Ad Real-Time Systems, 23, 127-141, 2002
‘@ © 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Using Control Theory to Achieve Service Level
Objectives In Performance Management

S. PAREKH sujay@us.ibm.com
IBM
N. GANDHI gandhin@engin.umich.edu

University of Michigan

J. HELLERSTEIN hellers@us.ibm.com
IBM
D. TILBURY tilbury@umich.edu

University of Michigan

T. JAYRAM jayram@us.ibm.com
IBM
J. BIGUS bigus@us.ibm.com
IBM

Abstract. A widely used approach to achieving service level objectives for a software system (e.g., an email
server) is to add a controller that manipulates the target system’s tuning parameters. We describe a methodology
for designing such controllers for software systems that builds on classical control theory. The classical approach
proceeds in two steps: system identification and controller design. In system identification, we construct
mathematical models of the target system. Traditionally, this has been based on a first-principles approach, using
detailed knowledge of the target system. Such models can be complex and difficult to build, validate, use, and
maintain. In our methodology, a statistical (ARMA) model is fit to historical measurements of the target being
controlled. These models are easier to obtain and use and allow us to apply control-theoretic design techniques
to a larger class of systems. When applied to a Lotus Notes groupware server, we obtain model-fits with R? no
lower than 75% and as high as 98%.

In controller design, an analysis of the models leads to a controller that will achieve the service level
objectives. We report on an analysis of a closed-loop system using an integral control law with Lotus Notes as
the target. The objective is to maintain a reference queue length. Using root-locus analysis from control theory,
we are able to predict the occurrence (or absence) of controller-induced oscillations in the system’s response.
Such oscillations are undesirable since they increase variability, thereby resulting in a failure to meet the service
level objective. We implement this controller for a real Lotus Notes system, and observe a remarkable
correspondence between the behavior of the real system and the predictions of the analysis. This indicates that
the control theoretic analysis is sufficient to select controller parameters that meet the desired goals, and the need
for simulations is reduced.

Keywords: control theory, system modeling, performance management

1. Introduction

Wide-spread reliance on IT systems has focused increasing attention on service level
management, especially achieving response time and throughput objectives. A commonly

128 PAREKH ET AL.

used approach is to take an existing target system and add a controller that has access to
the metrics and tuning parameters of the system. Based on the feedback information
present in the metrics, the controller manipulates the tuning parameters to achieve the
desired service level objectives. Examples of such closed-loop software systems abound:
the network dispatcher (Iyenger et al., 2000; Hunt et al., 1998), which adjusts load
balancing parameters in clusters of web servers; the Multiple Virtual Storage (MVS)
workload manager (Aman et al., 1997), which adjusts memory allocations and other
operating system tuning parameters to achieve response time and throughput objectives;
and fair share schedulers (Essick, 1990), which adjust Unix nice tuning parameter to
achieve fractional allocations of CPU.

While considerable attention has been focused on the software mechanisms needed to
enable closed-loop systems (e.g., instrumentation and tuning control access), much less
attention has been paid to a rigorous evaluation of the behavior of the controller.
Computer scientists most frequently use simulations to understand and evaluate controller
behavior. However, this approach can be time-consuming, expensive, and error prone.
The design of feedback control systems is also studied extensively in other engineering
disciplines, such as mechanical and aeronautical engineering. Here, designers most often
employ linear control theory (Ogata, 1997), which provides sound and rigorous
mathematical principles for the design and analysis of closed-loop systems.

The classical controller design methodology consists of two steps:

1. System identification: Construct a transfer function which relates past and present
input values to past and present output values. These transfer functions constitute a
model of the system.

2. Controller design: Based on properties of the transfer function and the desired
objectives, a particular control law is chosen. Techniques from control theory are
used to predict how the system will behave once the chosen controller is added to it.

