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Abstract— An online recognition system must analyze the 
changes in the sensing data and at any significant detection; it 
has to decide if there is a change in the activity performed by the 
person. Such a system can use the previous sensor readings for 
decision-making (decide which activity is performed), without the 
need to wait for future ones. This paper proposes an approach of 
human activity recognition on online sensor data. We present 
four methods used to extract features from the sequence of sensor 
events. Our experimental results on public smart home data show 
an improvement of effectiveness in classification accuracy. 

Keywords—Activity Recognition, streaming data, Incremental 
SVM 

I.  INTRODUCTION 
Sensor-based Activity Recognition (AR) is a key feature of 

many ubiquitous computing applications such as health care 
and elder care. It aims to identify the actions performed by a 
person given a set of observations in her environment. There 
are several projects that work on activity recognition in smart 
environment such as the CASAS project [1], and PlaceLab [2]. 

We can classify the researches on activity recognition 
according to the type of sensors used to collect information, the 
machine learning models and the nature of activities performed 
(simple or complex).  

Independently of the sensors used, in the feature extraction 
step most AR systems discretize data obtained from the sensors 
into time slices of constant or variable length, and each time 
slice is labeled with only one activity. There is relatively no 
problem when activities are performed sequentially (one after 
another), but this is not the case when activities are interleaved, 
that is to say one time slice may contain information about 
more than one activity. To deal with this, techniques that work 
on online/streaming data are required. 

There is another need for online activity recognition, when 
a specific application track the execution of a daily living 
activity, step-by-step, for delivering in-home interventions to a 
person or for giving brief instructions describing the way a task 
should be done for successful completion [3]. 

The present paper is an extension of a study presented in 
[4]. This approach proposes online activity recognition on 
discrete binary motion sensor data obtained from real-world 
smart homes. It classifies every sensor event based on the 
information encoded in a sliding window containing the 

preceding sensor events. It explores both fixed static window 
size and dynamic varying window size. The extension in the 
present paper focuses on methods based on fixed window size 
with the following contributions:  
1. Proposing an extension of feature descriptors using mutual 

information based weighting of sensor events within a 
window. 

2. Proposing a new feature descriptor using “last-state” of 
sensor within a window. 
This paper is structured in the following way. A discussion 

on the different techniques to segment online or streaming 
data is depicted in Section II. Section III introduces the 
method of construction of the feature vector while our 
approach used to recognize activities on streaming data is 
presented in section IV. Section V presents the experimental 
setup for evaluating the proposed approaches; the results are 
presented and discussed in this section too. Conclusion and 
future works are found in Section VI. 

The segmentation step aims to divide the data into 
segments or windows most suitable for activity recognition. 
On each window, features are computed and then used as an 
instance for learning or testing phase.  It is a difficult task 
since humans perform activities regularly and consecutive 
activities cannot be clearly distinguished as the exact 
boundaries of an activity are difficult to define. In this section, 
we present briefly the most used segmentation techniques in 
the context of human activity recognition on streaming data. 

II. WINDOWING OF STREAMING DATA 

A. Activity-based windowing 
This method divides streaming data events into windows at 

the points of detection of changes in activity [15]. Each 
window likely corresponds to an activity. It has however some 
drawbacks. Since the activities are generally not well distinct, 
resulting activity boundaries are not precise. Moreover, 
finding the pertinent separation points occur during training 
phase, which complicates the calculations. This technique is 
not suitable for online recognition since it has to wait for 
future data to make decision. This method is more suitable for 
labeling data. 



B. Time-based windowing 
Here, streaming data events are divided into fixed time 

windows. It is the most commonly used segmentation method 
for activity recognition due to its simplicity of implementation 
[9, 15, 18] and for well dealing with continuous data sensor. 
However, many of the classification errors using this method 
come from the selection of the window length [17]. If a small 
length is selected, there is a possibility that the window 
contains insufficient information for making decision. On the 
contrary, if the length is too wide, information of multiple 
activities can be embedded in one window. As a result, the 
activity that dominates the time window will be more 
represented compared to other activities, which badly affects 
the decision. Furthermore, if sensors do not have a constant 
acquisition rate (case of motion and door sensors that are 
“event-based”), it is possible that some windows do not have 
any sensor data in them. 

