
Improving Hybrid MDS with Pivot-Based Searching

Alistair Morrison∗ Matthew Chalmers†

Department of Computing Science,

University of Glasgow,

United Kingdom

Abstract

An algorithm is presented for the visualisation of multidi-
mensional abstract data, building on a hybrid model intro-
duced at InfoVis 2002. The most computationally complex
stage of the original model involved performing a nearest-
neighbour search for every data item. The complexity of
this phase has been reduced by treating all high-dimensional
relationships as a set of discretised distances to a constant
number of randomly selected pivot items. In improving this
computational bottleneck, the complexity is reduced from

O(N
√

N) to O(N
5

4). As well as documenting this improve-
ment, the paper describes evaluation with a data set of
108000 14-dimensional items; a considerable increase on the
size of data previously tested. Results illustrate that the re-
duction in complexity is reflected in significantly improved
run times and that no negative impact is made upon the
quality of layout produced.

CR Categories: F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms and Problems—
geometrical problems and computations, routing and layout,
sorting and searching; H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval—clustering

General Terms: Algorithms, performance

Keywords: Multidimensional scaling, MDS, spring mod-
els, hybrid algorithms, pivots, near-neighbour search, force
directed placement

1 Introduction

At the heart of many techniques for information visualisation
is the requirement to construct a two-dimensional represen-
tation of a multidimensional abstract data set (recently, for
example [Andrews et al. 2002],[Rodden et al. 2001],[Amenta
and Klinger 2002]). As these data sets will often have no in-
herent two-dimensional mapping, an optimal configuration
of objects is sought that preserves the intrinsic structure
of the data. As such, data sets are often treated as prox-
imity data and considered in terms of inter-object similar-

∗email:morrisaj@dcs.gla.ac.uk
†email:matthew@dcs.gla.ac.uk

ities. Data are positioned so that objects’ relative prox-
imities in the created layout represent as well as possible
high-dimensional relationships.

A set of proximity data may be considered as a com-
plete graph, with each object corresponding to a node and
each inter-object distance represented as a weighted edge.
Eigenvector-based techniques such as the ACE algorithm
[Koren et al. 2002] can be very efficient at positioning nodes
in graphs of low connectivity. Cases involving very dense or
fully connected graphs, however, are a distinct problem and
so we examine alternatives to these matrix methods of node
placement.

Spring models (see eg [Fruchterman and Reingold 1991],
[Chalmers 1996]) are one possible means of constructing such
an object layout. A heuristic algorithm emulating a set of
mechanical springs, a spring model updates object positions
iteratively in an attempt to minimise a loss function based
on the preservation of high-dimensional distances.

In InfoVis 2002, an algorithm was presented that com-
bined sampling and spring model phases with a novel in-
terpolation procedure to create representative layouts of
multi-dimensional data in subquadratic time [Morrison et al.
2002b] (and extended in [Morrison et al. 2003]). It was
shown that the algorithm executed significantly faster than
the previous best spring model algorithm. A brief outline of
the algorithm is provided in figure 1 as a summary, although
readers are directed to the original paper for a more detailed
description. The computational complexity of each stage is
given in square brackets.

It is apparent from figure 1 that the interpolation stage
has the highest complexity, making the model O(N

√

N)
overall. Specifically, the parent-finding phase of interpola-
tion is the bottleneck of the model. This paper focuses on
this stage of the model. A novel method of parent-finding is
introduced that reduces the complexity of the hybrid model

to O(N
5

4). In addition to documenting and evaluating this
algorithmic improvement, this paper also provides results of
experiments on a data set of 108000 14-dimensional objects;
a significant increase over the size of data previously tested.

The following section explains in more depth the purpose
of the parent-finding phase of the algorithm. The original
and improved strategies are presented, along with an analy-
sis of their respective computational complexities. An eval-
uation section follows, which sees the new parent-finding so-
lution being compared to the brute force approach used in
the original model and evaluated in terms of run time, com-
plexity and the accuracy of the parents found. Finally, the
impact the improved parent-finding routine has on the full
algorithm is assessed through a series of comparisons be-
tween the original and enhanced hybrid models.

