
Benchmarking Robustness of Deep Reinforcement
Learning approaches to Online Portfolio

Management
Marc Velay∗, Bich-Liên Doan∗, Arpad Rimmel∗ , Fabrice Popineau∗ and Fabrice Daniel†

∗ Université Paris-Saclay, CNRS, CentraleSupélec
Laboratoire Interdisciplinaire des Sciences du Numérique

91190 Gif-sur-Yvette, France
Email: firstname.lastname@centralesupelec.fr

† LUSIS
5 cité Rougemont

75002 Paris, France
Email: fabrice.daniel@lusis.fr

Abstract—Deep Reinforcement Learning (DRL) approaches to
Online Portfolio Selection (OLPS) have grown in popularity in
recent years. The sensitive nature of training Reinforcement
Learning agents implies a need for extensive efforts in market
representation, behavior objectives, and training processes, which
have often been lacking in previous works. We propose a training
and evaluation process to assess the performance of classical DRL
algorithms for portfolio management. We found that most DRL
algorithms were not robust, with strategies generalizing poorly
and degrading quickly during backtesting.

Index Terms—OLPS · DRL · Portfolio Management · Bench-
marking · Robustness

I. INTRODUCTION

Improvements in Reinforcement Learning (RL), specifically
Deep Reinforcement Learning (DRL) have contributed to new
state-of-the-art performances in many fields from robotics [8],
autonomous vehicles [13] and games [9]. These improvements
have also led to a broad application to fields previously
dominated by heuristic approaches. Online Portfolio Selection
(OLPS) has seen a large increase in the popularity of DRL
methods, leading to seemingly conclusive and positive results.
OLPS is a dynamic management of financial assets, where
we have the opportunity to redistribute funds across assets
regularly, a sequential decision-making problem. This allows
the managing algorithm to adapt to market changes with the
aim of outperforming index performance.

However, evaluations of existing works often rely on limited
metrics and protocols, which may not be suitable for portfolio
management. Many works cannot be reproduced due to data
unavailability or lack of experimental information. OLPS is
unlike many other RL problems due to its high uncertainty

This work benefited from the support of the Chair ”Artificial intelligence ap-
plied to credit card fraud detection and trading” led by CENTRALESUPELEC
and sponsored by LUSIS. This work was performed using HPC resources
from the ”Mésocentre” computing center of CentraleSupélec, École Normale
Supérieure Paris-Saclay and Université Paris-Saclay supported by CNRS and
Région Île-de-France (https://mesocentre.universite-paris-scalay.fr/).

and non-stationary nature. The financial market, used as the
RL agent’s environment, has a disproportionate impact on
the proposed reward functions and lack of predictability.
Furthermore, RL algorithms are very sensitive to hyperpa-
rameter selection and initialization, which require additional
evaluations and consideration. Many published results often
contain single-initialization results, which may misrepresent
the capabilities of an approach and yield poorer performance
if deployed. Furthermore, traditional metrics only indicate
the performance of an algorithm during its conception phase,
close to its training data. We have found that agents tend to
overfit, picking the same assets regardless of market variations,
which reflect favorably in traditional metrics. However, when
the market evolves, the static behavior degrades. Evaluating
the robustness of algorithms and their capacity to adapt to
uncertainty and out-of-distribution data gives greater insight
into their training quality and generalization capabilities.

The aim of this work is to provide a standardized compar-
ison process to assess portfolio management algorithms. The
process provides reproducible results on the performance of
the management agents. Reinforcement Learning is a complex
task with many components sensitive to tuning and design
choices. The proposed training and evaluation setup measures
the robustness and generalization capabilities of our bench-
marked algorithms. We rely on public data that are freely
available and open-source implementations of DRL algorithms
to obtain transparent comparisons of popular approaches to
OLPS. We focus on evaluating the training quality of our
agents and their robustness to never-seen market conditions.
To the best of our knowledge, there is no large comparison of
approaches in this domain, with multi-dimensional evaluation
of components’ contribution to performance.

II. RELATED WORKS

Previous works have often focused on single Deep Re-
inforcement Learning approaches, generally improving one

ar
X

iv
:2

30
6.

