilst producing superior layouts.  In 
reducing complexity and run time, we allow the 
visualisation of data sets of previously infeasible size. 
Our results indicate that our method is a solid 
foundation for interactive and visual exploration of 
data. 
 
 
1. Introduction 
 
 The visualisation of multivariate abstract data is a 
fundamental task in many fields. From bioinformatics to 
the financial sector, there is a great deal of interest in 
data that have no inherent mapping to a 2D or 3D space. 
Graphical means of conveying such information are 
subsequently relied upon to provide insight into patterns 
and relationships.  
 A critical requirement of the production of such a 
representation is the means to generate layouts of the 
multivariate data in a lower dimensional space. The 
created visualisation should preserve relationships 
existing within the data and should be comprehensible 
enough to allow the user to perceive such patterns.  

Multidimensional scaling (MDS) is one means of 
mapping a data set onto a smaller number of 
dimensions, so that it may be visualised in a more 
manageable form. The resulting presentation does not 
contain the q-dimensional Cartesian space directly, but 
rather a p-dimensional embedding (where p < q) of N 
objects where high-dimensional inter-object 
relationships are approximated in the low-dimensional 
space.  Our work focuses on creating 2-dimensional 
representations.   
 Although effective in generating layouts, standard 
MDS operates by means of eigenvector analysis of an N 
x N matrix, producing a layout based on a linear 

combination of dimensions. This results in an O(N3) 
procedure for producing layouts. As well as this cubic 
complexity, it should be noted that the computation 
would have to be performed again in its entirety if the 
data set was even slightly altered [4]. Iterative 
techniques overcome these difficulties. It is possible to 
calculate a measure of the quality of a layout: how well 
the visual representation conveys relationships present 
in the initial data. This can be treated as a loss or error 
function, which is to be iteratively minimised to gain an 
optimal arrangement.  In 1996, Chalmers [3] presented 
an iterative MDS algorithm capable of producing a 
representative layout in time proportional to O(N2). 
Additionally, by removing the necessity of creating a 
layout based on a linear combination of dimensions, the 
system is freer to find an optimum layout. 
 We describe work on the combination of several 
iterative techniques that generates a layout in sub-
quadratic time. An example of such a layout, and our 
tool for interacting with it, is shown in Figure 1 (below). 
This paper will not focus on the tool in terms of the 
interaction with the data, but on new layout algorithms. 
The following section describes spring models - the 
general approach to iterative layout algorithms that we 
have been following. A later section outlines the model 
we have been working on, and then we report the results 
of experiments comparing the new technique with 
Chalmers’ 1996 algorithm. As we reflect on these 
results, we find a number of avenues of future research 
open to us. We outline some of these before concluding 
the paper.  
 
2. Spring models 
 
 Spring models or force–directed placement [6] 
techniques are amongst the simplest MDS algorithms. 
Since the goal of MDS is to create a representation that 
preserves relationships within a set of objects, spring 
models determine where a point is laid out based on 
inter–object similarities. A high–dimensional 
dissimilarity is calculated for pairs of objects, and then 
approximated as closely as possible in the lower–
dimensional space of the layout. The latter is usually 
measured as Euclidean distance. 



 

 

Simulations of physical forces are used to drive the 
layout process. Each pair of objects is considered to 
have a spring, the ends of which are attached to the two 
points. The relaxed spring length or ‘rest distance’ is the 
ideal proximity of the two objects, i.e. their high-
dimensional distance or dissimilarity. Similar objects 
too far apart are pulled together, and dissimilar objects 
too close together are pushed apart. The final layout 
produced by the system will reflect the spring system in 
equilibrium. Since a spring is simulated between each 
pair of objects, N2-N springs are considered.  
 The system maintains three properties for each 
object, namely position, velocity and force. At each 
iteration, a force calculation must be performed on each 
object. The magnitude of the force exacted on an object 
i by another object j at any time during the run will be 
proportional to:  

| highDimensionalDistance(i,j) – layoutDistance(i,j) | 
This calculation must be performed for 1 ≤  j ≤ N (j ≠ i) 
in order to produce the overall force acting on i. Object 
i’s force is then used to update its velocity, which in turn 
is used in updating the object’s position in the layout. 
 Note that (N-1) force calculations must be performed 
in each iteration of the spring model for each of N 
objects. The number of iterations required to produce a 

stable layout is commonly proportional to the size of the 
data set, resulting in an algorithm that is O(N3) overall. 
The N(N-1) pairwise interactions at each step are an 
obvious area for improvement. This is analogous to the 
well-known N-body problem in computational physics. 
 