To form a layout of N multivariate objects :

1. Select
√

N subset of objects [O(
√

N)]

2. Create 2D layout of subset using Chalmers’
[Chalmers 1996] linear per iteration spring model
[O(N)]

3. Interpolate remaining objects onto the layout
[O(N

√

N)]

(a) Find parent in sample for each remaining

object [O(N
√

N)]

(b) Use high-dimensional distances to a N
1

4

sample (of the sample) to position remain-
ing objects [O(N)]

4. Fine-tune layout with a constant number of iter-
ations of Chalmers’ spring model run on the full
data set [O(N)]

Figure 1: 2002 Algorithm. Complexities are given in square
brackets.

2 Reducing Complexity With Pivots

This paper describes a faster means of achieving the first
stage of interpolation (step 3(a) in figure 1). The spring

model run on the original
√

N sample has completed, and the
remaining N −

√

N objects in the data set must be mapped
onto this layout. The first stage of this process is the as-
signment of each remaining object to a ‘parent’ in the sam-
ple layout. The interpolation of an object begins with the
creation of a circle around its parent, with radius propor-
tional to the high-dimensional distance between object and
parent. From the description of the technique in [Morrison
et al. 2002b] it is clear that the accuracy of placement will
to a large extent be governed by the size of this circle.

The similarity in high-dimensional space between an ob-
ject and its parent will therefore determine how close the
object is placed to its ideal location.

2.1 Parent Selection: A Near-Neighbour Search

This parent-finding stage is an example of near-neighbour
search. A near-neighbour from the

√

N sample layout is
sought for every point to be placed. We desire the best
possible approximation to the point’s closest neighbour in
order to maximise the accuracy of the point’s placement.

The problem of near-neighbour searching was first studied
in the 1960s [Minsky and Papert 1969]. Although research
into this area continued in the following years, little im-
provement has been made, especially when dealing with sets
of high dimensionality [Indyk and Motwani 1998]. [Chávez
et al. 2001b] survey a number of efficient search algorithms
and organise them into a taxonomy under a common unify-
ing model.

2.1.1 Brute force approach

In the original hybrid algorithm, a brute force approach was
adopted in finding parents whereby a linear search was exe-
cuted on the subset of objects making up the original sample

layout. A distance calculation was performed between the
object to be interpolated and every item in the sample lay-
out, with the item yielding the least distance chosen as the
parent.

Pseudocode for this brute force approach can be written
as follows.

For all N −

√

N yet to be laid out
For all

√

N in sample
Perform distance calculation

The resultant complexity can be calculated as

(N −

√

N)
√

ND = N
√

ND − ND = O(N
3

2 D)
(where D represents a high-dimensional distance calcula-

tion).

2.1.2 Improving upon brute force through random sam-
pling

A saving in computation may be achieved by selecting a sam-
ple of the original subset on which to base parent searches.
A linear search is still required, but this search executes on
a far smaller set of objects than the previous method. It is
hoped that a representative sample may be selected, so that
the quality of parent found will not be greatly affected by
this shortcut. Assuming a sub-subset of

√

samplesize (size

N
1

4), this would execute as:

For all N −

√

N yet to be laid out

For all N
1

4 in sample of sample
Perform distance calculation

(N −

√

N)N
1

4 D = N
5

4 D − N
3

4 D = O(N
5

4 D)
This demonstrates a significant saving over the previous

brute-force method.
It should be noted that, although quicker, this approach

will not always select the best possible object to act as the
parent. Consequently, object placement during interpola-
tion will be less accurate than that achieved through use
of the full brute force approach. It is for this reason that
the more computationally complex brute force model was
implemented in the original hybrid model.

2.1.3 Pivot-based parent-finding

This section describes a novel routine whereby the complex-
ity of parent-finding is reduced without impacting on the
quality of parent selected.

This near-neighbour search algorithm is based upon the
pivot-based method of dimensional reduction. First used
in Burkhard-Keller Trees [Burkhard and Keller 1973] as a
means of hierarchical binary decomposition of a vector space,
pivots are now being used as the basis for techniques such as
the Fixed Queries Array [Chávez et al. 2001a] for proximity
searching.

Central to this method of near-neighbour search is the
idea that preprocessing a data set can reduce the work nec-
essary at query time, and hopefully reduce the number of op-
erations required overall. To preprocess, we select k points
from within the data set to act as ‘pivots’. Pivots are treated
as having a certain number of buckets, each representing dif-
ferent ranges of distance from the pivot (as shown in figure
2). The rest of the data set may be stored in these buckets
as determined by proximity to the pivot. In doing so, the
data dimensionality may be reduced to k through the repre-
sentation of each point only as a set of discretised distances
from the pivots.

