
Design of NGOSS TSA Using Web Services
Technologies

Mi-Jung Choi
School of Computer Science

University of Waterloo
Waterloo, Canada

mjchoi@cs.uwaterloo.ca

Hong-Taek Ju
Dept. of Computer Science

Keimyung University
Daegu, Korea

juht@kmu.ac.kr

James Won-Ki Hong
Dept. of Computer Science and Engineering

POSTECH
Pohang. Korea

jwkhong@postech.ac.kr

Dong-Sik Yun
KT Network Technologies Labs

Korea Telecom (KT)
Daejeon. Korea
dsyun@kt.co.kr

Abstract — To reduce frequent changes and upgrades of
management systems, we need a guideline of OSS's architecture
and development methods of the OSSs. TMF has proposed
NGOSS technology-neutral architecture (TNA) which describes
major concepts and architectural details of the NGOSS
architecture in a technologically neutral manner. The NGOSS
TNA can be mapped onto appropriate technology-specific
architectures (TSAs) using specific technologies such as XML,
Java and CORBA. Web services, which is a distributed and
services-oriented computing technology, can be applied to
NGOSS TSA. In this paper, we examine the architectural
requirements of TNA, and provide a design of Web services-
based TSA in accordance with the TNA requirements.

Keywords; NGOSS, TNA, TSA, Web services, WSDL, SOAP,
UDDI, WS-BEPL

I. INTRODUCTION
Telecommunication infrastructures from multiple vendors

deliver new and frequent changing combinations of services
over every type of communication technology. Also, with the
convergence of data communications, telecommunications, and
other forms of communication, the complexity, heterogeneity,
and size of networks supporting the emerging services are
rapidly increasing. Therefore, we need flexible, scalable
service fulfillment operations support system (OSS) solutions.
For this reason, TeleManagement Forum (TMF) provides a
Next Generation Operations Systems and Software (NGOSS)
[1] framework to improve the management and operation of
information and communication services.

As network services newly emerge, the network services
and resources need to be easily configured. To configure the
complex and heterogeneous networks and services, operation
management systems also need to be developed using up-to-
date technologies. To reduce frequent changes and upgrades of
management systems, we need a guideline of OSS's
architecture and development methods of the OSSs. Thus,
TMF has proposed NGOSS technology-neutral architecture

(TNA) [2], which describes major concepts and architectural
details of the NGOSS architecture in a technologically neutral
manner. The goal of TNA is to define a component-based and
distributed system architecture and an associated critical set of
system services which this architecture requires. The TNA can
be implemented using the currently available distributed
system information technologies. That is, the TNA can be
mapped onto appropriate technology-specific architectures
(TSAs), which can leverage industrial standard frameworks
such as service-oriented architecture, component-based
architecture and distributed computing. The separation of
technology-neutral and technology-specific architectures
enables OSS developers to choose the 'best fit' management
components and technologies for their management capability.

TMF has also proposed three technology application notes
that describe the mapping of TNA onto specific technologies
such as XML [3], CORBA [4], and Java [5]. Web services is a
distributed and services-oriented computing technology with
strong support from the industry. It is one possible technology
for NGOSS architecture and the mapping of NGOSS TNA to
Web services-based TSA is a promising research area [6]. In
this paper, we examine the essential parts of NGOSS TNA and
propose a technology-specific architecture based on Web
services technologies.

The organization of this paper is as follows. In Section II,
we briefly investigate NGOSS TNA in the perspective of
architecture and components, and Web services technologies as
a related work. In Section III, we examine three technology
application notes. We describe our design architecture in
Section IV and present a case study in Section V. Finally, we
conclude our work and discuss possible future work.

II. NGOSS TNA
In this section, we first briefly investigate the concepts of

NGOSS TNA and its components. NGOSS is a set of
guidelines and specifications for the industry to build software
in a more structured and complementary way, based on

industry experience and previous and ongoing TMF activities.
The NGOSS TNA [2] is the basic concept and component of
NGOSS architecture. Figure 1 shows the detailed views of
NGOSS TNA. The core components of TNA are common
communications vehicle (CCV), services, and contract.

Business
Services

Figure 1. Detailed Views of NGOSS TNA

The service modules can communicate with each other
through the common communications vehicle (CCV) [2]. The
CCV is a kind of message bus independent of specific
technology, which is responsible for the transport of
information among application objects. The services are mainly
divided into two parts: business services and framework
services [2]. Business services provide the application level
functionality that directly supports the implementation of a
business process such as SLA management, billing mediation,
QoS, etc. Framework services provide the infrastructure
necessary to support the distributed nature of the NGOSS TNA.
For example, they include naming and directory services,
messaging services, and transaction management/monitoring
services.

