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ABSTRACT

We present a method for visual summary of bilateral conflict struc-
tures embodied in event data. Such data consists of actors linked by
time-stamped events, and may be extracted from various sources
such as news reports and dossiers. When analyzing political events,
it is of particular importance to be able to recognize conflicts and
actors involved in them. By projecting actors into a conflict space,
we are able to highlight the main opponents in a series of tens of
thousands of events, and provide a graphic overview of the conflict
structure. Moreover, our method allows for smooth animation of
the dynamics of a conflict.

Keywords: information visualization, text mining, event analysis,
time-dependent visualization

1 INTRODUCTION

Event data are among the most widely used indicators in quanti-
tative international relations research. While such data can be ex-
tracted efficiently from news reports and dossiers, there is a need to
automatically process the obtained series of events. Even when ag-
gregating actors (like different people representing the same organi-
zation) and focusing on specific global regions (like the Balkans or
the Persian Gulf) and periods of time (like 10 or 20 years) there are
typically several hundreds of actors engaged in tens of thousands of
events.

Of special interest in social and political event analysis is the
identification of conflicts and the division of parties engaged into
opposing sides. While the ultimate goal is conflict prediction, a first
step consists in the detection and analysis of historical or ongoing
conflicts. This is particularly difficult if the parties involved are not,
or only partially, known to the analyst.

Previous work is overwhelmingly statistical (see, e.g., [10]), but
there is a growing interest in combining event data analysis with
techniques from network analysis (see, e.g., [9]. The idea is that
the macroscopic structure emerging from bilateral events provides
additional information that can be exploited using network-analytic
techniques.

We present a method that, given a list of events, constructs a
sequence of networks which in turn is converted into an animated
scatterplot. (Scatterplots are widely used in statistical graphics, see,
e. g., [2, 3].) The resulting video summarizes graphically the dy-
namics of major conflicts over a potentially long period of time.
From this video, an analyst can recognize or discover the major ac-
tors engaged in conflict during certain periods of time. The observer
is also enabled to detect time-points where the conflict structure
changes significantly. Since our animation is smooth by design, it
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can be recognized easily which actors enter or leave a conflict dur-
ing transitions.

Thus, usage scenarios for our method include the exploration
of unfamiliar political situations, identification of crucial turning
points, and briefing of decision makers. As a by-product, we also
experienced that the video can draw attention to inconsistencies in
the input data.

This paper is organized as follows. In Sect. 2 we provide back-
ground information on the type of data that is being analyzed. Our
method for visualizing the conflict structure embodied in a set of
events is introduced in Sect. 3 and extended to smooth animation
of event series in Sect. 4. The utility of our method is illustrated
on event data from the Balkans and the Persian Gulf in Sect. 5. We
conclude with a discussion of open problems and future work.

2 EVENT DATA

Our method is applicable to event data given as a series of pairwise
interactions. Although it is independent of the data format, we will
focus on a particular coding scheme to make the exposition more
concrete.

The Kansas Event Data System (KEDS) [8] is a software tool
that automatically extracts events from text. In Sect. 5 we will use
KEDS data for the Persian Gulf and Balkans regions.

Formally, an event series is a sequence a1, . . . ,ak of tuples ai =
(ti,si,oi,ci), where

• ti is the time-stamp (date),

• si is the subject (source),

• oi is the object (target), and

• ci is the code (type)

of event ai. Dates are given by the day and actors may be ag-
gregated. We say that actors si and oi are involved in event ai.
Events are classified using to the World Event/Interaction Survey
(WEIS) codes [7]. Each event is assigned Goldstein weights [4]
−10≤ω(ai) = ω(ci)≤ 10, which are psychometrically determined
scores depending only on the type of event. A positive (negative)
weight indicates the degree of cooperation (hostility) of the corre-
sponding type of event.

The following excerpt indicates the coding of actors in the
Balkans data.