10
95

0v
1 

 [
cs

.L
G

] 
 1

9 
Ju

n 
20

23



aspect of the problem. In this section, we compare different
methods that have been previously presented. We focus on the
learning algorithms used, the ways to represent the environ-
ment, how they modify the portfolio positions, and how they
influence the learned behavior through rewards. These related
works provide the different components which we evaluated
in our experiment.

A. Learning Algorithms for OLPS

TABLE I
POPULAR LEARNING ALGORITHMS

DDPG PPO A2C SAC
[1, 3, 5, 6, 7, 15, 16] [3, 7, 15] [3] [3]

The most popular learning algorithm from Table I is
Deep Deterministic Policy Gradient (DDPG), an iteration upon
the Policy Gradient algorithm, which is an efficient way
to include continuous states and actions. We found works
which made use of more recent algorithms that also improve
upon Policy Gradients, such as Proximal Policy Optimization
(PPO), Advantage Actor-Critic (A2C), and Soft Actor-Critic
(SAC). Some authors modified the algorithms to improve
generalization capabilities through data augmentation [1, 6, 7],
resulting in some performance improvements. Others proposed
policy ensembles [14], with the best-performing policy on
recent historic data controlling the portfolio for a given time.

PPO is the only on-policy algorithm, learning from its recent
experiences. DDPG, A2C, and SAC are off-policy algorithms
exploring many paths in the environment for each learning
iteration. This approach can avoid staying in local optima by
having a broader spectrum of experiences. However, this keeps
older experiences relevant during learning. This is efficient for
problems with large spaces to explore and data availability
to support such a process, where transitions are infrequently
replayed. OLPS has limited data, with roughly 2500 points
for 20 years of history. This is a limiting factor that may have
motivated some authors to augment their data. However, this
can also be mitigated by sampling subsets of assets, where
each set represents a new distinct environment.

PPO and SAC include mechanisms to increase gradient step
stability, such as entropy regularization or constraining step
size to the neighborhood of previous weights. This may be
useful for high-uncertainty environments. DDPG and A2C do
not provide such mechanisms, however they provide the ability
to evaluate an actor through multiple critics.

B. Market Representations

TABLE II
POPULAR MARKET REPRESENTATIONS

Current Prices Sliding Window Sparse Window Context
[3, 6, 14] [5, 7] [1, 11] [1, 11, 15, 16]

Each representation of the market in Table II must contain
enough information for an agent to select the best action.

Based on MDPs, this should only contain information about
the current state as they are independent. This theoretically
sound approach was tried in previous works and may include
financial indicators, aggregates of past prices, current asset
allocations, or asset correlations. However, modeling complex
time series often requires past data points for more accuracy,
which can be done using sliding windows of past prices, which
may be considered unique states. This was improved by using
sparse sliding windows, drastically reducing the state space.

Some previous works argue that the financial market may
be a Partially Observable MDP, requiring additional contextual
information to accurately select actions. Frequent uses include
NLP encodings or historical price statistics. A rare approach
is Technical Analysis Indicators used by human traders.

C. Management Rewards

TABLE III
POPULAR REWARDS

Daily Returns Episodic Returns Rate of Return Risk
[3, 6, 7, 11, 14, 15] [1] [5] [16]

The rewards in in Table III control the desired behavior
of agents. Different metrics can favor risk-taking, portfolio
turnover, or reach a trade-off between the two. The most
popular approach employed by previous works consists of
measuring the net difference in portfolio value between two
days. This difference can be between consecutive days or a
total difference over the trading period. However, this approach
is nonstationary, as large changes in valuation between the start
and end of a trading period can impact their value, leading to
perceived changes in rewards while they are proportionally
similar. To remedy this caveat, some works propose using a
rate of returns or an average daily log return. An alternative
uses a composite function that rewards gains but constrains
the turnover through regularization.

D. Limitations

Most of the previously cited works lack one or more
measures to evaluate their algorithms fully. Some publications
use private data, which may never be reproduced due to their
nature. Others lack information about selected assets or the
periods during which they have evaluated performance. The
use of public financial data, with clearly defined training
and backtesting processes, may remedy this caveat and allow
others to reproduce our results.