The framework services consist of repository, registration,
location and naming services. The registration service provides
for services and functionality needed to support location
transparency. The repository service provides a logical view of
all the information on a deployed distributed system. The
naming service is responsible for generating and resolving
unique names for the various entities contained in the
repository. The location service, often built on the naming
service, provides a means to map a request for an object to a
particular instance of that object.

The NGOSS contract [2] is the fundamental unit of
interoperability in an NGOSS system. The contract is used to
define a specification of a service to be delivered, as well as to
specify information and code that implement the service. In
short, the contract is a way of reifying a specification of a
service, and implementing the functionality of the service
including obligations to other entities in the managed
environment. Thus, it is much more than a container of data or
a specification of a set of methods.

III. TECHNOLOGY APPLICATION NOTES
TMF provides three documents called application notes

representing specific technologies applied to the NGOSS TNA.
The application notes present requirements of the NGOSS
TNA, an overview of each technology and a guideline to direct
how the technology maps to the concepts of TNA. In this

section, we present the principles of the NGOSS TNA and
compare three TSA using specific technologies: XML,
CORBA, and Java.

TMF proposed two technologies of XML [3] and CORBA
[4] for NGOSS TNA and specified technology application
notes with these technologies. OSS/J [5] initiative proposed
Java technology as a specific technology for TNA. Table 1
shows a comparison result of three technologies in accordance
with the alignment of NGOSS TNA.

Table 1: Comparison of Specific Technologies

N o t s p e c ifie dC a n b e
d e fin e d b y ID L

X M L S c h e m a
(in fo rm a tio n
a d a p ta tio n : X S L T)

S h a re d
in fo rm a tio n

J a va in te rfac eC O R B A ID LX M L d e fin itio nC o n tra c t
in te rfa c e

D e fin e b u s in es s
p ro c e s s
c o m p o n e n t

D e fin e n e w
s e rv ic e sN o t s p e c ifie d

B u s in e s s
p ro c e s s
m a n a g e m e n t

R u n tim e d is co v ery
s e rv ice : JN D I

C O R B A
se rv ice s
(n a m in g ,
tra d in g , e tc .)

R u n tim e d is co v ery
s e rv ice : U D D I

R u n tim e lo c a tio n o f
in fo rm a tio n : X P a th ,
X L in k , X P o in te r

F ra m ew o rk
s e rv ic e s

R M I-IIO P , JM SG IO P , IIO PH T T P , S O A PC o m m u n ic a tio n
J a vaC O R B AX M LA lig n m e n t

XML has a natural affinity with communication

management. The use of XML to validate, manipulate and
define the structure of application specific information models
becomes an attractive possibility. However, XML has a
substantial overhead associated with the text-only encoding of
messages [3].

CORBA is an open distributed object computing
infrastructure. It automates many common network
programming tasks such as object registration, location, and
activation. Therefore, CORBA supports the communication
method and framework services for the distributed processing.
It also supports interface definition with specifying CORBA
IDL. However, it does not provide information modeling;
hence it can define the shared information using XML or other
languages [4].

 J2EE, Java implementation platform, directly implements
the principles of NGOSS TNA such as the distribution support
and separation of business process from implementation.
However, Java does not have any explicit support for the
concept of shared information or federated information
services as defined in NGOSS TNA [5].

IV. DESIGN
In this section, we design a technology specific architecture

using Web services technologies.

A. Alignments with NGOSS TNA using Web Services
We examine how the Web services technologies can be

mapped onto the requirements and characteristics of the
NGOSS TNA [6].

The information model is designed to be more than just a
standard representation of data – it also defines semantics and
behavior of, and interaction between, managed entities. The
NGOSS Shared Information/Data (SID) model [7] provides the
industry with a common vocabulary and set of information/data

definitions and relationships used in the definition of NGOSS
architectures. The XML Schema allows us to define the
structure of management information with richer definitions of
data types of XML documents including complex and data
centric types. The XML Schema also allows inheritance
relationships between elements. Thus, we can define
management information using XML Schema in a flexible
manner. Based on our defined XML Schema, we can define
management operations and messages written in WSDLs.

The second requirement of the NGOSS TNA is to provide
distribution transparency. The NGOSS system needs a
communication mechanism and a repository that records
information used during system execution. This requirement is
achieved by the CCV and framework services. UDDI provides
a comprehensive mechanism for locating services at run time
by storing service interfaces in their WSDL format.
Application programs can search the UDDI repository to find
the interface that they require, download the WSDL description
and use the binding information to communicate with the
interface over a suitable communication channel. UDDI
supports basic functionalities of the framework services.