The goal of our work is to develop a methodology for, and assess the value of, applying
control theory to the evaluation of controllers used for service level management of
software systems. This is not a novel idea: the application of control theory to analyzing
software systems has been prevalent in the networking arena. This work has generally
used a first-principles approach to system identification. Chiu and Jain (1989) derive
optimal convergence and fairness policies for congestion avoidance based on detailed
knowledge of (or assumptions about) the protocol, workload, losses, etc. Keshav (1991)
provides a more detailed analysis for performing flow control in a network with a very
specific set of assumptions about the networking infrastructure and protocols. More
recent work includes Mascolo et al. (1999) and Shor et al. (2000), both of which apply
control theoretic ideas to analyzing the congestion control behavior in TCP. Work by
Benmohamed and Meerkov (1993) for packet-switched networks, and further extended
by Mascolo et al. (1996) for ATM also follow the first-principles approach. Both these
papers have a very detailed system model and they do some sophisticated analyses.
However, it is not clear how their ideas would generalize to other systems. Researchers
have also applied control theory to QoS-oriented systems, such as OS schedulers (Steere

USING CONTROL THEORY TO ACHIEVE SERVICE LEVEL OBJECTIVES 129

et al., 1999), distributed multimedia systems (Li and Nahrstedt, 1990) and QoS-aware
caches (Lu et al., 2001).

Unfortunately, there are several short-comings with a first-principles approach. First,
for complex systems, it is difficult to construct a model from first principles, so often
some unrealistic assumptions are made. This difficulty has been a major barrier to
applying control theory to computer systems. Second, the first-principles models often
employ detailed information about the target system. Since these details may change
frequently (e.g., with each software release), a first-principles approach may require
expert involvement on an on-going basis. This is expensive and often impractical. Third,
the first-principles approach often does not address model validation. Without model
validation, it is unclear how the insights obtained using control theory relate to the system
being studied.

Rather than proceeding from first principles, we advocate an empirical approach to
system identification using statistical techniques. This approach treats the system as a
black box, and thus, is not very influenced by system complexity or lack of expert
knowledge. We believe that our approach enables the application of these techniques to a
wider variety of systems than the traditional approach. As another alternative, Bigus
(1993) uses neural networks for system modeling. While this approach also allows us to
treat the target system as a black box, the resultant models are not as transparent as the
ARMA models. While neural networks are non-linear and they can model more complex
systems, we would not able to leverage any of the control-theory analysis tools for
designing or analyzing controllers.

In this paper, we demonstrate the appeal and power of a control-theoretic analysis on a
controller for doing admission control of a Lotus Notes workgroup server. For the
controller law, we analyze the behavior of a saturated integral controller. The particular
form of the models allows us to use standard techniques from control theory to perform
the analysis. Our results demonstrate that there is a remarkable correspondence between
the predictions made by control theory and the observed behavior of an actual Notes
server.

The remainder of this paper is organized as follows. Section 2 describes the Notes
server and how this target system is embedded into a closed-loop to achieve service level
objectives. Section 3 details our approach to system identification. Section 4 discusses
controller design and uses empirical studies to access the accuracy of insights obtained
from control theory. Finally, we provide a summary and future work discussion in
Section 5.

2. Lotus Notes and Its Closed-Loop Control

Architecturally, Lotus Notes is a client—server system. Client software converts high-level
user activity (mouse clicks, etc.) into remote procedure calls (RPCs) that are sent to the
server. The server maintains a queue of these in-progress RPCs. Once an RPC is serviced,
an entry is made in the server log, and the appropriate response is sent to the client.
Clients operate in a synchronous manner—waiting for the previous request to complete
before sending a new request. The client—server protocol is session-oriented. A new

130 PAREKH ET AL.

session is begun after a session-initiating RPC is accepted by the server. We use the term
offered load to refer to the load imposed on the server by client requests. In the case of
homogeneous clients, offered load is expressed in terms of the number of clients. Our
service level metric is the length of the queue of in-progress RPC requests, hereafter just
referred to as queue length.