2.1 Chalmers’ 1996 Algorithm 
 
 The technique presented by Chalmers in 1996 
employs caching and stochastic sampling to perform 
each iteration of a spring model in linear time, thus 
permitting the construction of a stable layout in O(N2) 
time overall. 
 This is achieved by reducing the number of force 
calculations performed for each object during an 
iteration. Two distinct sets are used for each object i. 
The first set V is stored as a list of ‘neighbours’ of i, i.e. 
the objects so far found to have low high–dimensional 
distance, and thus expected to be laid out nearby in 2D 
space. The second set, S, is reconstructed in each 
iteration, and contains a random selection of objects not 
already in the neighbour set. Random objects are 
selected and each is tested to determine whether it has a 
high–dimensional distance lower than one or more of 
the current neighbours. If this is the case, the new object 

Figure 1.   An example layout close to completion in our FSMvis visualisation tool is 
shown top right. Other components of the tool offer control over spring model parameters 
(bottom right) and histograms (left) of individual dimensions or attributes allow filtering 
and selection. The layout is of 20000 points sampled from a 3D ‘S’ shape: one of the test 
sets described in Section 5. Points in the layout are coloured according to their X–
coordinates in the original 3D shape. Although the late stages of processing may resolve 
some of the folds and distortions, the set was chosen because it is inherently impossible 
to lay out perfectly in 2D.  



  

is swapped in to the neighbour set. If not, the object is 
added to S. In this manner, the neighbour set becomes 
more representative of the most similar objects to i over 
successive iterations. Once both sets are constructed, 
forces are calculated only between object i and each of 
the members of the two sets.  
 The number of force calculations required during one 
iteration of the algorithm was therefore reduced from 
N(N-1) to N(Vmax + Smax) where Vmax is the 
maximum size of set V and Smax is the maximum size 
of S. As the two set sizes are bounded by constants, the 
computational cost of an iteration is linear with respect 
to N. Evaluation of this technique indicated that layout 
quality is still good despite the reduction in force 
calculations. Indeed, even constant values as low as 5 
and 10 for Vmax and Smax respectively yielded 
favourable results.  
 In terms of computational time, this is currently the 
best model using only springs, and is therefore the 
algorithm that we will use as the basis of comparison 
with new techniques.  It should be noted however, that 
despite the improvements offered by Chalmers, such a 
model could not be practically used on data sets over a 
few thousand objects in size. 
 
3.  Hybrid methods of clustering and layout 
 
 One clustering algorithm may effectively tackle areas 
in which others are weaker. A number of researchers 
have explored combinations of algorithms with a view 
to maximising the benefits of different approaches while 
diminishing the impact of any shortcomings. 
 For example, Kohonen’s self-organising feature map 
(SOM) [9] is an unsupervised learning algorithm 
applied to the classification of information. SOMs 
partition a data set into a grid which can be useful in 
clustering or visualisation applications, but can be quite 
time-consuming in construction.  Su et al [12] claim that 
K-means (a well-known iterative centroid–based 
divisive clustering algorithm [10]) has a lower time 
complexity than a SOM, and therefore employ this to 
gather representative classes or clusters from the data 
set. These representative centroids are then organised 
into a discrete N by N (or more accurately a √k by √k) 
grid and a SOM is used to fine-tune. Su et al. suggest 
that this variant SOM approach is much faster than the 
traditional on-line SOM. 
 Conversely, in another example of a hybrid 
approach, Brodbeck and Girardin [2] used a SOM as the 
initial phase in the creation of a layout.  Although the 
SOM was shown to be the computational bottleneck in 
the previous example, it does exhibit less complexity 
than the spring model.  Consisting of a discrete grid of 
cells, SOMs cannot show as much topological structure 
or detail as a spring model layout, but are often quicker 
to make and scale to larger data sets. 
 It was on the basis of this comparison that Brodbeck 
and Girardin used a SOM to find representative clusters 
or neurons, and then used a spring model to lay out 
these neurons without the distortion imposed by the 

discrete nature of the SOM.   In effect, this process 
produced a set of cluster centroids that were arranged in 
such a way as to preserve high-dimensional 
relationships. Although useful in itself, this layout was 
then used as the template for placement of the entire 
data set via an original interpolation algorithm. 
 The accuracy of the interpolation was largely 
determined by a set of constants used to govern the 
process, with higher values resulting in longer run-times 
but more accurate placements.  Example figures showed 
that layouts could be produced that were strikingly 
similar to those generated by a full spring model.  The 
time taken to achieve this was described as being in the 
order of hours rather than days.  
 