The requirement of separation of business process from
software implementation is achieved by the definition of the
contract and the process. The contract, which is a definition of
a service specification and a message specification between
service components, can be defined in WSDL based on the
management information model in XML Schema format. The
business process can be defined by WS-BPEL with the concept
of process entities, process sequences and interaction messages.
The WS-BPEL engine handles the process sequentially.

B. Architecture
Web service includes many standard specifications. In

Section IV-A, we examined the alignment with NGOSS TNA
using Web services technologies, in which we focus more on
the NGOSS specification from a Web services perspective.
Figure 2 shows our Web services-based TSA. Our architecture
is extended from the TNA architecture using Web services
technologies. As mentioned in Section IV-A, SOAP is used as
CCV to communicate between process entities, and WSDL is
used to define contracts between process entities through
SOAP. UDDI supports the framework services of repository,
registration, naming, and location services and WS-BPEL
supports the process service.

WS-Security
Security Manager

WS-BPEL
WS-Policy

Policy ManagerUDDI

XMLDBSOAP Engine

CCV Shared Message Bus (common-form business function contracts) RepositoryRepository

Policy
Service

contract
Adapter

Naming
Service
contract
Adapter

Location
Service
contract
Adapter

Registration
Service
contract
Adapter

Repository
Service
contract
Adapter

Service
Delivery

Management

contract
Adapter

Security
Service

contract
Adapter

Process
Service

contract
Adapter

Service
Assurance

Management

contract
Adapter

Service
Quality

contract
Adapter

OSS
Information

Management

contract
Adapter

Workforce
Management

contract
Adapter

Facility
Management

contract
Adapter

Access
Domain

Management

contract
Adapter

Network
Management

contract
Adapter

WSDL

Message
Handler &

SOAP Client

Figure 2. Web Services-based TSA

The policy service can use the WS-Policy specification as
an information definition and a policy manager as an engine.
The security service can use the WS-Security specification as
an information definition and a security manager as a service
engine. The management operation services such as service
assurance, service delivery, etc. can be defined as new services
using WSDL. The adapter acts as a message handler with a
SOAP client module. A XMLDB can be used as a management
repository instead of a traditional RDBMS. The native
XMLDB stores the data structured as XML without translating
the data to a relational or object database structure. However,
the performance of XMLDB is not thoroughly verified yet.

V. CASE STUDY
We select the process of DSL fulfillment, which is one of

the examples of eTOM's fulfillment process, as a sample case
to verify our technology specific architecture.

A. Management Information
As explained in Section IV-A, we define our management

information through XML Schema. We use the XML Schema
defining the information model of customer order and service
order. The information of customer order includes customer
name, customer contract name, customer address, product, and
so on. The service order contains all contents of the customer
order that defines the information of the customer order as the
complex type of CustomerOrderType and refers to this type. In
this way, the customer order in the service order also refers to
the same type so that it can be reused without any repeated
definition.

B. Management Process
There are Order handling module, Service configuration &

activation module, and Resource provisioning module in the
management system for DSL fulfillment. The Order handling
module receives the customer order request of a DSL service
from a customer and sends the service order request to the
Service configuration & activation module. The Service
configuration & activation module asks the resource
provisioning to the Resource provisioning module to acquire
the resource after the service configuration.

Order
handling

Serv. conf
& acti.

Resource
provisioning

customer
Request order

Issue customer order

Request service order

Issue service order

Configure & activate service

Request resource

Issue resource order

Manage & track customer

Response & manage service
Response & report service order

Repository
service

Registration
service

Contract instance
location service

Register consuming contract instance
Add contract instance to repository

Request instance of providing contract
Request instance of providing contract

Respond with instance of providing contract
Located instance of providing contract

Located instance of providing contract

Resource provisioning

Register consuming contract instance
Add contract instance to repository

Request instance of providing contract
Request instance of providing contract

Respond with instance of providing contract

Figure 3. Management Scenario of DSL Fulfillment

Figure 3 is a combination of the interaction sequences
between the framework service components and the sequence
for the DSL fulfillment. That is, there should be a process for
making a contract between two modules for the Order handling
module in order to ask the service order to the Service
configuration & activation module. When the contract between
the Order handling module and the Service configuration &
activation is agreed with, the service requester (the Order
handling module) can send the service order request to the
service provider (the Service configuration & activation
module).

We define the sample scenario using WS-BPEL. First, we
define the process entities in the partnerLinks, messages from
senders and receivers in the variables, and management faults
in the faultHandler. We also define the process sequence which
is executed when the messages from some partnerLinks arrive
in the sequence.

C. Contract
In this section, we define the contract in the XML format.

The most important part in five parts of contract (General,
Functional, Non-functional, Management and View specific) is
the functional part. We need to define input, output variables
and conditions in the functional part.