All works evaluate their algorithms with classic financial
metrics, such as net returns, risk metrics, including Sharpe
and Sortino ratios or Maximum DrawDown. While these
do well to evaluate portfolio management, we have found
that overfitting agents predicting the same allocation weights
regardless of selected assets and market changes had good
performance measures in validation but would quickly become
obsolete if deployed. Worse, many previous works only share
a single result for their approaches, lacking confidence mea-
sures. Combined with the difficulties of training DRL agents,



the same algorithm implementation with the same data may
yield completely different results if initialized with different
seeds. While the published results may be encouraging, they
may not be representative of their validity for future periods.
Training multiple agents, with different initializations, for each
approach would allow the computation of confidence metrics
to validate the results.

Most works are compared to classic portfolio optimization
algorithms, such as Mean-Variance Optimization, while few
compare to other DRL approaches. Combined with the lack of
reproducibility from the first point, we cannot determine why
we should choose their approach compared to other solutions.
This motivates us to include a broad range of methods in this
work to determine the preferred use of learning algorithms,
market representations, and behavior objectives.

III. DEEP REINFORCEMENT LEARNING FOR ONLINE
PORTFOLIO SELECTION

Based on previous works, we define our OLPS environment
such that an agent allocates wealth across N assets over T
time steps. The actions directly impact the weights of the
assets in the portfolio, such that each asset corresponds to
an action dimension. We add the possibility for the agent to
keep liquidity to reduce portfolio volatility.

at = {a ∈ RN+1;

N∑
i=0

ai = 1, ai ∈ [0, 1]}

For each time step, after rebalancing the portfolio, we observe
a transition, composed of a reward and a new state. The
aim of training agents is to find the sequence of actions that
maximizes the rewards obtained during an episode.

We select a set of four rewards to optimize the behavior of
the algorithms based on previous works. Daily net returns are
frequently used and correspond most to the MDP framework.
Yet, it is complex to attribute a reward to each action, as it is
influenced by previous allocations and price changes, leading
to delayed payoffs. Episodic rewards evaluate management
over T time steps, smoothing responsibility from individual
actions to sequential decisions. Total Net Returns measures
the total wealth changes over the T periods. Episodic Rate
of Returns is numerically more interesting, being stationary,
with a value range closer to RL recommendations. Finally,
the Sortino ratio, described in the experiments section, is a
measure of risk, which may lead to more careful management.
We aimed to compare the influence of each reward function
on management capabilities.

Agents must learn the optimal actions for given states to
maximize rewards. The choice of market representations in-
fluences the quality of state-action-reward mapping. Represen-
tations containing more information add complexity through
higher state dimensions. Using only market data, composed
of Open, High, Low, and Adjusted Closing prices, and Vol-
ume, we select four market representations. The Markovian
Representation is the default, using only the five normalized
OHLCV values for each asset for a given time t. This results

in a tensor of one dimension RN∗5. To add more information
about the recent fluctuations, we use a continuous Sliding
Window Representation, containing the normalized OHLCV
values of the last month. This state is composed of a two-
dimensional tensor of shape R21×N∗5. A solution to reduce the
substantial state size of the windowed representation is to use
a sparse sliding window, as individual distant prices have less
influence on coming variations. The Lagged Representation
only uses data from the past five open days and a day 2-3-4
weeks ago, reducing the state dimensions to R8×N∗5. Finally,
human traders have used technical analysis for the past decades
to better understand the market. The Indicators Representation
uses raw OHLCV values to compute a synthesis of past
market conditions. We include the change since the last time
step, MACD, Bollinger bands bounds, RSI, CCI, DX, and a
smoothed 30 days moving average of closing prices for a state
tensor of dimension RN∗8.

Finally, to learn the state-action-reward mapping, we rely
on popular DRL algorithms. We select SAC, PPO, DDPG,
and A2C based on their previously mentioned differences and
benefits.

IV. EXPERIMENTS

In this section, we present market data acquisition and
processing, algorithm details and training, and performance
measures.