C. Sensor-based windowing 
As for this method, data are divided into windows of equal 

number of sensor events. On Fig. 1 (c), the sensor windows 
are obtained using a sliding window of length 6 sensor events. 
It is clear that the resulting windows duration differs from one 
window to another. During the execution of activities, 
multiple sensors could be triggered, while during silent 
periods, there will not occur many sensor firings. The sensor 
events preceding the last event in a window define the context 
for the last event. This method has also some inherent 
drawbacks. For example, consider the segment S27, on Fig. 1 
(c). The last sensor event of this segment corresponds to the 
beginning of activity A2. There is a significant time laps 
between this event and the preceding. The relevance of the use 
of all the sensor data in this segment with this last event might 
be small if the time lag is large. The method has another 
drawback in the case of two or multiple residents in a smart 
home. One segment can contain sensor events of two 
residents. The last event in this segment belonging to one 
resident while the sensor events preceding and define it 
belonging to two residents. Thus processing all the sensor 
events in a large window with equal importance for all the 
data might not be a good approach. This method as it is 
generally used may not be attractive; modifying it to account 
for the relationship between the sensor events is a good way to 
process the stream of sensor events [4]. This approach offers 
computational advantages over the activity-based windowing 
and does not require future sensor events for classifying past 
sensor events. 

In this paper, we use this technique to deal with streaming 
sensor data with some modifications to overcome its 
drawbacks. The problem is presented in the next section. 

III. FEATURES EXTRACTION 
In the context of human activity recognition, some 

applications such as prompting systems need to know at which 
activity a single sensor event belongs, to provide the necessary 
assistance at the right time. Approach proposed in [4] aims to 
classify every single sensor event into a label to the best 
possible extent.  

 
Fig. 1. Illustration of the different segmentation approaches of streaming data. 

A. Feature extraction 
In this section, we introduce four methods used to extract 

features from the sequence of sensor events. Two of them are 
proposed [4] and the other two methods are our contribution.  

Let’s consider [E1, E2, … , EN] a sequence of sensor events 
collected from a one resident smart home test-bed. An example 
of such sequence is depicted on Fig. 2. Each event sensor is 
associated with date and time, sensor ID, sensor status and 
activity. Sensors IDs starting with M are motion sensors and 
IDs starting with D are door sensors. 

The segmentation technique used is the sensor-based 
windowing. Each window contains an equal number of events. 
The sensor events preceding the last event in a window define 
the context for the last event. Thus, from a window, we extract 
one feature vector that represent the last event, and is labeled 
with the label of the last event in the window. 

If we consider m as being the number of events in a 
window, sensor event Ei is represented by the sequence [Ei-m, 
Ei-m+1..., Ei]. m is selected empirically. It is influenced by the 
average number of sensor events that span the duration of 
different activities.  

1) Baseline method 
Once the sensor event window Ei is defined, we can now 

transform this window into a feature vector. For this, we 
construct a fixed dimensional feature vector Xi containing the 
time of the first and last sensor events, the duration of the 
window Ei and a simple count of the different sensor events 
within the window. For instance, if 34 is the number of sensors 
installed in the smart home, the dimension of feature vector Xi 
will be 34 + 3. Xi is tagged with the label Yi of Ei [4]. 

One of the problems with the sensor-based windowing 
method is the possibility for the window to contain sensor 
events that are widely separated in time. We can illustrate this 
problem by Fig. 3. This is an example of a sequence of sensor 
events from Aruba CASAS dataset. We can observe that there 
is a difference of four hours between the two last sensor events. 
All the sensor events that represent the last event have occurred 
in the ‘distant’ past. Thus in the absence of any weighting 
scheme, even though the sensor event corresponding to the 
‘work-end’ activity occurred in the past, it has an equal 
influence on defining the context of the event corresponding to 
the activity ‘sleeping-begin’. 



In order to overcome this problem, [4] proposed a time-
based weighting scheme that takes into account the relative 
difference in the triggering of each events. 

Another problem appear when a window contains sensor 
events corresponding to the transition between two activities. 
Most of these events have not relation with the last event in the 
window and sensors from a particular activity dominate the 
window. This leads a wrongly description of the last event in 
the window.  To overcome this problem, [4] defines a 
weighting scheme based on a mutual information measure 
between the sensors as described in the next section. 

 
Fig. 2. Sample raw and activity annotated sensor data.Sensors IDs starting 
with M are motion sensors and IDsstarting with D are door sensors. 

 
Fig. 3. Time dependency 

2) Sensor Dependency method 
As described earlier, when a window contains sensor events 

coming from two different activities, it is likely that the sensors 
that dominate the window do not really participate in the 
evaluation of the activity that induced the last event in the 
window. Such case is illustrated on Fig. 4. 