NATO_OFFICIAL [NAT]
NATO-LED_STABILIZATION_FORCE_IN_BOSNIA [NAT]
BELGRADE [YUG <920427] [SER]
MILOSEVIC [SERGOV 890101-971230]

[FRYGOV 971231-001005]
[SERSM >001006]

Several tokens may be interpreted as referring to the same aggre-
gated actor. In the above excerpt, NATO (NAT) is represented by
(among others) potentially unnamed officials and SFOR. On the
other hand, the same token may represent different actors at dif-
ferent times. As its capital, Belgrade is understood to represent
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Yugoslavia until the end of April 1992, but after that it is coded as
referring to Serbia. Slobodan Milosevic switches roles more often,
representing the Serbian government until December 1997, the gov-
ernment of the Federal Republic of Yugoslavia until October 2000,
and after being captured only himself.

Given an actor coding, textual statements are parsed into events
like the following, all dated 22 June 1991.

910622 SLO YUG 198 (WITHDRAW FROM)
910622 USA ALB 032 (VISIT)
910622 ALB USA 033 (RECEIVE)
910622 YUGCRO SLO 031 (MEET)
910622 SLO YUGCRO 031 (MEET)

The first event is an action initiated by Slovenia (active) and di-
rected at Yugoslavia (passive). In addition to the event code, a tex-
tual description of the type of event is given in parentheses. The
next two lines show how asymmetric events are coded when both
actors are active (receiving a visitor is a cooperative action), and
the last two lines serve to illustrate that symmetric events are split
in two directed ones.

Examples for weights associated with event types are the follow-
ing.

072 EXTEND MIL AID 8.3
093 ASK MATERIAL AID 3.4
120 ACCUSE -2.0
223 MIL ENGAGEMENT -10.0

Apparently, extending military aid is a highly cooperative action,
whereas accusations are mildly and military engagement is ex-
tremely hostile. To analyze conflict, we will only make use of neg-
atively weighted events.

To detect emergent patterns and utilize indirect relations, we
transform the data into a network. Any set A = {a1, . . . ,ak} of
events gives rise to an undirected interaction graph G(A) = (V,E)
in the following way. Every actor involved in any event consti-
tutes a vertex, i.e. V =

⋃k
i=1{si,oi}. There is an (undirected) edge

e = {u,v} if there is an event involving both u and v, and we as-
sign a weight ω(e) that is minus the sum of all negative weights on
events involving these two actors. Figure 1 shows an example of a
conflict graph drawn by standard force-directed layout techniques
[6]. The complexity of Fig. 1 already indicates the insufficiency
of general-purpose graphdrawing techniques and the need for other
analysis and visualization methods that are more appropriate for
this application. In Sect. 3 we develop a method that is able to ex-
tract the dominant conflict structure, filters out minor actors, and
finally produces a less complex image that is easy to understand.

It is unlikely that a focused data set yields an interaction graph
with more than one significant non-trivial connected component.
However, since connected components can be analyzed separately,
we may safely assume that all interaction graphs are connected,
anyway.

3 VISUALIZING BILATERAL CONFLICTS

In this section we focus on extracting the structure of conflicts from
static event data, i.e. we ignore time-stamps and consider the data
to be given as a set (rather than a sequence). We will use the cor-
responding interaction graph to determine the main opposition of
actors, where the assumption is that conflicts are predominantly bi-
lateral. The static methods that are developed in this section will be
augmented to include dynamics in Sect. 4.

A straightforward attempt to determine the two opponent groups
of a bilateral conflict is to try to divide the actor set V into two
disjoint subsets U and W , such that for each edge e = {u,w} we
have u∈U and w∈W , i.e. conflicts are only between and not within

Figure 1: Hostile interaction in the Balkans from 1991 until 1997.
Saturation of the edges is proportional to cumulative hostility
weights.

the two groups. See Fig. 2 for an example partition of a small subset
of actors in the Balkans according to events of 1991.

Figure 2: The subgraph of hostile interaction induced by selected
Balkan actors during 1991 constitutes a bipartite conflict structure.

The existence of a perfect partition into such sets corresponds
to the graph being bipartite and is thus easy to test for. However,
larger data sets will seldomly result in purely bipartite structures. In
fact, our experiments provide evidence that the interaction graphs
are far from bipartite for almost all reasonable selections of actors
and periods of time. Thus, in order to make the idea applicable to
empirical data, the concept of a bipartition must be relaxed.