The tuning parameter SERVER_MAXUSERS (hereafter referred to as MAXUSERS)
regulates the number of users allowed to access the server at any time. This is a session-
level control (as opposed to packet-level RPC controls). It operates by rejecting session-
initiating RPCs once the number of connected users exceeds MAXUSERS. As such, this
parameter has a somewhat complex effect on queue length. For example, changing
MAXUSERS has no effect until a session-initiating RPC arrives, so existing sessions are
not affected.

Since the Notes server does not provide a way to obtain direct measurements of RPC
rates and queue length, we use a measurement sensor that samples the server log at a rate
of once a minute. The queue length computation is performed by counting RPCs that
were active in the previous time quantum. However, since RPCs currently waiting in the
queue are not present in the log, this approach underestimates the true queue length and
true RPC rates. That is, measurement is lossy. We can improve the approximation by
delaying one or more time units before performing the measurements since doing so
allows more RPCs to complete and hence gives us a more accurate count of the RPCs that
were executing.

Notes administrators are keenly interested in controlling queue length since this
provides a way to manage trade-offs between response times and throughputs. Figure 1
shows a closed-loop system to control Notes queue length. The administrator specifies a
desired value, or reference value, for queue length. This value specifies a management
policy that the closed-loop system tries to achieve. Based on the current and past values
of the control error (the difference between the reference value and measured queue
length), the controller adjusts the value of MAXUSERS. The algorithm for computing this
adjustment is called the control law.

)

Users

IRPCS

Reference Tuning
) value control =
= Controller ————» —> —» Sensor —»
, .
X A Server
Administrator Server Log
Queue Length

Figure 1. Closed-loop control of Lotus Notes.

USING CONTROL THEORY TO ACHIEVE SERVICE LEVEL OBJECTIVES 131

3. System Identification and Validation

In system identification, we identify the main components of the system, the data values
that flow in and out of them, and the mathematical relationships between these values.
This section describes our approach to system identification and its application to Lotus
Notes. The particular form of the models we construct (linear transfer functions) is
important because it enables us to leverage a large set of analysis techniques that are
available in control theory.

A block diagram such as Figure 1 is useful for component identification. We see that
RPC rates and MAXUSERS are inputs to the Notes server, and queue length is the output.
However, since MAXUSERS has an indirect effect on RPC rates, the two inputs are not
independent and hence they do not combine in a linear fashion. To address this, we divide
the operating region of the Notes server into two regions. When MAXUSERS > offered
load, the tuning parameter has no effect so we can ignore this case. But when
MAXUSERS < offered load, exactly MAXUSERS users are allowed onto the system. Here,
the offered load value is not relevant (as long as we stay in this region) and hence it can
be ignored. In other words, there is no need to consider RPC rates as an input.

This results in the single-input, single-output block diagram of Figure 2.

Can we adequately model the Notes server if MAXUSERS is the only input to the
transfer function? To answer this question, Figure 3 plots queue length where the offered
load is 300 users and MAXUSERS increased by 20 every 20 minutes. (These data are
obtained using the experimental set-up described in Section 4.4.) The impact of
MAXUSERS is clear, suggesting that it would be sufficient. A more quantitative
assessment is provided later.

Let us now mathematically specify the input—output relationships. Throughout, we
assume that time is discrete with uniform interval sizes. For a general linear system with
input x(¢) and output y(f), we construct an autoregressive, moving average (ARMA)
model of the form

W0 =3 ale—)+ 3 byl —))

i=1 j=0

where (n,m) is the order of the model, and the @;, b; are constants that are estimated from

data. For analysis purposes, we apply the principles of z-transform theory (Ogata, 1997)
to this equation. We use the standard notation that the z-transform of x(¢) is X(¢), and

Actual Measured
Queue Queue
MaxU h
axUsers | Notes | Lengt -m Length)
) | SeVer| g0 m(1)

Figure 2. Model of Notes server (open-loop).