 
Fig. 4. Sensor dependency 

To reduce the impact of such sensor events on the 
description of the last sensor event, [4] uses a mutual 
information based measure between the sensors. 

Mutual information measures how much one random 
variable tells us about another. In the current context, each 
individual sensor is considered to be a random variable that has 
two outcomes, namely ‘ON’ and ‘OFF’. The mutual 

information or dependence between two sensors is then defined 
as the chance of these two sensors occurring consecutively in 
the entire sensor stream. If Si and Sj are two sensors, then the 
mutual information between them, denoted MI (i, j), is defined 
as:  

MI (i, j)    =  !
!

𝛿(𝑆  ! , 𝑆!!!!
!!! )𝛿(𝑆!!!, 𝑆!)   (1) 

s.t. 𝛿(𝑆! , 𝑆!) = 
0                𝑖𝑓  𝑆  !   ≠   𝑆  !
1              𝑖𝑓    𝑆  !   =   𝑆  !

                (2) 

The term 𝛿 takes a value of 1 when the current sensor is Si 
and the next sensor is Sj. The value of this mutual information 
is linked to the proximity of both sensor events. 

The mutual information matrix is computed offline using 
the training sensor sequence. It is then used to add a weigh 
defining the influences of the sensor events in a window while 
constructing the feature vector. Each event in the window is 
weighted with respect to the last event in the window. Thus 
instead of counting the different sensor events, it is the sum of 
the contributions of every sensor event based on mutual 
information that defines the feature vector. The approach is 
denoted as Sensor Windows Mutual Information (SWMI) for 
future reference. 

3) Sensor Dependency extension method 
Mutual information of two sensors as previously described 

depends on the order of occurrence of a couple of sensors in 
the entire data stream. For instance, we can consider 4 sensors 
installed in a tight place of a smart home and that participate in 
the performance of a specific activity. Person can take the path 
that fires in the following order the sensors: S1àS2àS3àS4 or 
in a second way: S1àS3àS2àS4 to perform this activity. 
Assuming that the first path is statistically less used than the 
second path, but also that the two paths lead to the same 
activity, we can clearly see that there is a dependency between 
sensors S1 and S2 whatever path is used. If we adopt the 
previous way for computing the mutual information between 
sensors S1 and S2, we will lose some dependency quantity 
between these sensors.  

Furthermore, there are activities that are often performed in 
parallel, and sensor events of an activity can be descriptive for 
the other and traditional mutual information cannot take into 
consideration this situation. 

Based on these assumptions, we propse to compute mutual 
information between two sensors Si and Sj by computing their 
frequency of occurrence in space of n sensor events along the 
entire data stream, as defined by the following equation: 

MI (i, j) =  !
!

𝑆  ! , 𝑆! ∈ [𝐸!∗!!!⋯     𝐸!∗!!!]!!!
!!!     (3) 

Such that K is the window, n is the number of events in the 
window that is selected empirically. Feature vector is then 
computed as the original method. We denote this approach as 
Sensor Windows Mutual Information extension (SWMIex) for 
future reference. 

4) Last-state sensor method 
In the window defined from the event sensor Ei, a sensor 

can be trigged several times. Sometimes, last state of the 
sensor, with respect to Ei, can be more descriptive than its 



frequency of occurrence in a window. To interpret this idea, we 
propose to compute the feature vector Xi as follow: for each 
sensor Si, if its last state within a window is ON/OFF then it 
will be represented by respectively 1/-1 in the feature vector Xi, 
otherwise it will be represented by 0 (if absent). We denote this 
approach as Sensor Windows Last State (SWLS) for future 
reference. 

IV. EXPERIMENTS AND RESULT 

A. Dataset 
To test the proposed techniques, we tried to select a dataset 

as close as possible to the dataset used in the study on which 
our work is built. For this, we chose Aruba and Tulum real-
world datasets from the Washington State University CASAS 
smart-home project [20], which were obtained using PIR 
motion sensors and door sensors. The details of datasets appear 
in Table 1 and Table 2. The data is represented as a sequence 
of time stamped sensor data, as shown in Fig. 2. 

TABLE 1. ARUBA DATASET DETAILS 

 

TABLE II.    ACTIVITIES AND STATISTICS  

 
“Other activity” class contains events with missing labels. 

It covers 71 % of the entire sensors events sequence in Aruba 
dataset. This class constitutes 19% of Tulum dataset. Due to 
the very large quantity of data to process with a normal 
computer (1.5 GHz machine with 8GB RAM), we used only 
the first six weeks of data in Aruba dataset and 3 months data 
in Tulum dataset. Statistics of this data are depicted in Table 3. 