A. Data Processing

We focused on S&P500 constituent stocks at the date of
January 2023, for the period from January 2010 to December
2022. We reserved the years 2021-2022 for backtesting and
used the remaining 11 years for training. We analyzed 500
assets, from which we composed a 20-asset portfolio. During
training, 20 stocks are randomly subsampled. Due to the
evolving nature of the market, not all assets existed at the
start of the historical data. We excluded those missing from
being sampled, resulting in a growing stock pool as dates
approach the present. The training period was randomly split
into non-overlapping training and validation sets of 60 days.
We accounted for the range of historical data required for some
market representations, such as sliding windows, to avoid
leaking validation data into training.

For backtesting, we manually selected 20 assets from di-
verse industries with moderate to high returns for the period.
This guarantees that every evaluation was done in the same
universe, while limiting performance skewing from selecting
only top-performing assets.

Instead of using raw Open, High, Low, and Close prices,
we normalized them to obtain stationary values. The values
we used in most market representations, excluding indicators,
is xt =

pt

pt−1
− 1, where p is the price. The starting value of

the portfolio was 100000USD.

B. Training agents

Reinforcement Learning algorithms are very sensitive to
both initialization and hyperparameter selection. The first step



is to find a configuration that converges after a given number
of iterations. For each algorithm, we ran 100 trials with Optuna
TPE sweeper, which randomly samples sets of parameters
around the previous best runs. The samples vary for each ap-
proach based on the RL algorithm used. However, the volume
of parameters to set for the environment, neural networks, and
learning algorithms is very large. From experience and domain
knowledge, we selected parameters with fixed, reasonable
values, that were excluded from sweeps. This is also motivated
by the substantial amount of compute time required to train a
single trial in a sweep, ranging between 2 and 5 hours on a
CPU with 40 cores. The market representations were set based
on reasonable values, such as past month sliding windows and
most frequently used financial indicators. This approach is
motivated by the less sensitive nature of the representations
to small changes.

During the hyperparameter sweep, we trained an agent
on the training set and evaluated it on the validation sets.
Their starting dates and lengths were shared across all trials
to avoid bias through market conditions. The result is a set
of hyperparameters for which training converges for a given
algorithm combination. We used this set to train multiple
agents for the same algorithm using different initialization
seeds. This training phase was longer than the trials, with
no early stops. The best checkpoint on the validation set
was selected as representative. Limited by compute time,
we trained five agents for each algorithm, using different
initialization seeds [4]. The end result is 320 trained agents
to backtest.

C. Backtesting Evaluation

We backtest all our algorithms on the two-year period of
2021-2022. We manually selected 20 assets from different
sectors (see table IV). All agents, heuristic or DRL-based,
were evaluated on the same period. Some representations
required historical data, which overlaps the training data.

TABLE IV
ASSETS USED IN BACKTEST

Tech Healthcare Industry Finance Energy

AAPL UNH ALLE JPM XOM
MSFT JNJ AME BAC CVX
GOOG PFE BA WFC NEE
AMZN ABBV CAT MS COP

Using the logged daily actions, we computed the per-
formance and robustness metrics. For performance, we use
traditional finance metrics. The first is the portfolio returns,
defined as PR = Valuet − Valuet−n, with n the comparison
period. Specifically, n = 1 the daily returns and n = T , T
being the length of the backtesting period. Portfolio Returns
are used as the foundation of most other metrics. From net
returns, we obtain the rate of returns, a metric independent
of the initial funds, defined as RoR = Valuet−Valuet−n

Valuet−n
. The

previous metrics evaluate the profits, but investors are often
interested in risk management. We use the Sortino ratio based

on the distribution of losses. It only penalizes downward
volatility, defined as:

Sortino =
PR−RFR

σd
, σd =

√
1

n

∑
<threshold

(PR−RFR)2

With PR, the annual returns, RFR, the risk-free rate, and σd,
the distribution of downsides. For our backtest, the RFR and
downside threshold are 0%. The final metric is the Maximum
Drawdown. It is defined as:

MDD =
Bottom value − Peak value

Peak value
It measures the maximum value loss an agent incurred during
the period, where investors would generally discard algorithms
with MMD > 20%.

