
A social robot empowered with a new programming
language and its performance in a laboratory

Biel Piero E. Alvarado Vasquez
Center of Automatics and Robotics

CSIC-UPM
Madrid, Spain

biel.alvarado@upm.es

Fernando Matia
Center of Automatics and Robotics

CSIC-UPM
Madrid, Spain

fernando.matia@upm.es

new logic programming language called GOLOG which is
based on PROLOG. A related work can also be found in [12]
which is an extension of GOLOG including concurrency. A
programming language with a syntax similar to JavaScript,
Lua and Python, is created to program swarm robots [13].
[14] introduces a method to use written natural language
instructions to program assembly tasks for industrial robots.
Another contribution can be found at [15] by designing a
visual programming language for robots end users called
RURU. With the extended use of XML for different purposes,
[16] created L-IRL, a procedural language for industrial robot
programming based on XML code.

The aim of this research is to provide Doris with a language
that can integrate the different modules of the architecture
in order to perform tours and interact with people at the
environment. Doris is going to move around the Centre
of Automation and Robotics (CAR). The subsystems to be
integrated into the new language are the localization system,
the path planning system, the mapping system, the emotions
systems, the facial system and the lip syncing system.

The structure of the paper is as follows: In section II
the Doris architecture will be brefly explained. The new
programming language is briefly explained in section III,
detailing the development of an interpreter, showing the
grammar and the functionality of every instruction of the new
language. Finally, a script and the results shown in section IV
and its execution will be shown in a video.

II. DORIS, THE SOCIAL ROBOT GIRL

Doris is an interactive robot, conceived to work at museums,
theaters, trade fairs and different indoor environments. It builds
on the upgrading of Blacky and Urbano, the two previous
robots that the group at CAR has been developing over recent
years at the Universidad Politécnica de Madrid [17] [18]

A. Hardware architecture

The hardware consists of three parts:
• a mobile platform developed by Adept, as shown in

figure 1a.
• a skeleton, which replicates the human body physical

appearance, as shown in figure 1b.

Abstract—For the last years, social robots have been used to
serve as tour-guide robots in museums, laboratories, trade fairs,
etc. So they are intended to perform tasks which will be affected
by the interaction with people. In order to perform these tasks, a
task planner must be developed in order to integrate the several
modules that the robot contains in its software architecture. In
this paper a new programming language was developed in order
to command the actions of the robot over the place where the
social robot is going to perform its actions. Lexical, syntactical
and semantical analyzers were developed based on a simple
language syntax with the possibility to create events. These events
can come from different sensors installed like the RFID, cameras,
etc. The testbed is Doris, an interactive robot developed in the
Centre of Automation and Robotics. The results show that the
new language can merge all the modules from Doris, executing
the actions (trajectories, speeches and actions based on events)
specified i n t he p rogram p rovided b y t he d eveloper without
making any changes in the lower layers of the framework.

Index Terms—Social Robots, interactive robots, system
integration, task planning, programming language

I. INTRODUCTION

Social robots are very useful for interacting with people in
different environments. Work in this area has been performed
for many years such as the case of MINERVA, a social
robot for interaction by [1], RHINO [2] [3] which is another
robot dedicated to work in museums. Another robot is NAO
from Aldebaran Robotics [4]. [5] presents another work
for human-robot interaction, in particular, robot emotion,
speech and facial expressions to determine if people feel
comfortable in front of a machine that exhibits basic rational
and intelligent behaviour. Another research in interactive
robots is [6] presenting RHINO XR3 and MARK 3. And
another architecture can be found at [7].