 5431 2

Figure 2: Diagram of one pivot object (represented by the
shaded point). A pivot has a certain amount of buckets,
shown as numbered discs between the dotted circles. Each
remaining data item is stored in one bucket, as determined
by its proximity to the pivot.

For our purposes, we select a certain number of objects
from the

√

N sample layout (as selected in step 1 of figure 1)
to act as pivots. Preprocessing involves assigning each non-
pivot in this

√

N sample to a bucket for each of k pivots.
Thereafter, when we wish to find an object’s parent, a dis-

tance calculation is performed between the object and each
of the pivots. From this distance calculation, the appropri-
ate bucket for each pivot is determined, and the contents
of each of these buckets are searched for the overall nearest
neighbour.

In these calculations, we assume a constant number of
pivots, k, and that the number of buckets chosen for each

pivot is
√

samplesize = N
1

4 .

Preprocessing:

For all
√

N in sample
For constant number of pivots

Perform distance calculation

Query:

For p in 1..constant number of pivots
Distance calculation // determine bucket for q in p
// Find closest point in this bucket
For i in 1..number of points in bucket

Perform distance calculation

The complexity of the preprocessing stage is simply
√

NkD = O(
√

ND).
When performing a query, we have the following average

case complexity (the average number of points in a bucket

is represented by sampleSize

numBuckets
).

k
√

N

N
1

4

D = O(N
1

4 D)

The query will be performed for all N −

√

N points not
yet placed, so will be

(N −

√

N)N
1

4 D = O(N
5

4 D)

Overall, then, complexity will be

O(
√

ND) + O(N
5

4 D) = O(N
5

4 D)
Again, this is a considerable saving in complexity over

brute-force; equivalent in fact to the previously described
sampling method.

Figure 3: Completed layout of audio data using hybrid MDS
algorithm. Each point represents one second of sound. The
clusters labelled A and B correspond to speech, while C rep-
resents music.

It is worth emphasising that this analysis is based upon
average-case performance. A worst-case situation would
arise if all the objects were to fall into the same bucket for
all pivots. This situation could conceivably arise if a data
set consisted of a very tight cluster and a number of remote
outlier objects, with the pivots being chosen from the out-
liers. This is very unlikely as we would expect the sampling
used in pivot selection to reflect object distribution. In this
case, however, the entire subset would have to be searched

and the complexity would therefore return to O(N
3

2 D).
It can be seen, then, that the worst-case complexity of

this method is as good as the previously used brute-force
approach. Moreover, this worst-case is a remote possibility
and we expect significantly better performance in the grand
majority of instances.

3 Experimental comparison of parent-

finding methods

In this section, the three methods of parent-finding outlined
in section 2.1 are evaluated experimentally: brute force, ran-
dom sampling, and pivot-based. Execution times for each
method are graphed, as are measures of layout quality as
determined via a metric described in section 3.3. Finally,
the impact of the choice of parent-finding method on the
hybrid model is explored by comparing run times with the
non-pivot-enhanced model.

Evaluation took the form of a series of test runs of each al-
gorithm on a set of audio data. The data were sampled from
British television broadcasts during the 2002 FIFA World
Cup as part of an investigation into the application of audio-
based event detection to sporting events [Baillie and Jose
2003]. 108000 seconds of audio were recorded, with each
second treated as an object to be visualised.

A completed layout of the data set is shown in figure 3.
Two main clusters are apparent in the data: AB and C. AB
has two subclusters, labelled A and B in the figure. Through
isolating individual objects and listening to the associated
audio clips, we can deduce that the left-most of the two visi-
ble structures represents speech, with the section labelled A
corresponding to in-match commentary and section B com-
prising studio-based pre or post-match analysis. Section C
represents music occurring during the broadcasts.

Discussions were conducted with the domain experts as to
how the audio data should be processed for use in MDS ex-
periments. It was decided that the experiment set should be
generated using Linear Predictive Coding (see [Rabiner and

Juang 1993] for an introduction) to create a 14-dimensional
data set, with each dimension representing a weighted cep-
stral coefficient.