We define robustness as the ability of an agent to resist
internal and external variations and uncertainty. Algorithms
should be reliable in out-of-distribution data and volatile peri-
ods, which is expected to occur in unseen market conditions.
We focus on observing the behavior of agents over time [2],
in worse-case scenarios [10, 12], and the relative performance
between training and backtesting.

The first robustness metric is the Conditional Value at Risk.
The literature defines it as:

CV aR =
1

1− 0.05

∫ V aR

−1

xp(x)dx

Where VaR, the Value at Risk, is the average 5%, a popular
value, worse rate of returns, and x is a given rate lower
than this threshold. CVaR measures the expected returns in
worse-case scenarios. We use this metric because we expect
DRL approaches to lack some of the stability that is found in
traditional heuristic methods. Algorithms that manage returns
with low kurtosis and, thus higher CVaR are deemed to be
more stable.

The second robustness aspect to be evaluated is the gen-
eralization capabilities of the algorithms. We compare their
performance during training and backtesting and the perfor-
mance trend over sequential periods of the backtest. Both rely
on the Information Ratio, a financial metric that describes an
investment’s performance beyond the market’s returns. It is
considered a measure of active management.

IR =
mean(PRt − IndexRt)

std(PRt − IndexRt)
)

Where IndexR is the market’s index returns. The first use-case
is an IR Quotient, comparing the management performance in
the validation set to the performance during the backtest:

IRq =
IRbacktest

IRvalidation

Values closer to 1 indicate the algorithm preserves its per-
formance on out-of-distribution data. The second use case is
the IR trend, evaluating the relevance of our trained algo-
rithms with regard to market condition shifts. We compare
the monthly performance of an agent to a static market index.



Fig. 1. Rate of Return

The aim is to measure how well the learned behavior stays
relevant over time. We define it as:

IRtrend =

T∑
t=0

(t− T/2)(IRt − ¯IR)

T∑
t=0

(t− T/2)2

Both metrics rely on a market index. While our assets belong
to the S&P500, using its price as a point of comparison is
unfair because we use an unrepresentative subset. Smaller
portfolios are subject to more volatility, and hand-picking
assets results in performance biases. The market index we
use is defined as a Mean-Variance Optimization allocation
at t = 0 and rebalanced monthly during the period. This
approach yields a more realistic base of comparison for our
algorithms.

The third robustness aspect is the stability of the algorithms.
We aim to distinguish one-off successes from actually learned
behaviors. Using multiple seeds trained per agent, we evaluate
the variance of metrics. Agents trained on the same data, with
the same input, should yield similar results. Therefore, the
lower the interseed variance, the more robust the approach.

V. RESULTS

During the backtesting period, we gathered trajectories for
64 combinations of algorithms. Each metric is the average and
standard deviation of performance over the 5 seeds. Due to the
volume, we have chosen to represent the 10 combinations with
the highest rates of returns, as well as the two worse, as a basis
of comparison. The names are abbreviated versions of previous
approaches, where ”default” are daily prices, ”lagged” are
sparse windows, ”net” are daily returns and ”value” are value
changes over an episode.

The results were obtained following an hyperparameter
sweep, where we selected the best performing set. These sets
of parameters were trained for enough iterations to reach a
plateau and the best checkpoint was chosen. Each algorithm
was trained to the best of our ability. From table V, we can
see that most top-performing approaches performed relatively
close to each other in terms of performance, with net returns in
the 23-28% range over two years. Only the worst-performing
approach lost wealth, on average, compared to the 63 others
having positive returns. Most approaches reliably reached
comparable results across seeds, with relatively low spread
of performance. Most approaches beat out the Mean Variance
Optimization algorithm by a fair margin.

However, while most returns are interesting, their risk
management is lacking, reaching high volatility with regard
to the returns, as denoted by the Sortino ratio. This volatility
is confirmed by the Maximum DrawDown measures, which
are close to the limit of what may be tolerated for risky
management.