Concerning task planning, several research has been done
to implement the sequential execution of tasks. Different types
of programming languages can be found in [8], showing the
applications (general or robot-specific) o f e veryone o f them.
ROBOL/0 [9] is a programming language oriented to the
navigation behaviour. Other programming language mentioned
is [10] intended to provide actions to a robotic arm. Another
work performed by [11] where the researchers propose a

• a head, attached to the skeleton, used for interaction,
as shown in figure 1c

B. Software architecture

The software is a Client-Server application, enabling direct
communication between Doris (server) and the (client) that
controls it. Figure 2 shows how each module is organized
in Doris. Each block on the figure details a task that is
asynchronously under execution on a different thread, which
means that in the higher level of the architecture, there is a
task handler.

III. THE PROGRAMMING LANGUAGE FOR DORIS

Why is it necessary to introduce a new programming
language in a social robot if there are thousands of them
already? If the robot is intended to work as a tour-guide, why
its own actions are not programmed directly in its program
core? These are the questions made when a new programming
language is designed for a robot. The most appropriate answer
is that each robot user could design a program in order for
the robot to act as the user wants in a simple programming
language and without the necessity of recompiling the core
program which manipulates the robot, always remembering
that Doris is intended to work in a closed environment which
is very variant and in which different events can take place.

Understanding that a tour is a set of actions to be performed
by Doris, the idea of creating a programming language, which
is as any other simple programming language but that also
includes direct commands of Doris movements, configuration
of what, when and how to say sentences and direct actions
over different sensors data, appears.

A. Requirements of the language

Grammar, which is going to be used to program the
sequence of actions for Doris, must contain common features
of all programming languages like input/output instructions,
conditionals clauses, loops, arithmetic operations and boolean
operations. Besides these features, the new programming
language for Doris allows variables definition which can be
either numeric or literals or defined as an array which can
contain both numeric and literals in the same vector.

B. General grammar structure

The grammar of the language is expressed as next:
〈compound stmt〉 ::= 〈if stmt〉
| 〈while stmt〉
| 〈for stmt〉
| 〈funcdef 〉
| 〈vardec〉
| 〈sizeof stmt〉
| 〈say stmt〉
| 〈turn stmt〉
| 〈goto stmt〉
| 〈move stmt〉

〈call-function〉 ::= 〈identifier〉 ’(’ [〈parameter-list〉] ’)’

〈literal-string〉 ::= ’ ‘‘ ’ [a-zA-Z0-9]* ’ ” ’

〈statement-list〉 ::= 〈statement〉 〈statement-list〉 | 〈statement〉

〈statement〉 ::= 〈ident〉 ’=’ 〈expression〉 | 〈compound stmt〉

〈parameter-list〉 ::= 〈ident〉 [’,’ 〈parameter-list〉]

〈expression〉 ::= 〈def 〉 [(’==’ | ’!=’ | ’〈=’ — ’〉=’ | ’〈’ — ’〉’
) 〈def 〉]

〈def 〉 ::= 〈sum〉 [(’+’ | ’-’ | ’and’ | ’or’ | ’not’) 〈sum〉]

〈sum〉 ::= 〈factor〉 [(’*’ | ’/’ | ’%’) 〈factor〉]

〈factor〉 ::= 〈ident〉 | 〈number〉 | 〈expression〉

〈number〉 :;= ’#’ 〈digit-part〉 [’.’ 〈digit-part〉]

〈digit-part〉 ::= (〈digit〉)*

〈digit〉 ::= ’0’ ... ’9’

where different types of statements and basic grammar are
detailed as how to call a function or how literals and numbers
are defined. A basic program is shown as next:

function main()
say[face=happy, attention=front](”Hello Everybody”)
return 0

endfunction

Fig. 3: Basic Program in the language developed for Doris

C. The if statement

The if statement is used for conditional execution.
〈if stmt〉 ::= ’if’ ’(’ 〈expression〉 ’)’ 〈statement-list〉 [’else’
〈statement-list〉] ’endif’

The language developed for Doris should be able to
allow the execution of a group of instructions when certain
expression is true. In cases where that condition is false, a
suite of the else clause is executed if present

if(boolean condition)
say[face=happy, attention=front](”Hello Everybody”)

else
say[face=happy, attention=front](”Bye Everyone”)

endif

Fig. 4: if statement sample

D. The while statement

The while sentence is used for repeating the execution of a
block of statements while certain condition is true.
〈while stmt〉 ::= ’while’ ’(’ 〈expression〉 ’)’ 〈statement-list〉

’endw’

This instruction is needed in cases where Doris is intended
to repeat certain tasks, like asking the same question or moving
forward until some point is reached.