4.  A novel hybrid approach to MDS 
 
 This section outlines an original method of 
generating layouts of high-dimensional data in 2-
dimensional space. We show that through the 
combination of sampling and spring techniques, layout 
construction is possible in sub-quadratic time.   
 Our techniques build on the interpolation strategy of 
Brodbeck and Girardin described in the previous 
section.  As an initial step, however, we take a 
simple√N sample (S) of the data set, rather than running 
a SOM.  A layout of the subset S is then made using 
Chalmers’ spring model [3].  This model will run in 
O(√N.√N), i.e. O(N).  
 A choice of measures exists for determining when to 
halt spring model execution. The two main termination 
criteria we use are the difference in velocity in the 
system between iterations, and the difference in system 
stress. Stress is based on the sum-of-squared errors of 
inter-object distances and may be defined as below [3], 
where dij denotes the desired, high dimensional distance 
between objects i and j, and gij denotes the low–
dimensional or layout distance: 
 
       ( )

∑
∑

<

<
−

ji
ij

ji
ijij

g

gd     

 
 In practice, we terminate this first stage when the 
difference in velocity falls below a scalar threshold. 
 To complete the layout of the entire data set, we use 
a modified version of Brodbeck and Girardin’s original 
interpolation strategy. This interpolation process is 
described below and illustrated in Figure 2. 
 

For each object i 
1. Find the object x, which is of least high-
dimensional distance from i in the original subset S. 
2. Define a circle round x of radius r, where r is 
proportional to the high–dimensional distance 
between the two objects. 
3. By comparing differences between actual layout 
distances and desired distances, determine which 
quadrant of the circle is likely to be the most 
satisfactory for positioning of i. 

2 

Stress =   2 
. 



 

 

4. Perform a binary search on this quadrant to 
determine i’ s best location, ic , and place i there. 
5. Select a random sample s of the original subset (S) 
on which to base the following calculations. 
6. Determine the aggregate force vector between i and 
the members of s. 
7. Add the vector to i’ s position. 
8. Repeat steps 6 and 7 a constant number of times to 
refine the placement. 
 

 We have found that this strategy improves upon 
Brodbeck and Girardin’ s original model with respect to 
position placement.  The quadrant comparison and 
binary search replace the original method of comparing 
a constant number of positions on the circumference.  
We also simplified the vector addition at step 7, as we 
found that the previous strategy of selecting the best 
position from a number of random locations along the 
vector was not reliably better than adding the unscaled 
force vector.   
 We found that both these changes contributed to far 
more accurate object placement, resulting in more 
representative layouts.  The extra time spent performing 
our version of the interpolation was negligible in 
comparison with the saving in post–interpolation spring 
model refinement. 
 As the sizes of all the random samples in Brodbeck 
and Girardin’ s original interpolation strategy were kept 
as constants, the interpolation could be achieved with a 
complexity linear with respect to N.  This is also the 
case with our variant, although an extra routine is 
required (step 1 in the above outline). In Brodbeck and 
Girardin’ s method, the initial SOM stage partitions the 
data set into clusters and the spring model lays out 
cluster centroids.  When interpolating an object i, 
therefore, they did not have to determine which of the 
original subset should be used as the basis of 
calculations (x in Figure 2).  
 We have no information as to which objects belong 
to which ‘clusters’ , so an initial pre-processing stage is 
required. Each of the (N-√N) objects to be interpolated 
is compared to each of the √N samples. A best match for 
all points is consequently calculated in O(N√N) time. 
This pre-processing stage is the dominant factor, 
making our layout O(N√N) overall. 
  As a final stage in our MDS technique, we run a 
constant number of iterations of Chalmers’  spring 
model on the full data set to refine placement.  Although 
our interpolation scheme is very accurate, it is based on 
the initial layout of the √N sample.  It may be the case 
that the sample was not perfectly representative of the 
full data set, or that the spring model has terminated 
within a local minimum.   
 During tests on synthetic data of a known structure, 
we would often see that a section of the expected shape 
was out of place; the layout looked rather like a jigsaw 
puzzle with one piece lying askew.  The individual 
points had interpolated correctly around their ‘parent’  
from the original subset, but this parent had been 
misplaced in the initial layout. We found that 10 of 

these full data set spring model iterations were sufficient 
to considerably lower stress, and to visually slot any 
errant sections into place.  
 As previously discussed, Chalmers’  model is linear 
per iteration.  As a constant number of these iterations 
are run, the complexity of this final phase is also linear 
with respect to N, and our algorithm remains O(N√N) 
overall. 
 