A possible relaxation is to determine a partition V = U ∪W such
that the sum of edge weights between the two sets is maximized (in
a perfect bipartition, this sum is over all edges), or, equivalently, the
sum of edge weights inside of the two sets is minimized. However,
this is the well-known MAXCUT problem, which is NP-hard. We
make use of a different relaxation that poses no such algorithmic
problems and filters out unimportant actors on the fly.

3.1 Structural Projections

To arrive at a relaxed bipartition, we employ the recently introduced
concept of structural projections (and the closely related structural
similarities) [1], which have a sound theoretical basis and lead to an
efficient algorithm that is easy to implement. We first give an intu-
ition of structural projections, and then introduce them formally.

Instead of mapping actors to one class or the other, structural
projections yield real-valued degrees of membership in classes. For
a relaxed bipartition, actors are projected into a two-dimensional
conflict space such that actors mapped mostly into one dimension
have major conflicts with actors mapped mostly into the other di-
mension, but only minor conflicts with actors mapped into their
own dimension.



Figure 3: Structural projection of hostile Balkan events during 1991.
The dominant conflicts are exactly those of Fig. 2.

An example of such a real-valued projection is shown in Fig. 3.
The figure shows the conflict structure of all actors involved in the
Balkans in the mid of 1991. The five most important actors are ex-
actly those of Fig. 2. Note that the degree of membership assigned
to actors varies. E.g., Serbia (SER), though closer to the red group,
does not fit exactly into the bipartite structure, because the reported
hostile activity is less than that of the other red actors. Many of the
unimportant actors close to the origin are filtered out because their
level of hostility is not sufficient to place them prominently in one
group or the other. Thus, our method not only determines a relaxed
bipartition, but also indicates which actors are most responsible for
the division.

The method sketched above is a specific use of a more general
framework. We next introduce its essentials, and refer to [1] for
further details.

A weighted graph G = (V,E) can be represented by its symmet-
ric adjacency matrix A = (auv)u,v∈V with rows and columns indexed
by V and entries auv = ω({u,v}) corresponding to the weight of the
edge between the two endpoints. The following definition specifies
how vertices (i.e., actors) are projected continuously to k classes,
and thus generalizes k-partitions.

Definition 1 Let G be a graph with n vertices and adjacency matrix
A. A projection is a real k×n matrix P that has orthonormal rows.
The quotient of G modulo P is the graph that has the k different
classes as vertex set and whose adjacency matrix is B = PAPT.

Quotients model the relation between classes induced by P and
G. Two classes C1 and C2 are connected by an edge whose weight is
the average weight of the edges connecting actors in C1 to actors in
C2 (weighted by their respective degree of membership). In Fig. 2,
e.g., the quotient of the projection to the red and blue class is a
single edge connecting the two.

The next condition ensures that a projection is derived from the
graph structure. It formalizes the idea that actors are equivalent
when they are equally connected to equivalent actors. In Fig. 2,
e.g., two red actors are both connected to some (but not necessarily
the same) blue actors .

Definition 2 A projection P is called structural for G if PA = BP.

The following theorem is a characterization of all structural pro-
jections for a given quotient and hence essential for our purposes.
It shows how a projection can be chosen such that it yields a pre-
specified quotient.

Theorem 3 ([1]) Let G and R be two weighted graphs with adja-
cency matrices A and B. A projection P is structural for G with
quotient R, if and only if the row-space of P is generated by eigen-
vectors of A associated with all eigenvalues of B.

We will use this theorem in the next section to determine a struc-
tural projection into two-dimensional space such that the resulting
quotients are “as bipartite as possible.”

3.2 Projecting into Conflict Space

Consider the parameterized graph in Fig. 4. It consists of two ver-
tices representing the opposition of two groups, an edge with large
weight w representing the hostility of events involving actors in
opposite groups, and two edges with small weight c representing
the hostility of events involving actors within a group. The two-
dimensional vector space associated with its adjacency matrix is
called conflict space, and we will apply Theorem 3 to determine a
structural projection into it.

Figure 4: Quotient R representing the conflict space. Weights w and
c are average weights of edges between and within the two groups.