(a) Platform (b) Skeleton (c) Head

Fig. 1: Doris hardware overview

Fig. 2: Software architecture of Doris

while(not location == ”door”)
move(next)

endw

Fig. 5: while statement sample

E. The for statement

The for is used to iterate over a sequence of elements like
a list or an array, for instance, a list of tags read from RFID
sensor.

〈for stmt〉 ::= ’for’ ’(’ 〈expression〉 ’:’ 〈expression〉 ’:’
〈expression〉 ’)’ 〈statement-list〉 ’endfor’

for(var i = #0 : i < sizeof(tags) : i = i + #1)
if(tags[i] == ”2804”)

say(”this painting is from Salvador Dali”)
else

if(tags[i] == ”2804”)
say(”This is a Cardenal Cisneros sculpture”)

endif
endif

endfor

Fig. 6: for statement sample

As seen in algorithm 6, the statement is very similar to
C language for statement, which firstly is a declaration of a
variable, then, secondly, the condition and finally the upgrade

of the variable.

F. Function definitions

Functional programming has always been a very good idea
in all programming languages. This was included in order
to tell Doris the principal function to be executed and also
create action routines which can be called or not from the
main function or other functions.

The grammar is expressed as next:
〈funcdef 〉 ::= ’function’ 〈ident〉 ’([〈parameter-list〉]’)’
〈statement-list〉 [’return’ 〈expression〉] ’endfunction’

function hallway(name)
say[face=happy, attention=front](”Hello Everybody”)
say(”name”)
return 0

endfunction

Fig. 7: Function sample

A new set of statements can be declared into the function,
and it can contain parameters passed by values and also return
a value if the return clause is stated.

G. Variable declaration

As in every language, variables are used for storing
information. For Doris they are very helpful to handle
information coming from sensors, specially the information
provided from the sensors. The grammar is:
〈vardec〉 ::= ’var’ 〈ident〉 [’=’ (〈expression〉 | 〈call-function〉)]

〈vardec〉 ::= ’var’ 〈ident〉 [’=’ ’[’ 〈expression〉 ’,’ 〈expression〉
’,’ ... ’,’ 〈expression〉 ’]’]

var portraitCode = ”8056”
var portraitCodes = [”8056”, #8326, ”8126”, ”8123”]

Fig. 8: Variable declaration

H. The say statement

This command indicates that Doris needs to say a specific
phrase.
〈say stmt〉 ::= ’say’ [’[’ ’attention=’ 〈attention-item〉 ’;’

’face=’ 〈face-item〉 ’]’] ’(’ 〈literal-string〉 ’)’

As it can be observed in the grammar, the instruction can be
executed with extra options. These options are concerning to
the state of the face and the attention direction.

say(”My name is Doris”)
say[face=smiley; attention=left](”Let’s move to the left side
of the room”)

Fig. 9: say instruction

I. The turn statement

The turn command makes the robot turn the amount of
degrees specified as a parameter. The degrees can be specified
as a variable, as a result of a function or writing the value in
degrees.
〈turn stmt〉 ::= ’turn’ ’(’ (〈number〉 | 〈ident〉 | 〈expression〉)

’)’

turn(#90)

Fig. 10: turn instruction

J. The move statement

The move command tells the robot to move to the next or
the previous waypoint specified in the tour database.
〈move stmt〉 ::= ’move’ ’(’ (’next’ | ’prev’) ’)’

move(next)