                       
Figure 2.  The placement of the object i 
begins with finding the most similar 
member of the initial layout, x, and then 
finding the best position ic on the 
circumference of the circle of radius r 
around x. The position is then refined by 
iteratively adding aggregate forces from a 
subset of S,  moving the object through 
positions such as if until it reaches its final 
location iz. 



  

5. Experimental results 
 
 In this section we offer a number of comparisons of 
our new layout algorithm with Chalmers’  1996 
algorithm (the current best spring model algorithm with 
respect to computational complexity). We evaluate and 
compare layout models based both on the subjective 
quality when explored in interactive use on–screen and 
on objective quantities such as stress. 

Stress is calculated for these experiments as defined 
in section 4.  It should be noted that this metric is used 
with caution, as stress itself is not necessarily a perfect 
indication of the perceived quality of the final clustering 
layout. While it may serve as a rule of thumb, two 
layouts may have comparable stress but the layouts 
themselves may be very different; lower stress does not 
necessarily mean a better, more interpretable layout in a 
particular context of work.  
 The visualisation tool used to carry out these 
experiments was written in Java SDK 2.1 version 1.3.  
Tests were run on a PC with an Intel Pentium 3 
~731MHz and 256MB RAM running Microsoft 

Windows 2000 Professional. This tool is available for 
download via the homepages of the authors. 
 Two distinct collections of data were selected for the 
experiments.   The first collection was synthetically 

created by sampling points from a 3D structure - a band 
curving in an ‘S’  shape through three dimensions. 
Reconstructing this shape should be possible for a good 
layout algorithm, although, as may be seen from Figure 
1, the ‘S’  structure is forced to fold in on itself in certain 
areas as it is impossible to exactly represent all the inter-
object distances when one less dimension is available.  
By sampling at different frequencies, sets of 10 different 
cardinalities were created from this collection, from 
5000 to 50000 elements.   The second collection used 
was a data set of 13–dimensional financial data 
containing historical performance and volatility 
information on investment funds.  Here 12 sets were 
used, this time from 2000 to 24000. 
 We decided to use a synthetic data set as part of our 
evaluation strategy so that we could compare generated 
layouts and layout processes easily. We were able to 
clearly see the well-recognised structure forming, and 
were able to subjectively measure the quality of layout 
produced. 
 Figures 3 and 4 compare our technique with 
Chalmers’  1996 algorithm in terms of layout time and 

stress.  It can be seen that our hybrid approach is by far 
the quicker: up to three times faster on this data. It is 
also worthy of note that the time taken to run the hybrid 
algorithm appears to be increasingly linearly, even for 

0

200000

400000

600000

800000

1000000

1200000

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Data set size

Ti
m

e 
(m

s)

Hybrid approach

96 spring model

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Data set size

S
tr

es
s

Hybrid approach

96 spring model

0

100000

200000

300000

400000

500000

600000

700000

800000

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000

Data set size

Ti
m

e 
(m

s)

Hybrid approach

96 spring model

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000

Data set size

S
tr

es
s

Hybrid approach

96 spring model

Figure 3. Run time to completion for 
different sizes of  3D ‘S’ data. 

Figure 4. Stress of completed layout 
over different sizes of 3D ‘S’ data. 

Figure 5. Run time to completion for 
different sizes of 13D financial data. 

Figure 6. Stress of completed layout over 
different sizes of 13D financial data. 



 

 

data sets of 50000 elements. This may seem unusual, as 
the O(N√N) ‘parent finding’  step is the most 
computationally complex phase of our method.  In 
practice, however, for the size of data sets tested, the 
O(N) interpolation phase is the most time–consuming 
step. 
 As Figure 4 illustrates, stress is also lower for the 
hybrid model.  This is consistent with what we observed 
from examining the resultant layouts.  The interpolation 
phase resulted in more accurate positioning, and the 
layout looked to be more regularly spaced, resulting in a 
much smoother S-shape.  The solo spring algorithm 
produced a less even structure, characterised by rough 
edges, tight clusters and gaps. 
 Similar reductions in computational time and stress 
over the spring algorithm time can be observed for the 
second data set (see Figures 5 and 6), with the hybrid 
approach again achieving a lower stress in less time.   
 To illustrate the degree of improvement offered by 
our methods over standard MDS techniques, two 
experiments were performed where the full O(N3) 
spring model was run on sets of the 3D ‘S’  data of size 
2000 and 5000 objects.  The smaller of these data sets 
was laid out in 577 seconds (almost 10 minutes) 
compared to 9 seconds for our hybrid method.  The data 
set of 5000 objects took 3642 seconds (over an hour) to 
converge, as compared to the 24 seconds average over 
the 10 runs using our approach. It is also interesting to 
note that stress was much higher in the cubic time 
model (e.g. 0.2) compared to our interpolation model 
that finished with stresses of roughly 0.06. It seems as if 
the velocity threshold was reached before a good layout 
was made, perhaps because the higher number of 
springs made the model much ‘stiffer’  overall.  
 