Figure 4 describes the system view contract of ‘Request
Customer Order’ between the Order handling module and the
Service configuration & activation module for the DSL
fulfillment in the XML format. The General part contains
contract names, versions and explanations and the Functional
part contains Pre-condition, Post-condition, Input & Output
Parameters and so on. The pre-condition checks that ‘the
customer is already registered’ and ‘the request is compatible
with the customer’s profile and feasible to network resources’.
The Non-Functional and Management parts need to be defined
when necessary.

<Contract>
<General>

…
<Descriptive>

…
<Search_Criteria> Customer information, Associated_System_Processes </Search_Criteria>

</Descriptive>
</General>
<View name=‘System_View’>

<Functional>
<Associated_System_Processes> manage & track customer, issue customer order </Associated_System_Processes>
<Associated_System_Policies> </Associated_System_Policies>
<System_Capabilities>

<Input_Entities> CustomerOrderRequest </Input_Entities>
<Output_Entities> CustomerOrderResponse </Output_Entities>
<Pre-Conditions> customerIsRegistered, requestIsCompatible, requestIsFeasible <Pre-Conditions>
<Termination> Successful </Termination>
<Post-Conditions> Customer order is issued accordingly </Post-Conditions>
<Post-Conditions_System_Exceptions> None identified </Post-Conditions_System_Exceptions>
…

</System_Capabilities>
</Functional>
<Non-Functional> … </Non-Functional>
<Management> … </Management>

</View>
<Contract>

Figure 4. Contract: XML Format

D. Prototype Implementation
We have implemented NGOSS TNA components and

management functions using Web Services technologies based
on our proposed design. Our system has been implemented on
a Linux server. We used Apache Web services project package
[8], which is Java-based Web services software.

We first implemented the framework services using
existing UDDI APIs such as save_business, save_service,

find_business, find_service, get_serviceDetail, etc. We
deployed these framework service functions into Web services
using a Java Web Service provided by an apache SOAP engine.
Then, we define WSDLs and implement management function
modules such as order handling, service configuration, etc.
Finally, we define the business process sequence in WS-BPEL
and the BPEL engine executes the process in accordance with
the process definition.

The execution step of our order handling for a DSL
fulfillment is as follows: A customer orders a new DSL service
through the service application form of Web-based user
interface. This request message is handed over to the BPEL
engine, and the engine checks the request message and the
partnership, then, it directly calls the order handling service.
The management processes are conducted in the sequence of
Figure 3 and the BEPL engine processes these management
sequences.

VI. CONCLUDING REMARKS
We have hexamined the concept, architectural principles

and components of the NGOSS TNA. We proposed our
technology-specific architecture using Web services
technologies considering the requirement of NGOSS TNA.
Web service is a distributed and services-oriented computing
technology that can be applied to the NGOSS TNA. Also, we
showed a case study based on our proposed design.

We will extend our prototype of Web services-based TSA
and the management functions and also perform a test on our
implementation system. Finally, we will extract performance
metrics of Web services-based TSA and conduct performance
analysis.

ACKNOWLEDGMENTS
This research was supported in part by the MIC (Ministry of Information

and Communication), Korea, under the ITRC (Information Technology
Research Center) support program supervised by the IITA (Institute of
Information Technology Assessment) (IITA-2005-C1090-0501-0018), by the
Electrical and Computer Engineering Division at POSTECH under the BK21
program of the Ministry of Education, Korea, and by the KT Network
Technology Lab.

REFERENCES
[1] TM Forum Technical Program, “NGOSS (New Generation Operations

Systems and Software)”, http://www.tmforum.org/
[2] TM Forum, “NGOSS Technology Neutral Architecture” - TMF053 v5.3

r6.0, Nov. 2005
[3] TM Forum, “NGOSS Phase 1 Technology Application Note-XML”,

TMF057 v1.5, Dec. 2001
[4] TMF, “NGOSS Phase 1 Technology Application Note - CORBA”,

TMF055, Version 1.5, Aug. 2001
[5] C. Ashford, “OSS through Java as an Implementation of NGOSS”,

White paper, Apr. 2004
[6] Mi-Jung Choi, Hong-Taek Ju, James W. K. Hong, and Dong-Sik Yun,

“Towards Realization of Web Services-based TSA from NGOSS TNA”,
IPOM 2006, LNCS 4268, Dublin, Ireland, Oct., 2006, pp. 222-227.

[7] TM Forum, “Shared Information/Data (SID) Model”, GB 922, Release
6.0, Nov. 2005

[8] Apache Software Foundation, “Web Services Project @ Apache”,
http://ws.apache.org, Refer Jan. 2007.