3.1 Run times for parent-finding

It has been shown that both random sampling and pivot-
based selection are of lower computational complexity than
the brute force approach. Figure 4 further illustrates that
the distinction in complexity is reflected in run times.

Figure 4: Time taken to complete each of three methods of
parent-finding on 14-dimensional data sets of sizes 10800-
108000 objects. The graph displays mean results of ten runs
performed on each size using each model.

The audio data has been sampled to generate ten sets
ranging in size between 10800 and 108000 objects. The
graph shows results averaged over ten runs of each model
using each size.

As predicted from complexity calculations, the brute force
method is the most time-consuming for all data sizes. It is
also apparent that the sampling method is the quicker of
the two low-complexity models. However, as the following
sections illustrate, this saving in time comes at the expense
of accuracy of results.

3.2 Accuracy of parent found

A simple test was conducted to determine the effectiveness of
the parent-finding algorithms. High-dimensional distances
were calculated between every two objects in a data set then
ordered such that, for every object, a list was constructed
ordering every other object in terms of proximity. That is,
for element x, the first item in the list would be x’s nearest
neighbour in the full set, the second item the second closest
to x and so on.

Once this list had been created, a parent-finding algorithm
was run for the N−

√

N objects to be interpolated. For each
of these objects, the quality of the parent found was assessed
by its proximity to the head of the list of nearest neighbours.
The results were averaged over all N −

√

N searches.
The results, taken from a set of 1000 items and averaged

over 5 runs for each method, are shown in the table below. A
further case is shown whereby a completely random member
of the subset is chosen in each case to be the parent.

We can see from the table that although the pivot-based
method of parent-finding has considerably lower complex-
ity than the brute force approach, the quality of parent

Method Rank
Brute Force 32

Sample 185
Pivots 35

Random 488

Table 1: Accuracy of parents found, as determined by rank
in list of nearest neighbours

found is comparable. It is also worthy of note that the sam-
pling method may have been the quickest in figure 4, but
it has produced significantly less accurate parents than its
two competitor techniques. The forthcoming sections dis-
cuss the trade-off between accuracy and run time for the
parent-finding stage.

Obviously, for any given interpolation object, it is unlikely
that the ideal neighbour would be in the

√

N sample. As
the brute force model is guaranteed to find the best possible
neighbour from the sample, we see that the best possible re-
sults we can hope for are roughly the

√

N ’th best neighbour.

3.2.1 Cluster centroids as parents

As a point of interest, if the interpolation phase is based
on a layout arising from k-means clustering [MacQueen
1967],[Morrison et al. 2002a] rather than random sampling,

we can expect to do rather better than finding the
√

N ’th
best neighbour. Consider figure 5, where the sample layout
of cluster centroids is uniformly spaced. In terms of distance
from a parent, the worst case we could imagine is a point on
the boundary of two cluster regions (point A). If we assume
that the data are evenly distributed (this will obviously not
be the case in an average data set, but serves to illustrate
this example), with

√

N points in each of the
√

N clusters,
we would expect a point such as A to be the furthest point
from that parent. Hence, the parent for point A would be
the

√

N ’th nearest point to A. Similarly, a point such as B
would be the nearest neighbour to its parent.

Cluster centroid

Cluster

Data element

Key:

A

B

cluster radius

Figure 5: 2-dimensional layout of an approximately evenly-
distributed data set with imposed clustering. Point A il-
lustrates a worst-case example of distance from the parent,
point B a best case.

On average (again under conditions of even distribution),

one would expect a parent to be the 1

2

√

N ’th nearest neigh-
bour to a query point. This is indeed what was discovered,
as the brute force method applied to a layout of k-means
centroids yields an average result of 16th nearest neighbour
for a 1000 element data set.

3.3 Post-interpolation stress

We have outlined three methods of parent-finding and their
effectiveness at selecting a near-neighbour. It is now nec-
essary to assess the impact of choice of parent on layout
quality. The quality of a layout is calculated via the metric
of mechanical stress outlined in equation 1, where lij repre-
sents current layout distance between objects i and j and hij

represents high-dimensional distance. A lower stress value
indicates a better layout.