Fig. 11: move instruction

K. The goto statement

The goto command indicates the robot where to go. The
grammar is specified as next:
〈goto stmt〉 ::= ’goto’ ’(’ (〈number〉 | 〈ident〉 | 〈expression〉

) ’,’ (〈number〉 | 〈ident〉 | 〈expression〉) ’,’ (〈number〉 |
〈ident〉 | 〈expression〉) ’)’

The function contains three values: the first is the sector
identifier in the same map, if #-1 is especified, then the Robot
will remain in the same sector where it is located, and the
other two parameters are position X and Y in the plane and
inside the sector boundaries. An example is shown next:

goto(#-1, #4, #3)
goto(#2, #4, #3)

Fig. 12: goto instruction

L. The sizeof statement

The sizeof command returns the actual size of an array. If
the variable specified is not an array, it will return 1;
〈sizeof stmt〉 ::= ’sizeof’ ’(’ 〈ident〉 ’)’

var portraitCodes = [”8056”, #8326, ”8126”, ”8123”]
var s = sizeof(portraitCodes)

Fig. 13: sizeof instruction

IV. RESULTS

In order to join all the submodules into a single execution, a
program for touring in the Centre of Automation and Robotics
at Universidad Politécnica de Madrid has been developed. The
program is listed in listing 1. The program consists in going to
the entrance of the laboratory and then the robot starts to speak
to the visitors. Then the program makes the robot move to the

first location which is going to be explained. As stated, the
explanations is based on points of interest which are previously
defined and when the robot arrives to the point it will execute
the following command. In this specific case the commands
to provide an explanation is the say instruction.

As it can be observed, events are included in the program.
These events are:

1) onRfidTagsDetected: which subscribes a function to the
event and allows to the interpreter to know what to do
with the tags.

2) onSectorChange: which notifies to the interpreter what
to do when a new sector is loaded in the robot.

Listing 1: Program that performs a tour in the Centre of
Automation and Robotics

1 var f i n i s h e d T o u r = #0
2

3 o n R f i d T a g s D e t e c t e d (r f i d E v e n t)
4 onSec to rChanged (newSec to rEven t)
5

6 f u n c t i o n r f i d E v e n t (t a g s L i s t)
7 var i = #0
8 whi le (i < s i z e o f (t a g s L i s t))
9 i f (t a g s L i s t [i] == ” e280−1160−6000−0207−28

b5−2a04 ”)
10 say (” Tha t b i g box t h a t i s p l a c e d r i g h t

t h e r e a t t h e bottom , i t i s where I
am s t o r e d t o go o u t t h e u n i v e r s i t y ”
)

11 say [f a c e = a f r a i d] (” Tha t t h i n g s c a r e s me
a l o t ”)

12 e n d i f
13 i = i + #1
14 endw
15 endfunc t ion
16

17 f u n c t i o n newSec to rEven t (s e c t o r I d)
18 say (”New s e c t o r a c h i e v e d ”)
19 i f (s e c t o r I d == #0)
20 say [f a c e =happy] (”Now we a r e a t t h e p l a c e

where I have been b u i l t . Th i s i s t h e
Mobile Robots Room”)

21 e x p l a i n M o i l e R o b o t s ()
22 f i n i s h e d T o u r = #1
23 e n d i f
24 endfunc t ion
25

26 f u n c t i o n e x p l a i n M o i l e R o b o t s ()
27 goto (#−1 , # 1 . 6 , # 2 . 2 7)
28 turn (# 0)
29 say [f a c e =happy] (” I f you look a t t h e t o p of

t h a t l i g h t brown c l o s e t , you can f i n d VAD
1 , which was t h e f i r s t mobi le r o b o t a t

t h e l a b o r a t o r y ”)
30 goto (#−1 , # 2 . 4 , # 2 . 2 7)
31 turn (# 9 0)
32 say [f a c e = sad] (” Then we have h e r e our l i t t l e

f i s h Nemo . Some of you may have see n t h e
movie F i n d i n g Nemo . When he g o t l o s t he
a r r i v e d h e r e and became a t h i s l i t t l e
r o b o t t o be used f o r e x p l o r a t i o n ”)