The single-edge quotient of a bipartite graph is augmented by
loops of weight c, because the interaction graph will almost never
be bipartite at any given point in time. For this quotient, we need to
find a (continuous) projection of actors onto these two classes, such
that w is as large as possible and c as small as possible.

The eigenvalues of the adjacency matrix B of the quotient shown
in Fig. 4 are

λ = w+ c
µ = −w+ c .

From a different perspective, parameters w and c are given by the
two eigenvalues λ and µ of B as

w =
λ −µ

2

c =
λ + µ

2
.

By Theorem 3, a projection P onto the graph R is found by eigen-
vectors of A associated with λ and µ . Since our goal is to maximize
w and minimize c, we choose λ as large and µ as small as possible,
i.e. we take eigenvectors of A associated with the largest and small-
est eigenvalue λmax and λmin. We thus have the following result.

Theorem 4 The structural projection with quotient R from Fig. 4
that maximizes w (and minimizes c) is the orthogonal projection
onto the two eigenvectors of A associated with the largest and
smallest eigenvalue.

The above derivation also shows that c = 0 if and only if λmin =
−λmax, which is well-known to hold if and only if the graph is bi-
partite. Although this is almost never the case in empirical data, our
experiments provide evidence that often c is very small compared
to w. To assess the degree to which the data matrix A is bipartite,
we introduce the following index.

Definition 5 Let λmax and λmin be the largest and smallest eigen-
value of the adjacency matrix of a graph G. The bipartiteness of G
is defined as

β (G) =
∣∣∣∣ λmin

λmax

∣∣∣∣ .

Index β (G) is between zero and one, and it is one if and only if
the graph is bipartite.



3.3 Graphing Conflict Space

Using the projection specified in Theorem 4, we obtain a represen-
tation of the interaction graph in a two-dimensional conflict space,
i.e. a scatterplot of the vertices with coordinates given by the eigen-
vectors of the adjacency matrix of the graph.

The coordinates of this scatterplot are transformed to indicate
the degree of membership to each of the two classes. To do so, first
consider what happens when the ideal, single-edge, conflict graph is
projected onto itself. The normalized eigenvectors of the adjacency
matrix of a graph consisting of only an edge are

x =
1√
2

(
1
1

)
and y =

1√
2

(
1
−1

)
,

so that
x+ y√

2
=

(
1
0

)
and

x− y√
2

=
(

0
1

)
.

If x,y are the first and last eigenvectors of an arbitrary input graph,
the lefthand side transformations thus yield real-valued degrees of
membership in the two conflict groups. To obtain a horizontal op-
position, we finally rotate the result by 90 degrees and scale the
opening angle between the two coordinate axes by a factor of two
(compare e. g., Fig. 6).

Because of an intricate relation between structural similarities
and vertex centrality [1], the distance from the origin is an indicator
of the actors importance. As is apparent in Fig. 3, our projections
thus not only classify actors to one group or the other, but also dis-
tinguish between major and minor members of each group.

The graphical attributes of our visualization are determined as
follows. Color coding is used to emphasize group membership (the
degrees of membership determine a red and blue component) and
importance (saturation). Vertex shape and size are used to add in-
formation about activeness of actors. Activeness is defined as the
net weight of the events in which an actor is involved as the subject
initiating the event. Symmetrically, passiveness adds weights of
events received. The ratio between activeness and passiveness de-
termines the aspect ratio of a vertex, so that aggressive actors that
initiate hostile interactions, but are not the subject of retaliation are
high and narrow. The size of a vertex is the sum of the two and thus
represents an actors involvement in a conflict structure.

We summarize the algorithm for scatterplots representing the
conflict structure of a graph G of hostile interactions with adjacency
matrix A:

1. Compute maximum and minimum eigenvalues λmax and λmin
of A together with associated eigenvectors vmax and vmin.

2. The projection is given by the 2×n matrix P with x = (vmax +
vmin)/

√
2 in the first and y = (vmax− vmin)/

√
2 in the second

row. Rotate coordinates by 90 degrees and scale the opening
angle between the two coordinate axes as described above.

3. The bipartiteness is given by β =−λmin/λmax.

4. Draw each actor v a a ellipse with coordinates and color values
proportional to the two values in the v’th column of P, height
proportional to activeness and width proportional to passive-
ness.