Stress =

∑
i<j

(hij − lij)
2

∑
i<j

l2ij
(1)

For each of the parent-finding methods, we calculate the
stress after the completion of the interpolation phase, again
averaged over ten runs of each size of the audio data. As may
be seen from figure 6, stress levels may be somewhat erratic.
This is due to the interpolation being very dependent on the
initial random sampling and spring model phases.

Despite the fluctuations, we can see that both the brute
force and pivot-based methods exhibit lower stress than the
sampling approach. As explained earlier, the brute force
method will provide the lowest stress that we could expect
for any given run, so it is a side-effect of sampling that we
see the pivot-based method lower on some sizes. This does,
however, serve to illustrate that the two methods yield simi-
lar stress levels, and continue to do so as data size increases.

Figure 6: Post-interpolation stress levels across different
data sizes with 3 different parent-finders.

3.4 Effect on full hybrid model

It has been established that the pivot-based method of
parent-finding reduces complexity and run times from the
brute force approach, while still finding accurate neighbours
and therefore creating layouts of low stress. Finally in this
section, an investigation is conducted into the effect of the
choice of parent-finding model on the full hybrid model.

The stress present in the layout after interpolation was
given in section 3.3. We aim to reduce this stress in the
final stage of our visualisation technique, where a linear per
iteration spring model is run over the entire data set (step 4
in figure 1). To attempt to find an optimal layout, the spring
model may be set to terminate when the average velocity
drops below a specified threshold; an effect we expect when
the layout has converged to a state of low stress.

We would predict that a layout with a higher stress level
after interpolation would require more iterations of this final

Figure 7: Total times for layout generation for each of the
parent-finding methods.

spring model until termination and therefore have longer run
times overall.

Figure 7 (detailing experiments averaged over ten runs
on the same audio data) illustrates the total times for the
complete visualisation process. Here we see that the pivot-
enhanced model is clearly the fastest of the three. The model
using random sampling was, as expected, by far the slowest,
due to the extra iterations of the spring model required to
lower its high stress. From this, it can be concluded that
it is worth investing the extra effort in the parent-finding
phase. Although techniques such as brute force and pivots
take more time at this stage, the interpolation is performed
more accurately, and, as such, the required number of final
iterations is reduced, resulting in a saving of time overall.

The pivot-based model is the quickest overall due to the
low complexity and accuracy of its parent-finding approach.

As the model has been set to terminate automatically
when the layout approaches stability, layout qualities are
expected to be constant across all variants of parent-finding
procedure. This is indeed the case, with average stress values
of 0.21452, 0.21445 and 0.21459 for the brute force, pivots
and sampling models respectively.

3.5 The relationship between complexity and run

times

It is worth emphasising that although the parent-finding
stage has been shown to be the computational bottleneck
in the hybrid model, it does not necessarily follow that it is
the most time-consuming stage.

Figure 8 illustrates this point. The horizontal bars rep-
resent the time spent performing interpolation. Each bar
is divided to show the proportions of time spent in parent-
finding (left) and object placement (right). It is apparent
that the object placement stage is the most time-consuming
of the model. Although running in linear time, the con-
stants selected are sufficiently large to result in longer run

times than the O(N
5

4) parent-finding stage for data sets of
this size. It may also be seen, however, that as the data
size increases, the proportion of time spent on parent-finding
also rises. As the size of data set continues to increase, it is
likely that there will come a point where the more computa-
tionally complex stage overtakes the linear routine. We are
beginning some initial test runs with larger sets of data to
determine where this crossover occurs.

Figure 8: Horizontal bars are divided to represent the pro-
portion of time spent on parent-finding and object placement
during interpolation.

4 Conclusions and Future Work

This paper has examined the most computationally expen-
sive phase of the hybrid MDS algorithm of [Morrison et al.
2002b], namely parent-finding. We proposed a novel pivot-
based technique for parent-finding, and compared it against
both random sampling and the original brute force method.
Algorithmic analysis shows that the technique lowers the

computational complexity of the 2002 algorithm: O(N
5

4)

rather than O(N
3

2).

We also carried out some pilot experiments, involving
larger data sets than we had previously been able to work
with, which confirmed that the technique offers lower run
times than its predecessor and produces good quality lay-
outs in terms of stress. Our results also suggest that parent-
finding becomes a more time-consuming part of the layout
process as data sets get larger, and so the benefits of our
algorithm should also increase with larger data sets.