From Fig. 1, we evaluate the effect of each component
on algorithms’ performance. The highest impact comes from
the representations, where the daily prices performed best,
followed closely by the continuous sliding window. Surpris-
ingly, the indicators and sparse windows lead to markedly
worse performance. The reward functions had no discernible
impact on performance, with the average returns for each
function being almost identical. However, RoR provided the
best performance in most cases, with a lower variance in
results, proving to be more reliable. Finally, the training
algorithms had a low impact, each outperforming others for
given combinations of states and rewards. DDPG came out
better in most configurations, but did result in the single worse
performance. We can conclude that an approach based on daily
values, which aims to maximize episodic Rate of Returns using
DDPG would generally yield the best results.

The robustness metrics indicate underlying problems for
our algorithms. The IR Quotients for our agents lie around
0.6, indicating a large degradation of performance between
the validation and backtesting performances. Agents learned
to pick winning assets during the training phase, but these
were no longer the best performing at later dates. This aspect
is confirmed by the IR Trend, which indicates a monthly
degradation in performance for the length of the backtest, as
the market shifts. Both metrics point to overfitting of action
policies, confirmed by analyzing allocations over a period,
with no variations in positions for some agents. Generalizable
behaviors should focus on recognizing patterns instead of
remembering which assets were previously winning. We can
point to the learning efficiency of the algorithms, which are
not suited for the low volume of data available in OLPS.

VI. CONCLUSION

We proposed a standardized training and evaluation process
to evaluate the performance and robustness of a large scope of
OLPS approaches. We found that most approaches performed
relatively close to one another. Yet, the two types of metrics



TABLE V
PERFORMANCE METRICS

Rank Name RoR Sortino MDD CVaR IR IR Trend IR Quotient
MVO 0.98 -0.066 -21.9% - - - -

1 ppo default sortino 1.28 ± 0.05 0.94 -18.9% -2204 ± 71 0.05 -0.0051 ± 0.002 0.76 ± 0.29
2 ddpg default net 1.26 ± 0.06 0.82 -20.9% -2418 ± 133 0.05 -0.0071 ± 0.002 0.49 ± 0.04
3 a2c default net 1.26 ± 0.02 0.88 -19.2% -2214 ± 51 0.05 -0.0068 ± 0.001 0.55 ± 0.06
4 ddpg default value 1.25 ± 0.07 0.90 -19.3% -2124 ± 52 0.05 -0.0070 ± 0.003 0.59 ± 0.12
5 ddpg default sortino 1.25 ± 0.05 0.89 -19.4% -2123 ± 101 0.05 -0.0047 ± 0.003 0.60 ± 0.17
6 sac default net 1.25 ± 0.07 0.87 -18.6% -2120 ± 121 0.05 -0.0047 ± 0.001 0.62 ± 0.27
7 a2c windowed value 1.24 ± 0.05 0.85 -18.8% -2114 ± 207 0.04 -0.0055 ± 0.002 0.56 ± 0.17
8 ppo default value 1.24 ± 0.08 0.83 -19.2% -2195 ± 86 0.04 -0.0061 ± 0.003 0.51 ± 0.22
9 ddpg windowed sortino 1.23 ± 0.06 0.85 -19.2% -2071 ± 98 0.04 -0.0044 ± 0.001 0.53 ± 0.19
10 ddpg windowed ror 1.23 ± 0.04 0.85 -18.2% -2067 ± 156 0.04 -0.0045 ± 0.002 0.56 ± 0.09
63 a2c indicators value 1.09 ± 0.10 0.31 -24.7% -2064 ± 172 0.02 -0.0065 ± 0.001 0.21 ± 0.29
64 ddpg indicators value 0.80 ± 0.09 -0.93 -33.1% -1698 ± 185 -0.04 0.0004 ± 0.004 0.68 ± 0.88

indicate opposing results. While the returns and risk manage-
ment were interesting, fairly beating out a popular allocation
algorithm, they do not generalize well to unseen data and their
performance degrades markedly over time. This highlights the
learning efficiency limits of popular algorithms applied to the
OLPS problem. Further improvements to these aspects may
yield more robust approaches that profitably manage portfolios
for longer lengths of time.

REFERENCES

[1] Eric Benhamou et al. “Bridging the Gap Between
Markowitz Planning and Deep Reinforcement Learn-
ing”. In: ICAPS PRL (2020).