6. Future work 
 
 Our experiments have suggested a variety of possible 
areas of future work to us. In this section we outline a 
number of these and their possible benefits. 
 
6.1 Hashing 
 
 In the hybrid model that we have presented, the 
bottleneck in terms of computational complexity is the 
assignment of remaining data points to a ‘parent’  
sample. This was a precursor to interpolation using the 
layout of samples. This currently requires O(N¥1� time 
(worst-case) because of a brute–force linear search for a 
parent. This is an example of a nearest-neighbour 
search, and it may be possible to employ a hashing 
function at this stage to reduce complexity.  Several 
attempts have been made to use hashing functions to 
perform similarity searching in high dimensions. Indyk 
et al. proposed a technique of locality-sensitive hashing 
(LSH) [8] to aid the retrieval of a data element’ s 
approximate nearest neighbours. This approach is based 
upon the assumption that the computation required to 
determine the absolute nearest neighbour is often 
unnecessary if a good approximation will suffice and if 

such a value can be found at a fraction of the cost of the 
full search. 
 Using such a method would reduce lookup to sub–
linear time, but a pre–processing phase is required to 
place all the n points into each of l hash tables, which 
would require nl operations. In our favour, this is being 
performed on the sample rather than the full data set, so 
n = ¥1. Also, it has been shown [7] that a constant 
number of hash tables (regardless of data size) can 
result in high probability of finding very close 
neighbours. We therefore would have an O(¥N) pre-
processing stage and a lookup technique bounded by l, a 
constant, resulting in an interpolation algorithm 
requiring (l¥1��+ l(N–¥1� operations i.e. O(N) overall. 
 This is an area that certainly seems worth exploring. 
If our results should indicate that a good approximation 
of a nearest neighbour could be found in sub-linear 
time, the process could possibly be applied to other 
areas. For example, it would perhaps be possible to 
select an object of interest from an unordered space and 
be presented with similar elements from the data set, or 
the techniques could be included within the spring 
model domain to help identify neighbour sets. This 
could lead us to fundamentally rethink the spring model 
algorithm. 
 
6.2 Pivots 
 
 This family of algorithms are also predominantly 
used in nearest neighbour searches and in indexing 
applications. The idea behind them is to select a number 
of points (pivots) in the dataset and store the distance 
from each of these points to every other point in the set. 
Then, using the triangular inequality, a discarding rule 
can be applied so that the number of distance 
calculations to find close objects to the query is reduced. 
 The idea has been described as follows [5]: given a 
point x in the data set and a pivot p, we can store the 
distance between these two points as d(x, p). Now, 
given a query q, we can define the distance to the pivot 
d(q, p). It is now possible to use the triangular inequality 
to discard the distance calculation from the query to a 
point where    |d(q, p) – d(x, p)| > r. Here r is the 
predefined maximum distance from q to which an object 
may be considered close. 
 Again, this could be used to speed up the operation 
of building the neighbour sets used in the force 
calculations, or as a parent-finding operation. 
 
6.3 Dynamically Resizing V+S 
 
 We asserted earlier that it was possible to create good 
layouts using values of 5 and 10 respectively for the 
sizes of the neighbour and random sample sets. To 
minimise iteration time, it is obviously advisable to set 
these values as low as possible. However, we theorise 
that under certain conditions it may be wise to alter the 
size of the sets dynamically during program execution. 
For instance, if an analysis of stress values indicated 
little change over a certain period of iterations, it could 



  

be the case that either the layout has converged to its 
stable state, or that it has become stuck at a locally 
optimal layout. By increasing the size of the set of 
neighbours, each data point will receive greater force 
pulling it towards its rightful position. This will increase 
the probability of the layout breaking out of this state 
and moving towards an overall minimum. 
 