132 PAREKH ET AL.

Offered load = 300
350 T

% Queue Length
300} | =— MaxUsers

250
200
150
100

Queue Length, MaxUsers

50, < B

Time (x107 sec)

Figure 3. Effect of MAXUSERS on queue length.

similarly for y(¢), u(t), etc. Assuming that n > m (which is a typical constraint), we obtain
a corresponding z-domain transfer function

Y(z) >i—obi!
H(Z):—: p n P (2)
() 2= (i ez)

Now refer to the quantities depicted in Figure 2. For N(z), the transfer function for the
Notes server, it turns out that a good fit is obtained if n=1 and m=0. For S(z), the
transfer function of the sensor, we can use n=1 and m =1 (see Table 1). The transfer
functions for these components are:

0(2) _ zby
Uiz) z—a

_M(z) _ zby+ by
and S(z) = 00 G—and 3)

Recall that to get an accurate estimate of g(¢), we could delay d time units so that long-
running RPCs present during time ¢ complete their execution. The term z? in S(z)
represents this delay.

Note that in modeling N(z) and S(z), we have treated the components as a black boxes,

and have not used any details about their internal operation (e.g., caching policies, buffer
sizes, etc.).

N(z) =

Table 1. Model R? values and coefficients.

Delay R? a; b, b,
Notes server N/A 97.6 0.4261 0.4709 0.0
Sensor 0 75.5 0.6371 0.1692 —0.1057
1 83.7 0.7991 0.7182 —0.6564
2 91.2 0.9237 0.9388 —0.9092

USING CONTROL THEORY TO ACHIEVE SERVICE LEVEL OBJECTIVES 133

200
180r| ¢ Data
160f L— *=¥
140
120

P e
K00

801
601
401
201

Predicted Queue Length
8
<

0 20 40 60 80 100 120 140 160 180 200
Observed Queue Length

Figure 4. Comparing N(z) model predictions with observed values.

We use a statistical approach to estimate the parameters (the a;, b;) of N(z) and S(z).
First, measurements of the target system are obtained while varying the input parameters
in a controlled way, such as the data in Figure 3. Then, we use least-squares regression to
estimate the a;, b; for different values of (n,m). In general the fit of the model improves
as n,m are increased. We seek a model that has adequate fit and a low order.

As mentioned before, a first order model provides a good fit for both N(z) and S(z).
Table 1 reports values of the g;, b; and R? for these transfer functions. For the Notes
server, R? is 98%, which is an excellent fit. The quality of this model can be further
assessed by plotting observed values of queue length versus those predicted by the model,
shown in Figure 4. Note that almost all observations lie close to the line of unit slope
where the predicted value equals the actual value. For the Sensor transfer function, R? is
smaller, although still acceptable. Note that as d increases so does R?, and a, approaches
1. Both effects are expected since with longer delays, measured values approach the
actual value.

4. Controller Design and Assessment

The next step is to design and assess one or more controllers. In this section, we describe
how to construct the controller from a control law. We assume that the system is linear,
but since this assumption does not always hold for real systems, we first determine the
conditions for linearity. We then use control theory to gain insights into controller
behavior, especially the presence of controller-induced oscillations. These predictions are
assessed using measurements of a real Notes server.

134 PAREKH ET AL.

Ej U :

R(z)———.() (z) G{Z) (z) : > Nz) I& S(z) | »M(z)
Controller ! Notes Sensor '
! Server :

Figure 5. System with controller.

4.1. Control Law and Closed-Loop Analysis

Based on the transfer function of the open-loop target system of Figure 2, we construct a
transfer function of a closed-loop system, as shown in Figure 5. For the control law, we
focus on integral control (Ogata, 1997), a widely used technique that is a reasonable
approach for the Notes server. Only one control law is considered since our objective is to
demonstrate the value of our methodology. A time-domain expression of the integral
control law is u(t) = u(t — 1) + K;e(t), where u(¢) is the new control value at time ¢, and
e(t) =r(t) —m(r) is the control error. The parameter K; >0 is called the gain.
Intuitively, this control law dictates that MAXUSERS be adjusted incrementally based on
its previous value and the gain-weighted control error. Higher K; values lead to a faster
response. However, care is required since larger values of K; can cause oscillations or
even instabilities. The controller transfer function is
U(z) z

G() = g = Kis o = KiD())