33 goto (#−1 , # 4 . 8 , # 2 . 2 7)
34 turn (# 9 0)
35 say [f a c e = s u r p r i s e] (” R i g h t t h e r e i s a n o t h e r

mobi le r o b o t c a l l e d Blacky . But a s you
can obse rve , i t does n o t have a g o r g e o u s
f a c e l i k e mine and p e o p l e d i d n o t know
how t o i n t e r a c t w i th i t ”)

36 goto (#−1 , # 6 . 6 , # 2 . 2 7)

37 turn (# 9 0)
38 say [f a c e = s u r p r i s e] (”And f i n a l l y , h e r e i s my

p r e d e c e s o r Urbano . He was t o u r i n g a round
museums p e r f o r m i n g a l m o s t t h e same work
l i k e me , b u t he has t u r n e d o l d t h e poor
guy . ”)

39 turn (# 1 8 0)
40 say [f a c e = s u r p r i s e] (” There i s a p o s t e r n e a r

Blacky and can be o b s e r v e d t h a t he and
Urbano have a r r i v e d t o t h e V a l e n c i a
S c i e n c e Museum”)

41 say (” a s I am a g i r l o f h e r house , I s t a y
r i g h t h e r e . ”)

42 say [f a c e =happy] (” Well peop le , There i s
n o t h i n g l e f t t o add b e s i d e s s a y i n g t h a t
be h i nd me i s t h e desk of my maker and
where he has g i v e n me l i f e , l i k e
F r a n k e n s t e i n t o h i s c r e a t i o n . ”)

43 say [f a c e =happy] (” Thank you f o r e v e r y t h i n g and
have a n i c e day . ”)

44 endfunc t ion
45

46 f u n c t i o n main ()
47 goto (#−1 , # 0 . 9 , # 1 1 . 5 0)
48 endfunc t ion

A full video, named Full System Test: Touring in the
Laboratory, where the robot is performing the program
mentioned above can be found at the group’s webpage
gallery Intelligent Control Group UPM-CSIC - Gallery:
http://blogs.upm.es/controlinteligente/en/gallery/

V. CONCLUSIONS

A complete interactive robot for tours in museums and
laboratories has been developed by developing a language
to be able to command all the submodules inside the Doris
architecture.

The programming language proposed for task planning has
a very simple grammar so that any basic programmer can be
able to create a new tour easily. This programming language
integrates different components of the robot like the sensors,
face and voice interaction, emotions, navigation, etc. The
language is a mix between C, Pascal and JavaScript languages
which can be written in a more simplistic way than other
languages developed at the moment for robot’s task planning.

The language also integrates the face and voice modules
which also needed to be synchronized with the lips movements
and the navigation of the robot when arriving to the specific
place.

ACKNOWLEDGEMENT

The results in this paper report the research supported by the
DPI2017-86915-C3-3-R: Técnicas de Inteligencia Artificial y
Ayuda a la Navegación Autónoma that is under by the Spanish
Ministry of Science, Innovation and Universities.

This research has also received support from the
RoboCity2030-IV-CM project (Robótica aplicada a la mejora
de la calidad de vida de los ciudadanos. fase IV; S2018/NMT-
4331), funded by Programas de Actividades I+D en la
Comunidad de Madrid and cofunded by Structural Funds of
the EU.

REFERENCES

[1] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. Cremers,
F. Dellaert, D. Fox, D. Hahnel, C. Rosenberg, N. Roy, J. Schulte, and
D. Schulz, “Probabilistic algorithms and the interactive museum tour-
guide minerva,” Journal of Robotics Research, vol. 19, pp. 972–999,
November 2000.