Any eigenvector algorithm for real symmetric matrices can be used
in Step 1 (see, e.g., [5]), and there are many readily available soft-
ware packages. In our examples we indicate the fit of the bipartite
model using a bipartiteness gauge.

Figure 5 shows the projection into conflict space for events of
the Balkan Conflict from 1989 until 2003. The bipartiteness of this

projection is rather low (only around 0.42), indicating many con-
flicts within the two groups. Despite of the low bipartiteness, our
method still yields two reasonable opponent groups: Serbia (SER)
and the Serbs in Bosnia (BOSSER) opposed to Bosnia (BOS) and
Croatia (CRO). The NATO (NAT) is opposed to (SER) and (BOSSER),
due to the massive air strikes in 1994 and 1995.

Figure 5: Balkan Conflict 1989–2003.

Figure 6 shows the projection for the conflicts in the Persian Gulf
from 1979 until 1999. The two major opponents for the whole pe-
riod of time are clearly the Iran and Iraq, due to their war from 1980
to 1988. The bipartiteness is, although much higher then in Fig. 5,
considerably distant from one. The reason for this is that the USA
have strong negative ties to both Iran and Iraq, thus these three ac-
tors form a negative triangle. The fact that the aggregated weight of
negative events between the USA and Iraq (mostly following Iraq’s
invasion of Kuwait in 1990) is larger than the negative weight be-
tween the USA and Iran, is the cause that USA is mapped farer
from Iraq and thus, necessarily, closer to Iran .

Figure 6: Gulf Conflict 1979–1999.

To obtain more detailed insight in the evolution of both conflicts,
we will introduce a technique for smooth animation of the above
type of scatterplots for limited periods of time.

4 ANIMATING CONFLICT DYNAMICS

In order to show how conflicts evolve over time, the event graph G is
used to generate a sequence of graphs Gt , each of which represents
the view on the set of events at the specific time t. A graph Gt
yields one frame of the final video. How the events are viewed at a
certain time-point is determined by a scaling function δ : R→R≥0,
which models how events move into the data when time increases
and how they fade out. Examples of possible scaling functions are



“rectangular” functions of radius r

δr(t) =
{

1 if |t| ≤ r
0 else,

having the meaning that events move in all at once if their time-
stamp is within r of the current time and that they have no influence
if it is outside. We will later use a continuous scaling function that
results in a smoother animation.

For a fixed δ and t, the graph Gt = (V,E,ωt) is defined as fol-
lows. The actor set V and the edge (or event) set E are the same as
for the input graph G. The weight ωt(e) of an event e at time t is
defined to be ωt(e) = ω(e) ·δ (te− t), that is, the weight of e at time
t is its absolute weight ω(e) times a scaling factor which is depen-
dent on the difference between the time-stamp te of the event and
the fixed time point t. The graph Gt may be reduced by removing
events with zero weight, as well as isolated actors, since these do
not influence the analysis and would be invisible in the final video.

Given a graph G, representing a list of events, the movie is gen-
erated by the following steps.

1. Select a sequence of time-points t1 < · · ·< tN in a given time
interval.

2. For each i from 1 to N

Compute the visualization of the graph Gti .

3. The images for all time-points yield the frames of the video.

In order to maintain the overall appearance of the frames one fur-
ther detail has to be taken into consideration. If v is an eigenvector
of A associated to eigenvalue λ , then so is−v. Thus the eigensolver
algorithm could return either v or −v as a solution to the eigenvalue
problem. To prevent that this assignment switches from one frame
to another (which would result in reversing one axis of the coordi-
nate system from one frame to another) we have to ensure that the
eigenvectors we use point in a well-defined direction.

The canonical direction for the eigenvector vmax associated to
the largest eigenvalue is simply the direction in which each entry
of vmax is positive. (It is standard knowledge in algebraic graph
theory that all entries of this eigenvector have the same sign.) We
define the canonical direction for the eigenvector vmin for time-step
t recursively by the direction of this eigenvector for time-step t−1.
The direction of vmin is chosen such that the angle between vmin
at time t and vmin at time t − 1 is smaller than 90 degrees. Thus,
only the direction of vmin for the very first time-step is arbitrary.
This translates to the fact that there is no absolute meaning attached
to the two opponent groups. A second computation of the movie
could reverse the red and the blue groups, but then it has to reverse
the assignment for all actors, which results in the same opponents.