Solving the equations that are implied in Figure 5, we get the following closed-loop
transfer function for the system in Figure 5:

M(z) = E(z)*K;D(2)N(z)S(z)

E(z) = () —M(z)

M(z) KiD(z)N(2)S(z) 5)
Rz 1 +1<D(Z)N(Z)S()

4.2. Linearity Analysis

The problem with directly implementing this control law into software for controlling
Lotus Notes is that if |K;e(#)| is too large, MAXUSERS is set to a value that exceeds its
legal range. To avoid such situations, we limit the range of MAXUSERS by extending the
control law: V7 : uyp, < u(f) < tpg,y. Such saturated controllers are not linear, which
causes difficulty in the analysis. Hence, we perform a preliminary analysis to determine
the values of K; for which the control value stays in the linear range, and restrict our
subsequent analysis to this range.

USING CONTROL THEORY TO ACHIEVE SERVICE LEVEL OBJECTIVES 135

<e<0

_ Min - Max .
e<= "% | losz Intermediate

Min—u _ _Max—u

e<=0
Figure 6. Controller state transitions.

We divide the control region into three parts: u(f) = upy, u(f) = upy, and
Uppax < U(1) <y, We designate these states as Max, Min, and Intermediate, respectively.
We seek to understand the conditions under which control values will be in states Min
and Max;. If we stay away from these regions, then the assumptions of our analysis
should hold.

Figure 6 shows the state transitions obtained from the control law. We see that as
K;— o0, all transitions are between states Min and Max. Clearly, we want to avoid large
K;. How big can K; be without encountering states Min or Max? Let ¢ be the largest error
that occurs once the closed-loop system is in operation. Then, if K; < (Max — Min) /¢, we
never transition into the extreme states. In our empirical studies of an uncontrolled Notes
system, queue lengths range from approximately 20—100 if d = 0 and 60-140 if d =2. So,
if there is no bias, then in either case, ¢ = 40. We set Max = 200 so that it equals offered
load, and Min= 1. That gives us: K; <5.

4.3. Analytical Studies

We now use classical control theory to evaluate the closed-loop system. We know from
control theory that K; should be as large as possible to provide a fast response. The issue
addressed here is to predict when K; will be so large that there are controller induced
oscillations. Such a prediction is made by studying properties of the transfer function for
the closed-loop system, that is Equation (5).

First, some background. The transfer functions we consider can be expressed as a ratio
of two polynomials in z, e.g., H(z) = A(z)/B(z). The roots of the numerator A(z) are

136 PAREKH ET AL.

Delay 0 Root Locus Delay 2 Root Locus N K:=50
2 2 : :
K,' =5
1.5 1.5 }
1 1
0.5 . 035
ko 8
Z <
w0 & 0
E E
= 205 -0.5
-1 =1
-1.5 -1.5
-2 -2 : t
-2 -1 0 1 2 =2 -1 0 1 2
Real Axis Real Axis

Figure 7. Root-locus plots for delay =0 and delay =2.

called its zeros and the roots of the denominator B(z) are its poles. The poles and zeros of
a transfer function provide insight into stability and controlled-induced oscillations. First,
if any of the poles of H(z) lie outside the unit circle, then H(z) is unstable. That is, a
bounded input produces an unbounded output. Second, poles for which Im(z) #0 imply
time-domain terms of the form e/®, where j=+/—1. This is a sinusoid and so
oscillations are present in the output that increase its variability.

Root-locus plots provide a systematic way to study the location of poles in the Complex
plane. Figure 7 shows root-locus plots for a unit step response (unit change in the tuning
parameter) of the system described by Equation (5). Consider the left-most plot, which
addresses d =0. To provide a frame of reference, there is a unit circle centered at 0. The
x’s indicate poles in G(z)N(z)S(z), and the o’s indicate its zeros. The root-locus is the
curve inside the unit circle that traces the poles as K; increases from 0 to co. Since all
poles lie within the unit circle, there is no problem with stability. Further, observe that for
small K; (e.g., 0.1 and 1), the poles lie on the real axis. Thus, there is no sinusoidal
component associated with the step response for these gains. However, for larger K; (e.g.,
5 and 50), there is a non-zero imaginary component to the poles. This suggests the
presence of controller-induced oscillations that increase the variance of queue length.