Although our algorithm has been shown to perform well
on the data described in this paper, we aim to further assess
performance on data sets of varying size, dimensionality and
distribution. In addition, it is our intention to perform com-
parisons between our parent-finding routine and alternative
near-neighbour algorithms.

Overall, we have tried to make the most of the hybrid
approach to algorithmic design, examining and profiling not
just the overall algorithm but its components. Since large
data sets with complex interrelationships are of increasing
concern to scientists in many domains, we suggest that this
kind of algorithm and this kind of algorithmic development
can make a useful contribution to large-scale information
visualisation.

5 Acknowledgements

We thank Mark Baillie for providing data sets and sharing
the results of his analysis and Greg Ross for assistance and
discussion during algorithmic development.

We also thank the anonymous reviewers for taking the
time to provide us with history and insight into classical
MDS. Time and space constraints prevent us from further
analysing this field here, although we intend to explore more
of this literature in future work.

References

Amenta, N., and Klinger, J. 2002. Visualizing sets of evolu-
tionary trees. In Proceedings InfoVis 2002, IEEE Computer
Society, IEEE, 71–74.

Andrews, K., Kienreich, W., Sabol, V., Becker, J.,

Droschl, G., Kappe, F., Granitzer, M., Auer, P., and

Tochtermann, K. 2002. The infosky visual explorer: Ex-
ploiting hierarchical structure and document similarities. In-
formation Visualization 1, 3/4, 166–181.

Baillie, M., and Jose, J. M., 2003. Audio-based event detection
for sports video. To appear in Proceedings of the International
Conference of Image and Video Retrieval (CIVR 2003).

Burkhard, W. A., and Keller, R. M. 1973. Some approaches
to best-match file searching. Communications of the ACM 16,
4, 230–236.

Chávez, E., Marroqúin, J. L., and Navarro, G. 2001. Fixed
queries array: A fast and economical data structure for prox-
imity searching. Multimedia Tools and Applications 14, 2, 113–
135.

Chávez, E., Navarro, G., Baeza-Yates, R., and Marroqúin,

J. L. 2001. Searching in metric spaces. ACM Computing
Surveys 33, 3, 273–321.

Chalmers, M. 1996. A linear iteration time layout algorithm
for visualising high-dimensional data. In Proceedings of IEEE
Visualization 1996, IEEE Computer Society Press, IEEE, 127–
132.

Fruchterman, T. M. J., and Reingold, E. M. 1991. Graph
drawing by force-directed placement. Software - Practice and
Experience 21, 11, 1129–1164.

Indyk, P., and Motwani, R. 1998. Approximate nearest neigh-
bors: towards removing the curse of dimensionality. In Pro-
ceedings of the thirtieth annual ACM symposium on Theory of
computing, ACM Press, 604–613.

Koren, Y., Carmel, L., and Harel, D. 2002. Ace: A fast
multiscale eigenvectors computation for drawing huge graphs.
In Proceedings InfoVis 2002, IEEE Computer Society, IEEE,
137–144.

MacQueen, J. 1967. Some methods for classification and analysis
of multivariate observations. In Proceedings of the Fifth Berke-
ley Symposium on Mathematics and Probability, University of
California Press, Berkeley, 281–297.

Minsky, M., and Papert, S. 1969. Perceptrons. MIT Press,
Cambridge.

Morrison, A., Ross, G., and Chalmers, M. 2002. Combining
and comparing clustering and layout algorithms. Tech. Rep.
148, Department of Computing Science, University of Glasgow,
November.

Morrison, A., Ross, G., and Chalmers, M. 2002. A hybrid
layout algorithm for sub-quadratic multidimensional scaling.
In Proceedings InfoVis 2002, IEEE Computer Society, IEEE,
152–158.

Morrison, A., Ross, G., and Chalmers, M. 2003. Fast multidi-
mensional scaling through sampling, springs and interpolation.
Information Visualization 2, 1, 68–77.

Rabiner, L., and Juang, B.-H. 1993. Fundamentals of Speech
Recognition. Prentice-Hall, Inc.

Rodden, K., Basalaj, W., Sinclair, D., and Wood, K. 2001.
Does organisation by similarity assist image browsing? In
Proceedings of the SIGCHI conference on Human Factors in
Computing Systems, ACM Press, 190–197.