5 APPLICATION EXAMPLES

We apply our method to visualize two selected data sets from the
Kansas Event Data System (KEDS)1 in a prototypical implemen-
tation. We generate the graphs Gt with a triangular shaped scaling
function with time radius r

δ (t) =

 (t + r)/r if |t| ≤ r and t < 0
−(t− r)/r if |t| ≤ r and t ≥ 0

0 if |t|> r .

This function does not consider events with a time-stamp more then
r away from the current time-point. Events move into Gt linearly
until t is larger than their time-stamp. Then, they fade out linearly

1http://www.ku.edu/∼keds/

until they have zero weight. For the two investigated data sets we
used for r a period of 90 days.

This simple but continuous scaling function already yields a
smooth animation, since the coordinates depend continuously on
the entries of the input matrix. The usage of more sophisticated
functions (like Gaussian curves) could be considered in future re-
search.

In the video, the current time is shown by a triangle. The current
bipartiteness βt is shown in a scale ranging from zero to one. This
scale is green if βt is close to one and red if it becomes low.

The two coordinate-axes both point into horizontal directions,
one to the left and one to the right. We have chosen to take this co-
ordinate system instead of the more usual one (one axis vertical and
one horizontal) to prevent misguided interpretation of superiority of
one group over the other.

The animations are realized in SVG (Scalable Vector Graphics,
see W3C Recommendation2) format, thus they can be viewed on
any web browser with an appropriate plug-in.3. The file for the
Balkan region, e. g., covers about 5000 days using 1000 key frames
to ensure smooth animation. Buttons in the lower right corner allow
to pause, fast forward, rewind, etc. the animation.

5.1 Balkan

The KEDS Balkans data4 contains 78,668 events for the major ac-
tors (including ethnic groups) involved in the conflicts in the former
Yugoslavia. Coverage is April 1989 through July 2003. The follow-
ing figures show selected time-points of the Balkans conflict.

Figure 3 shows the war in Slovenia and Croatia in 1991. Yu-
goslavia (YUG) and the Sebian military (SERMIL) are clearly op-
posed to Slovenia (SLO) and Croatia (YUGCRO).
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Figure 7: Bipartiteness profile of the Balkan Conflict.

The varying degree of polarization can be inferred from the
model fit indicator curve in Fig. 7.

An important change in the conflict structure is shown in Figs. 8,
9, and 10. Figure 8 shows the NATO bombings in 1995. The Day-
ton peace talks (Fig. 9) took place in December 1995. After this,
events in the Balkans calmed down and the media focused on the
conflict between Turkey and the Kurds (Fig. 10).

2http://www.w3.org/TR/SVG/
3The animations referred to in this paper are available from

http://www.inf.uni-konstanz.de/algo/research/conflict/
4http://www.ku.edu/∼keds/data.dir/balk.html



Figure 8: NATO bombing in Bosnia (1995).

Figure 9: Dayton peace talks (December 1995).

Figure 10: After the Dayton peace agreement, a new conflict
emerges.

Figure 11: Conflict between Turkey and the Kurds.

Figure 12: After the change of data source from Reuters North Amer-
ica to Reuters Business Briefing.
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Figure 13: Sources for KEDS data on the Balkans. Red : Reuters
Business Briefing, green: Reuters North America, blue: Agence
France Press.



The conflict between Turkey and the Kurds also exemplifies a
problem with the data that we were not aware of before seeing the
animation. In July 1997, there is an abrupt change in media cover-
age. Figures 11 and 12 show the conflict structure before and after
this change, with only sixteen days in between. The change is also
visible in the bipartiteness curve, where the highly bipolar situation
rapidly changes into a more complex one.

Since we knew of no prominent historic events explaining the
change, we went back to the data and found that this is precisely
the time when KEDS sources change from Reuters North America
to Reuters Business Briefing, with the latter apparently not covering
the conflict.