[2] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer,
D. Schulz, W. Steiner, and S. Thrun, “Experiences with an interactive
museum tour-guide robot,” Elsevier Artificial Intelligence, vol. 114,
pp. 3–55, October 1999.

[3] W. Burgard, A. B. Cremers, D. Fox, D. Hanel, G. Lakemeyer, D. Schulz,
W. Steiner, and S. Thrun, “The interactive museum tour-guide robot,” in
AAAI ’98/IAAI ’98 Proceedings of the fifteenth national/tenth conference
on Artificial intelligence/Innovative applications of artificial intelligence,
pp. 11–18, 1998.

[4] R. G. Boboc, M. Horat,iu, and D. Talabă, “An educational humanoid
laboratory tour guide robot,” Procedia - Social and Behavioral Sciences,
vol. 141, pp. 424–430, 2014.

[5] D. Vogiatzis, C. D. Spyropoulos, S. Konstantopoulos, V. Karkaletsis,
Z. Kasap, C. Matheson, and O. Deroo, “An affective robot guide
to museums,” in 4th International Workshop on Human-Computer
Conversation, 2008.

[6] M. Tekerek, “A human robot interaction application for robotic
education,” Procedia - Social and Behavioral Sciences, vol. 1, no. 1,
pp. 2164–2169, 2009.

[7] R. Stricker, S. Muller, E. Einhor, C. Schroter, M. Volkhardt, K. Debes,
and H.-M. Gross, “Konrad and suse, two robots guiding visitors in
a university building,” in Autonomous Mobile Systems (AMS 2012),
pp. 49–58, 2012.

[8] S. Yang, X. Mao, B. Ge, and S. Yang, “The roadmap and challenges
of robot programming languages,” in IEEE International Conference on
Systems, Man, and Cybernetics, pp. 328–333, 2015.

[9] S. Suzuki and S. Yuta, “Analysis and description of sensor based
behavior program of autonomous robot using action mode representation
and analysis and description of sensor based behavior program
of autonomous robot using action mode representation and robol/0
language,” in IEEE/RSJ International Workshop on Intelligent, vol. 3,
pp. 1497–1502, 1991.

[10] J. Lapham, “Robotscript™: the introduction of a universal robot
programming language,” Industrial Robot: An International Journal,
vol. 26, no. 1, pp. 17–25, 1999.

[11] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl, “Golog:
A logic programming language for dynamic domains,” Journal of Logic
Programming, vol. 31, no. 1-3, pp. 59–83, 1997.

[12] G. D. Giacomo, Y. Lespérance, and H. J. Levesque, “Congolog, a
concurrent programming language based on the situation calculus,”
Elsevier Artificial Intelligence, vol. 121, no. 1-2, pp. 109–169, 2000.

[13] C. Pinciroli and G. Beltrame, “A programming language for robot
swarms,” IEEE Software, vol. 33, no. 4, pp. 97–100, 2016.

[14] M. Stenmark and P. Nugues, “Natural language programming of
industrial robots,” in IEEE ISR, pp. 1–5, 2013.

[15] J. P. Diprose, “End user robot programming via visual languages,” in
IEEE Symposium on Visual Languages and Human-Centric Computing:
Graduate Consortium, pp. 229–230, 2011.

[16] M. Lutovac, G. Ferenc, JelenaVidaković, Z. Dimić, and V. Kvrgić,
“Usage of xml and p code for robot motion control,” in Mediterranean
Conference on Embedded Computing, pp. 162–165, 2012.

[17] B. P. E. Alvarado, F. Matia, and R. Galan, “Improving indoor
robots localisation by fusing different sensors,” in IEEE International
Conference on Intelligent Robots and Systems (IROS’18), pp. 2616–
2623, 2018.

[18] B. P. E. Alvarado, R. Gonzalez, F. Matia, and P. de la Puente, “Sensor
fusion for tour-guide robot localization,” IEEE Access, vol. 6, pp. 78947
– 78964, 2018.