TABLE III.     STATISTICS ON THE FIRST SIX WEEKS OF ARUBA DATASET. 

Aruba dataset Tulum dataset 
Activity Number 

of events 
Activity Number of 

events 

Other events (OE) 81735 Other events (OE)        76073 

Bed_to_Toilet 442 Cook_Breakfast        11343 

Eating 4495 Cook_Lunch         5350 

Enter_Home 526 Enter_Home        11998 

Housekeeping 7569 Group_Meeting        23787 

Leave_Home 492 Leave_Home         1200 

Meal_Preparation 31201 R1_Eat_Breakfast        10395 

Relax 37291 R1_Snack       101425 

Resperate 204 R2_Eat_Breakfast         6667 

Sleeping 9310 Wash_Dishes        15049 

Wash_Dishes 3795 Watch_TV        40572 

Work 4714 - - 

 

To evaluate our methods, classification accuracy and F-
measure (F-score) are used. The accuracy shows the percentage 
of correctly classified instances, the F-score shows the average 
percentage of correctly classified instances per classes. 

B. Results and discussion 
We conducted two sets of experiments to evaluate the 

effectiveness of the approaches presented in this paper. 

In the first series of experiments, the system was trained 
using standard SVM once using a sensor events sequence 
containing the “other events” and once on data excluding 
“other events”. We employed the LibSVM [19] library, and we 
determined the penalty parameter C and RBF kernel 
parameters via cross-validation on training data. 

1)  Learning on data excluding the ‘other‘ activity 
 

We begin our experiment by testing Baseline method with 
different number of events per window. We obtained the best 
performances (classification) with a number that is lower than 
the average number of sensor events that span the duration of 
the different activities. Then, we tested our proposed 
approaches SWMIex and SWLS. Table 4 shows a summary of 
the results of this experiment, while Table 5 shows more 
detailed results. 

In Table 4, we can observe that the accuracy are close to 
each other when any events with missing labels were removed, 
while there is a significant improvement of the F-score. This is 
due to the bad affect of imbalanced dataset on the result, where 
an improvement of performance of the minority activities does 
not much increase the accuracy but it does in F-score. 

By comparing Baseline approach with our methods, F-
score increases respectively by 4%, 5% and 7% when using 
SWMI, SWMIex and SWLS approaches in Aruba dataset and 
by 5%, 7% and 1% in Tulum dataset.  

Aruba dataset Tulum dataset 

Activity Number of 
events Activity Number of 

events 

Other activity 1 144 887 Other activity     85 915 

Bed_to_Toilet 1 330 Cook_Breakfast   11 343 

Eating 16 153 Cook_Lunch   5 350 

Enter_Home 2 018 Enter_Home   11 998 

Housekeeping 10 583 Group_Meeting   23 787 

Leave_Home 1 922 Leave_Home   1 200 

Meal_Preparation 293 334 R1_Eat_Breakfast   10 395 

Relax 72 717 R1_Snack   216 178 

Resperate 542 R2_Eat_Breakfast  12 312 

Sleeping 32 682 Wash_Dishes  24 392 

Wash_Dishes 10 464 Watch_TV   50 280 

Work 16 321 - - 

Dataset Gender & age Number of 
Sensors 

Time Interval 

Aruba Elderly/female 34 7  months 
Tulum 2 married residents 16 4 months 



Fig.5.(a) shows the F-score of each activity. Confusion 
Matrixes obtained by testing different methods show that there 
is an important confusion in recognition of activities that share 
the same functional area such kitchen activities in the datasets 
and activities that occur in bedroom (“Bed_to_Toilet”, 
‘Sleeping’) in Aruba dataset. The “Bed_to_Toilet” in Aruba 
dataset is often classified as a ‘Sleeping’ activity. Similarly, 
most instances of “Wash_Dishes” activity are classified as 
“Meal_Preparation”, “Eating” or “Housekeeping” activity. As 
for the “Resperate” activity, classifier cannot identify any of 
the instances.  The SWMI method improves the F-score of 
“Bed_to_Toilet” activity, while it continues to classify 
incorrectly both “Resperate” and “Wash_Dishes” activities. 
However, when using SWMIex and SWLS methods, classifier 
successfully identify respectively 19% and 14% of “Resperate” 
activity instances and 4% and 11% of “Wash_Dishes” activity. 

Concerned Tulum dataset, Fig5 (b) shows that our method 
surpasses all methods in term of accuracy and F-score 
classification. The advantage provided by our SWLS method is 
that it could recognize “Wash_Dishes” activity at a time 
BaseLine and SWMI failed to identify it.  