6.4 Proximity Grid 
 
 In a recent paper [11], a grid structure is used to 
determine whether the topological layout of images is 
beneficial to browsing.  The algorithms for creating the 
grid structure are proposed by Basalaj [1].  In essence 
the algorithms have an MDS routine as their basis and 
then transform the continuous layout (inter-object 
distances) into a discrete topology similar to the SOM-
like array in Su et al [12].  It is thought that this discrete 
layout could be implemented in such a way as to use the 
output of our algorithm to create an alternative SOM 
where the topological ordering of the layout is near–
optimal, thus providing a better interface for browsing. 
We propose that where the data set is too large for one 
grid, a series of nested grids could be used (with the top-
level being the layout of cluster centroids) to present the 
user with a semantic zooming function. 
 
7. Conclusion 
 
 This paper has presented a novel method of 
performing multidimensional scaling through a 
combination of sampling, interpolation and spring 
models.  The use of our modified version of Brodbeck 
and Girardin’ s interpolation scheme coupled with an 
original combination of techniques offers sub-quadratic 
run times of O(N√N) and layouts of low stress.  We 
have shown that this improvement in complexity over 
Chalmers’  benchmark 1996 algorithm is reflected in 
significantly faster run times.  In reducing complexity 
and run-time in this manner, we are effectively 
increasing the size of data sets upon which such MDS 
layout techniques may be performed. 
 A significant proportion of this paper is dedicated to 
a number of further avenues for research, partly to show 
that this area of visualisation offers many promising 
lines of work. Techniques such as hashing suggest that 
future spring model algorithms may run in linear time 
overall and be applicable to large and complex data sets, 
but significant development and testing is required 
before we can say whether such potential can be 
realised. 
 
8. Acknowledgements 
 
 We thank Luc Girardin and Dominique Brodbeck for 
openness and help with their algorithm and data sets, 
and Andrew Didsbury for early work on the hybrid 
algorithm. 

 
9. References 
 

1. Basalaj, W., “Proximity Visualisation of Abstract Data”, 
PhD thesis, University of Cambridge Computer 
Laboratory (2000). 

2. Brodbeck, D., L. Girardin, “Combining Topological 
Clustering and Multidimensional Scaling for Visualising 
Large Data Sets”, Unpublished paper (accepted for, but 
not published in, Proc. IEEE Information Visualization 
1998). 

3. Chalmers, M., “A Linear Iteration Time Layout Algorithm 
for Visualising High–Dimensional Data”, Proc IEEE 
Visualization ‘96, San Francisco, pp. 127-132 (1996). 

4. Chatfield, C., A. J. Collins, Introduction to Multivariate 
Analysis, Chapman & Hall, London (1980). 

5. Chávez, E., J. L. Marroquín , G. Navarro, “Fixed Queries 
Array: A Fast and Economical Data Structure for 
Proximity Searching”, Multimedia Tools and 
Applications (MTAP), 14(2), pp. 113-135 (2001). 

6. Fruchterman, T., E. Reingold. “Graph drawing by force-
directed placement”, Software—Practice and Experience, 
21(11), pp. 1129-1164 (1991). 

7. Gionis, A., P Indyk, R., Motwani, “Similarity Search in 
High Dimensions via Hashing”, Proceedings of 25th 
International Conference on Very Large Data Bases, pp. 
518-529 (1999). 

8. Indyk, P., R. Motwani, “Approximate Nearest Neighbors – 
Towards Removing the Curse of Dimensionality”, 
Proceedings of SIGMOD ’ 98 , pp. 307-318 (1998). 

9. Kohonen, T., S. Kaski, K. Lagus, J. Salojärvi, J. Honkela, 
V. Paatero, A. Saarela “ Self-organization of a Massive 
Document Collection” , IEEE Transactions on Neural 
Networks, 11(3),  pp. 574-585, (2000). 

10.  MacQueen, J., “ Some Methods for Classification and 
Analysis of Multivariate Observations” , Proc. 5th 
Berkeley Symposium on Mathematics and Probability, 
pp. 281-297 (1967). 

11.  Rodden, K., W. Basalaj, D. Sinclair, K. Wood, “ Does 
Organisation by Similarity Assist Image Browsing?” , 
Proceedings of the SIGCHI on Human Factors in 
Computing Systems, pp. 190–197 (2001). 

 12.  Su, M.-C., H.-T. Chang, “ Fast Self-Organizing Feature 
Map Algorithm” , IEEE Transactions on Neural 
Networks, Vol. 11, No. 3, p. 721 (2000). 