Now consider that the root-locus plot for d =2, which is the right plot in Figure 7.
While K; = 0.1 lies on the real axis, poles for the other gains have non-zero imaginary
components. Hence, we expect controller-induced oscillations that result in higher
variability for queue length. We further observe that for d =2, the pole at K; =5 lies
outside the unit circle. This suggests a stability problem. Of course, the system cannot
really become unstable since we have bounded the range of values that MAXUSERS is
assigned. As we showed in Section 4.2 large gains can cause another problem—a limit
cycle in which the tuning parameter only takes on values in {uy,, Unax F- We discuss this
further in Section 4.4. The analysis thus reveals that if we wish to introduce a delay in

USING CONTROL THEORY TO ACHIEVE SERVICE LEVEL OBJECTIVES 137

order to obtain more accurate queue length information, it severely limits the range of
gain values that we may use, and thus limits the responsiveness of the control system.
Thus, we have a rigorous way of trading off accuracy for recency in the sensor data.

4.4. Empirical Assessments

Here, we present empirical results for various values of K; used for an integral controller
of a real system with a synthetic workload. We study how the predictions made by control
theory compare with the behavior of the real system.

The testbed for our experiments consists of a workload generator, product level Notes
server, a sensor running on the Notes server, and a controller running on a third machine
(so as not to perturb the Notes server). The workload generator simulates the activity of
multiple clients by running copies of an identical script that sends RPCs to the server.
These scripts are executed repeatedly with a one-minute delay between executions. The
script was selected from the NotesBench suite, a standard for such workload generation.
During the experiment, the offered load to the server (i.e., the number of users trying to
issue requests) is kept constant at 200 users. The reference queue length is initially set to
10, and after 60 minutes it is changed to 25.

First consider the behavior of the open-loop system. Figure 8 displays the result for
both d=0 and d=2. In the former, queue length hovers around 80. In the latter, it’s
around 100. These results are consistent with the fact that d =0 is more lossy than d =2.
We also see substantial variability in both cases, with changes in queue length of 40 being
common. This variability comes, in large part, from the client side.

When we close the loop, Figure 9 shows the effect of the integral controller with
K;€{0.1, 1, 50} and delays of 0 and 2. The figure consists of 12 plots presented in two
columns. The left column is d =0 and the right column is d =2. There are three parts to

Delay 0 (200 users) Delay 2 (200 users)

200 200

150 150
=
|,
3

g 100 ff 100
2
o

50 50

0% 0%k
0 5000 10000 15000 0 5000 10000 15000
Time Time

Figure 8. Uncontrolled system run (MAXUSERS > offered load).

138 PAREKH ET AL.

(a) . Ki=0.1; Delay =0 Kj=0.1; Delay =2
=== Queue Length
§ | §
3 3
o)
o 1 2 3 4 5 6 7 8 9 10 10
250 250,
5 200 + 5 200
2 150 3 150
2 100} £ 100
50 1 50
0 0
0 1 2 3 4 5 6 7] 9 10 0 1 2 3 4 5 [7] 9 10
Time (10" sec) Time (x10° sec)
Ki=1:Delay=0 Kj=1;Delay =2
(b}lﬂ! L4 50— R
5
g 5
3 3
Fl g
8 8
10
e
3 g
= =1
E 5
= =
0 1 2 3 4 S5 6 7 8 9 10
Time (x10° sec) Time (x10” sec)
(c) Ki=50; Delay = 0 K;=50; Delay =2
150 : —
5
= 100
A
o
§ 50
o
% 1 2 3 4 5 6§ 7 8 9 10 10
250 250 — % % —
200 200
€ g
g 150 150
H 100 =100
= 5 = 50
0 1 2 3 4 5 6 7 B 9 10 0 1 2 3 4 5 6 1 8 9 10
Time (><l(lJ sec) Time (x]O! sec)

Figure 9. Effect of controller on a real system.

the figure, corresponding to each K. For example, part (a) consists of the first two rows of
plots. The first row plots queue length (and the reference value) versus time. The second
row shows the value of the control at the same time as the queue length plot. Part (b) does
the same for K; = 1, and Part (c) displays K; = 50.