5.2 Persian Gulf

The KEDS Gulf data set5 contains 57,000 events for the states of the
Gulf region and the Arabian peninsula for the period 15 April 1979
to 31 March 1999.

Figure 14 shows the so-called Iran hostage crisis (U.S. diplomats
taken hostage after/during the Iranian revolution) in 1979.

In September 1980, the Iraqi invasion of Iran (shown in Fig. 15)
took place. In the movie it can be seen between the two frames in
Fig. 14 and Fig. 15 how the USA moves out and Iraq moves into the
group opposing Iran. Bipartiteness remains very high during this
period, i. e., the conflicts are almost all between the two opposing
groups. The projection shown in Fig. 15 remains almost unchanged
until 1987, although Iraq and Iran switch several times from being
the main source to being the main target of the hostilities and back.

In 1987 and 1988 the U.S. engaged in a series of naval battles
with Iranian forces. Figure 16 shows both the USA and the Iraq
being opposed to Iran. Again, the bipartiteness for this projection
is close to one; in particular there are no conflicts between the USA
and Iraq during that time.

On 2 August 1990, Iraqi troops invaded Kuwait. A coalition
of 34 countries, most notably the U.S., mobilized troops in Saudi
Arabia and in the Persian Gulf. Figure 17 shows the Kuwait as a
very broad and flat actor (target of aggression) on the same side as
the USA and opposite to Iraq.

Starting from the end of 1991 a repeated switch between the two
conflict pairs USA vs. Iraq on one hand and Israel vs. the Lebanon
on the other can be observed. Figures 18 and 19 shows such a
change which took place in 1996.

This oscillation is not an artefact of our method but can actually
be found in the data. We calculated the aggregated negative weights
of the edges (ISR,LEB) and (IRQ,USA) and plotted them in Fig. 20.
For example, the weight of (ISR,LEB) is significantly higher than
the weight of (IRQ,USA) at the beginning of 1996. This priority
becomes inverted in the second half of 1996, which is the cause for
the change from Fig. 18 to Fig. 19.

6 DISCUSSION

We have presented a method for designing scatterplots that repre-
sent the conflict structure embodied in event data, and a method
for smoothly animating these scatterplots to highlight conflict dy-
namics. There are several interesting avenues for extending and
improving our visualizations which will be addressed in further re-
search.

A straightforward extension is secondary analysis of our dy-
namic projections. For instance, it might be interesting to focus on
particular actors and follow their trajectories in the animated scat-
terplot and relate it to their involvement profile. Sensitivity analy-
sis may point to crucial events or actors that trigger major changes

5http://www.ku.edu/∼keds/data.dir/gulf.html

in the structure. Ultimately, combinations of these analyses could
serve as early warning indicators.

The use of structural projections is not limited to two dimen-
sions. If, for instance, the bipartiteness indicator is low, a third
dimension could be opened in conflict space, yielding three groups
that are in pairwise opposition. For example the situation in the
Persian Gulf for the period from 1979 to 1999 (shown in Fig. 6)
could be represented much better as a triangle formed by the USA,
Iraq, and Iran, since these actors have mutually strong negative ties.
The main difficulty will be to identify the appropriate eigenvectors
to be used in the projection. Moreover, if a time-window graph
contains several, say k, independent major conflicts, it should be
projected using eigenvectors of the k largest and smallest eigenval-
ues. For example, the two independent conflict pairs (ISR,LEB)
and (IRQ,USA), which are shown in Figs. 18 and 19 could both be
represented in one image if we project to the two largest and two
smallest eigenvalues. The main challenge will be to represent the
resulting four-dimensional conflict space in a two-dimensional im-
age.

On the other hand, we may extend our data basis by also consid-
ering events with positive weights. Natural groups are identified by
clustering actors based on cooperation, and these can be compared
to or integrated with a partitioning based on hostility.
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Figure 14: Iran hostage crisis.

Figure 15: Iraqi invasion of Iran.

Figure 16: U.S. engaged in battles with Iranian forces.

Figure 17: Iraqi invasion of Kuwait.

Figure 18: Conflict pair Lebanon vs. Israel.

Figure 19: Conflict pair Iraq vs. USA.
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Figure 20: Aggregated weight of edges (ISR,LEB) and (IRQ,USA).
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