TABLE IV.    LEARNING WITHOUT CONSIDERING “OTHER ACTIVITY” CLASS 

Training without ‘other events’ 

Feature 
extraction 
Method 

Aruba dataset Tulum dataset 

Acc F-score Acc F-score 

Baseline 87.23  63.29  63.46 35.60 

SWMI 87.71  65.56  64.18 39.30 

SWMIex 87.71  68.68  65.57 41.29 

SWLS 87.55  69.24  63.95 36.91 

 

2) Learning on data containing “other” activity 
This second set of experiments aims to evaluate our 

methods on the data containing the “other” activity. This 
activity covers 45% of the original dataset. The results are 
presented in Table 7. The activity classification accuracy is 
defined by: 

Accuracy = !"!!
!!"

!"!
!!!   (4) 

Such that nbA is the total number of activities excluding the 
“other” activity. 

By comparing the results obtained in the first series of 
experiments with that obtained by this series, classification 
accuracy drops significantly from 87% to 69% on Aruba 
dataset. However, in Tulum dataset the performance 
degradation is less severe.  

By testing our methods on Aruba dataset, SWMI approach 
loses its superiority over the Baseline. Best results in term of 
classification accuracy are obtained by SWLS approach while 
SWMIex approach surpasses all methods when using F-score 
as metric. Fig.6 (a) shows that none of the methods is able to 
identify the “Resperate” and “Wash-Dishes” activities, due to 
the imbalanced problem intensified by the presence of “other” 

activity that dominates the dataset. We also observe that the 
system loses its capability to recognize the ‘Housekeeping’ 
activity, where most of instances are classed as “other activity” 
class. About Tulum dataset, the behavior of classifier does not 
change and our method SWMIex still surpass all other feature 
extraction methods. 

 
(a)   Aruba dataset [1: Bed_to_Toilet. 2: Eating. 
3:Enter_Home.4:Housekeeping.5-Leave_Home. 
6:Meal_Preparation. 7:Relax. 8:Resperate. 9:Sleeping. 
10:Wash_Dishes. 11:Work. 12: other activity.] 

 
(b)    Tulum dataset [1-Cook_Breakfast  2-Cook_Lunch  3-
Enter_Home 4-Group_Meeting. 5-Leave_Home 6-
R1_Eat_Breakfast 7-R1_Snack 8-R2_Eat_Breakfast. 9-
Wash_Dishes 10-Watch_TV ] 

            Fig. 65. Learning without “other activity” class: F-score of activities. 

The best results are obtained by using our proposed 
SWMIex approach, where there is a significant improvement in 
the recognition of the most activities over Baseline approach. 

TABLE VI.   LEARNING WITH “OTHER ACTIVITY” CLASS 

Training with ‘other events’ 

Feature 
extraction 
Method 

Aruba dataset Tulum dataset 

Acc F-score Acc F-score 

Baseline 67.82 49.52 63.32 35.75 

SWMI 64.18  47.54  63.48 36.71 

SWMIex 67.38 50.39 65.26 39.01 

SWLS 69.09 47.38 63.90 34.81 

V. CONCLUSION AND FUTURE WORK 
In order to provide an automated monitoring system for 

different human needs, an online system that is performing 
activity recognition from sensor readings is required. Most of 
the techniques used in the literature are not suitable to build an 



online system. In this paper we propose and evaluate an 
extension of a sensor window approach to perform activity 
recognition in an online/streaming setting; recognizing 
activities when new sensor events are recorded. 

 
a. Aruba dataset 

 
b. Tumum dataset 

Fig. 6. Learning on data containing “other activity” class: F-score of activities. 

As different activities can be better characterized using 
different window length, mutual information based weighting 
of sensor events within a window is incorporated in this paper. 
A modification of how is computed the mutual information is 
proposed. To account for the fact that some activities do not 
require many movements to be performed, we propose a last-
state of sensor feature set within the window to characterize 
activities. These techniques are evaluated on Aruba and 
datasets over six weeks and on 3 months of data. These 
techniques show an improvement over the Baseline technique 
when any events with missing labels were removed. Only one 
of these techniques shows a significant improvement over 
Baseline when we incorporate events with missing labels in 
data.  

Results show that the impact of the proposed methods 
compared to Baseline is reduced when is taken into account 
“other activity” class to learning, especially on Aruba dataset. 
There are a large confusion between “other activity” class and 
the different known activities. Our future work will include 
finding a way to reduce confusion between this activity and the 
others. 
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