USING CONTROL THEORY TO ACHIEVE SERVICE LEVEL OBJECTIVES 139

With K; = 0.1, while there is an initial transient, the queue length converges to the
reference value. There is some variability, but variance is considerably smaller than in
Figure 8. This observation holds for both d=0 and d=2. These results are consistent
with the root-locus analysis that found Im(z) =0 for K; = 0.1, where z is a pole of the
transfer function of the closed-loop system.

In part (b), gain has increased by a factor of ten. For d=0, while variability is
substantially larger than with K; = 0.1, there does not appear to be a controller-induced
oscillation. Also, queue length values remain centered on the reference value suggesting
that bias is small. The situation for d =2 is not so good. There is a pronounced cycle in
the queue length values, which corresponds to a cycle in the values of the control. This
suggests a controller-induced oscillation. We note that root-locus analysis predicted both
of these results in that (a) there is no pole with a non-zero imaginary component for
K; =1, d=0 and (b) there is such a pole for K; = 1, d=2. The oscillations in queue
length are the result of overcompensation. That is, a positive e(¢) causes the controller to
increase MAXUSERS and this in turn causes e(z + 1) to be so negative that MAXUSERS is
greatly reduced, and so on.

In Part (c), we have an extreme example, one that clearly violates the constraint of
K; <5 that was established in our preliminary analysis. There is a strong limit cycle for
the control value, and the resultant queue length plot shows large oscillations. Changing
the reference value has no apparent impact on the system’s behavior.

Table 2 quantifies these results for the region where the reference value r(f) = 25. Note
that standard deviations are small for those values of (K;,d) that root-locus identified as
only having real-valued poles. On the other hand, standard deviations are large for those
values of (K;,d) that do have complex poles. We also observe that for larger K; and d,
there is a problem with bias. This is indicated by large values of RMS and the difference
between average queue length and the reference value of 25. This validates our analysis
that for larger delays, we cannot get a fast-responding system (large K;), otherwise the
system quickly becomes unstable.

Table 2. Controller performance statistics.

Queue length

RMS

K; Delay Mean St. Dev. error
0.1 0 23.95 5.58 5.64
0.1 2 23.80 7.37 7.43
1 0 24.66 7.57 7.54

1 2 29.70 25.67 25.96
5 0 35.39 20.94 23.27
5 2 59.99 41.63 54.17
50 0 42.73 21.41 27.70

140 PAREKH ET AL.

5. Summary and Future Work

In this paper, we have demonstrated a methodology for constructing and analyzing
closed-loop systems using a statistical approach to system identification. This approach is
more generally applicable than the conventional first-principles approach, and also has
the potential to adapt to changes in the underlying system (such as new software
releases). The fit for our models of a Lotus Notes email server is quite good: R? is no
lower than 75%, and is as high as 98%.

Further, we illustrate the value of a control-theoretic analysis by applying it to an
integral controller for the Notes server, where the controller manipulates the Notes
MAXUSERS tuning parameter. Our control-theoretic analysis provides useful insights into
the following trade-off of the gain value K;: while a large gain makes the system more
responsive, too large a gain can cause instabilities in the closed-loop system.

Since classical control theory requires that we restrict ourselves to linear regions of the
controller’s operation, we use a simple state analysis to restrict the gain values to a linear
region. Root-locus analysis then allows us to predict which values of K; cause controller-
induced oscillations. Our empirical studies using a real Notes system confirm these
predictions. Thus, we can analytically choose a value for K; that allows the system to be
responsive and yet not be subject to controller-induced oscillations. Moreover, the
analysis clarifies the effect of sensor-induced delays.