[2] Stephanie C. Y. Chan et al. “Measuring the Relia-
bility of Reinforcement Learning Algorithms”. In: In-
ternational Conference on Learning Representations.
Dec. 20, 2019.

[3] Ricard Durall. Asset Allocation: From Markowitz to
Deep Reinforcement Learning. July 14, 2022.

[4] Peter Henderson et al. “Deep Reinforcement Learning
That Matters”. In: Proceedings of the AAAI Conference
on Artificial Intelligence 32.1 (Apr. 29, 2018). DOI: 10.
1609/aaai.v32i1.11694.

[5] Zhengyao Jiang, Dixing Xu, and Jinjun Liang. “A Deep
Reinforcement Learning Framework for the Financial
Portfolio Management Problem”. In: arXiv:1706.10059
(July 16, 2017).

[6] Xinyi Li et al. “Optimistic Bull or Pessimistic Bear:
Adaptive Deep Reinforcement Learning for Stock
Portfolio Allocation”. In: arXiv:1907.01503 (June 20,
2019).

[7] Zhipeng Liang et al. “Adversarial Deep Rein-
forcement Learning in Portfolio Management”. In:
arXiv:1808.09940 (Nov. 17, 2018).

[8] Timothy P. Lillicrap et al. “Continuous control with
deep reinforcement learning”. In: 4th International Con-
ference on Learning Representations. Ed. by Yoshua
Bengio and Yann LeCun. 2016.

[9] Volodymyr Mnih et al. “Human-level control through
deep reinforcement learning”. In: Nature 518.7540
(Feb. 26, 2015), pp. 529–533. DOI: 10/gc3h75.

[10] Janosch Moos et al. “Robust Reinforcement Learning:
A Review of Foundations and Recent Advances”. In:
Machine Learning and Knowledge Extraction 4.1 (Mar.
2022), pp. 276–315. DOI: 10.3390/make4010013.

[11] Uta Pigorsch and Sebastian Schäfer. “High-
Dimensional Stock Portfolio Trading with Deep
Reinforcement Learning”. In: 2022 IEEE Symposium on
Computational Intelligence for Financial Engineering
and Economics (CIFEr) (Dec. 9, 2021).

[12] Adarsh Subbaswamy, Roy Adams, and Suchi Saria.
“Evaluating Model Robustness and Stability to Dataset
Shift”. In: International Conference on Artificial Intel-
ligence and Statistics. PMLR, Mar. 18, 2021, pp. 2611–
2619.

[13] Sen Wang, Daoyuan Jia, and Xinshuo Weng. Deep Re-
inforcement Learning for Autonomous Driving. May 19,
2019. DOI: 10.48550/arXiv.1811.11329.

[14] Hongyang Yang et al. Deep Reinforcement Learning
for Automated Stock Trading: An Ensemble Strategy.
SSRN Scholarly Paper ID 3690996. Rochester, NY:
Social Science Research Network, Sept. 11, 2020. DOI:
10.2139/ssrn.3690996.

[15] Yunan Ye et al. “Reinforcement-Learning Based Port-
folio Management with Augmented Asset Movement
Prediction States”. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence 34.1 (Apr. 3, 2020),
pp. 1112–1119. DOI: 10.1609/aaai.v34i01.5462.

[16] Yifan Zhang et al. “Cost-Sensitive Portfolio Selection
via Deep Reinforcement Learning”. In: IEEE Transac-
tions on Knowledge and Data Engineering PP (Mar. 10,
2020), pp. 1–1. DOI: 10/gj6rzg.

https://doi.org/10.1609/aaai.v32i1.11694
https://doi.org/10.1609/aaai.v32i1.11694
https://doi.org/10/gc3h75
https://doi.org/10.3390/make4010013
https://doi.org/10.48550/arXiv.1811.11329
https://doi.org/10.2139/ssrn.3690996
https://doi.org/10.1609/aaai.v34i01.5462
https://doi.org/10/gj6rzg

	Introduction
	Related Works
	Learning Algorithms for OLPS
	Market Representations
	Management Rewards
	Limitations

	Deep Reinforcement Learning for Online Portfolio Selection
	Experiments
	Data Processing
	Training agents
	Backtesting Evaluation

	Results
	Conclusion