Note that both system identification and controller design are performed off-line, based
on data that has been collected from either controlled or production runs of the target
system. This allows us to use a large amount of sample data, perform more time-
consuming analyses and even consult domain experts. We assume that the system evolves
slowly, if at all, so the model does not need to be estimated often. An online changepoint
detection (Basseville and Nikiforov, 1993) scheme can be employed to actively monitor
the system and trigger the parameter re-estimation when required. Online adaptation of
the target that is within the bounds of the estimated model is performed by the controller.

Much work remains. Our approach to identifying linear regions of operation is
approximate at best. A better approach would employ describing functions, a technique
used in non-linear control theory. In this paper we have restricted ourselves to a simple
control law in order to demonstrate the value of this approach. We plan to study more
complex controllers to assess if control theory provides useful insights as to their
operation. More broadly, we are interested in applying our methodology to other service
level management situations both to refine our methodology and to asses its value.

References

Aman, J., Eilert, C. K., Emmes, D., Yocom, P., and Dillenberger, D. 1997. Adaptive algorithms for managing a
distributed data processing workload, IBM Systems Journal 36(2): 242-283.

Basseville, M., and Nikiforov, 1. 1993. Detection of Abrupt Changes: Theory and Applications. Prentice Hall.

Benmohamed, L., and Meerkov, S. M. 1993. Feedback control of congestion in packet switching networks: the
case of a single congested node. IEEE Transactions on Networking 1: 693-708.

Bigus, J. P. 1993. Adaptive Operating System Control using Neural Networks. Phd Thesis, Lehigh University.

USING CONTROL THEORY TO ACHIEVE SERVICE LEVEL OBJECTIVES 141

Chiu, D.-M., and Jain, R. 1989. Analysis of the increase and decrease algorithms for congestion avoidance in
computer networks. Computer Networks and ISDN systems 17.

Essick, R. B. 1990. An event-based fair share scheduler. In Proceedings of ACM USENIX, pp. 147-161.

Hunt, G., Goldszmidt, G., King, R., and Mukherjee, R. 1998. Proceedings of the 7th International World Wide
Web Conference, Brisbane, Australia, April 1998 (published as Computer Networks and ISDN Systems, Vol.
30, pp. 347-357.

Iyenger, A., Challenger, J., Dias, D., and Dantizig, P. 2000. High-performance web site design techniques, /[EEE
Internet Computing 4: 17-26.

Keshav, S. 1991. Proceedings of ACM SIGCOMM 91 (September 1991), Zurich, Switzerland (published as
Computer Communication Review, Vol. 21, No. 4, pp. 3-15).

Li, B., and Nahrstedt, K. 1990. Control-based middleware framework for quality of service applications. [EEE
Journal on Selected Areas in Communication, pp. 1632—-1650.

Lu, Y., Saxena, A., and Abdelzaher, T. F. 2001. Differentiated caching services: A control-theoretic approach. In
International Conference on Distributed Computing Systems, Phoenix, Arizona.

Mascolo, S., Cavendish, D., and Gerla, M. 1996. ATM rate based congestion control using a smith predictor: an
EPRCA implementation. In Proceedings of IEEE INFOCOM’ 96, pp. 569-576.

Mascolo, S. 1999. Classical control theory for congestion avoidance in high-speed internet. In Proceedings of
the 38th Conference on Decision & Control, pp. 2709-2714, Phoenix, Arizona.

Ogata, K. 1997. Modern Control Engineering. Prentice Hall, 3rd edn.

Shor, M. H., Li, K., Walpole, J., Steere, D. C., and Pu, C. 2000. Application of control theory to modeling and
analysis of computer systems. In Proceedings of the Japan-USA-Vietnam RESCCE Workshop, Ho Chi Mihn
City, Vietnam.

Steere, D. C., Goel, A., Gruenberg, J., McNamee, D., Pu, C., and Walpole, J. 1999. A feedback-driven
proportion allocator for real-rate scheduling. In Proceedings of Operating Systems Design and
Implementation (OSDI), pp. 145-158.

