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Abstract-The continuous introduction of converged services
such as VoIP and Video-On-Demand has created many opera-
tional challenges for service providers. In this paper, we describe
how to use location-aware technologies, not only to integrate
disparate management applications, but also to transform the
underlying process to use geographical views as the focal point
of management operations. Based on an engagement with a
large Cable provider, we have designed and implemented 3i-
Integrated Infrastructure Intelligence-to address key issues in
the service assurance process. 3i is highly componentized and
provides an intuitive way for creating role-based views through
dynamic scoping, event aggregation and status projection, and
location-driven active probing. We analyze the current service
assurance process and compare it with the improved process after
introducing 3i. Overall, the re-engineered process offers base
execution improvements in alarm collection, problem drill-down
and reporting, as well as complexity improvements throughout.
3i is a fully implemented tool and has demonstrated capabilities
beyond its original intended scope as a decision support tool in
planning and marketing functions.

I. INTRODUCTION

In the recent years, the Cable and Telecom industries have
rolled out a plethora of new and converged services such
as VoIP, Video-On-Demand, and On-line gaming. One of
the greatest challenges that many of these providers face is
how to integrate these new services (and their associated
management processes) into their existing operations. This
challenge arises not only from the need to introduce new
components (or devices) into their infrastructure, but also from
the need to modify the corresponding processes for managing
these services, and do this continuously as newer services are
introduced.

Because of the high cost of achieving proper integration,
what results is the addition of new management applications
to manage the new service offerings. Not surprisingly, this
decreases the efficiency of the overall management process
as operation engineers or technicians' are required to touch
more applications, each providing a subset of the end-to-end
infrastructure. It also complicates root-cause analysis as dis-
parate information spread across the different management
applications need to be correlated for all components that
can be affected by various failure scenarios.

For many Cable providers, addressing the integration chal-
lenges at the process and IT infrastructure levels is of
paramount importance in the areas of service fulfillment,

1In this paper, we will refer to the role player responsible for monitoring
as an operation engineer or technician

assurance, and billing. In this paper, we describe how to
use location-aware technologies, not only to integrate dis-
parate systems, but also to transform the underlying process
to make this location-aware technology the focal point of
operation. While location-aware technologies and Geographic
Information Systems (GIS)2 have been used for many years to
capture and monitor various types of infrastructures [18], in
this paper, we describe the use of GIS-based methodology
to address three key challenges. The first challenge is to
provide customized role-based views from the large number of
managed components. The second challenge is to minimize the
number of (process) steps required to manage the large number
of (potentially correlated) alarms. The third challenge is to use
GIS-based system to minimize the delay of executing active
probes during interactive diagnosis. We show that addressing
these challenges improves the efficiency of the underlying
process.
We focus on a subset of the service assurance process that

relates to infrastructure monitoring. We will refer to it as
Alarm-driven Service Assurance (ADSA). Within the eTOM
framework [13], this process covers aspects of three specific
processes: Survey and Analyze Resource Trouble, Support
Resource Trouble Mgmt, and Track and Manage Resource
Trouble.
The ADSA process is conceptually straightforward. A major

source of inefficiency is caused by the size of the moni-
tored infrastructure and volume of alarms. These inefficiencies
are most apparent in the time between problem occurrence
and detection, which, even with automation and push-type
mechanisms can be on the order of tens of minutes. There
are four key causes for these inefficiencies. First, because
of the large number of devices that are being monitored,
management applications are typically configured to update
their status every several minutes. Second, because monitored
components are interdependent, many alarms are generated for
the same failure. Detecting the actual failure requires sifting
through large amounts of alarm information. Third, many
perceived failures are self-correctable (e.g., power outages
or hardware rests). This encourages technicians to wait for
one or more monitoring cycles to eliminate self-correcting
errors. Finally, because concurrent failures are common, lower-
priority failures can be ignored for many minutes before a

21n this paper, we will use the terms location-aware and GIS-based
technologies interchangeably
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Fig. 1. Example topology, with filled circles representing real components
and empty circles representing logical one. Similarly, a solid line represents
a physical pairing and dashed line represents logical pairing.

technician is able to handle them. We are thus interested in
minimizing the overhead (in term of delay and required human
resources) that is due to the above.

To avoid confusion with commercial problem management
solutions, we distinguish between alarm management and
problem (or incident) management. In the former, we are
referring to the relatively informal process of examining
different pieces of an infrastructure and reacting to alarms
generated by the monitoring tool. Problem management, on
the other hand, involves a stricter process and typically uses
systems that incorporate customer service-level agreements
(SLA), e.g., ManageNow [8] or Remedy [2].
Our work has been motivated by a direct engagement

with a large U.S. cable operator. The solution, called 3i-
Integrated Infrastructure Intelligence, is fully implemented
and operational since early 2006. 3i offers an efficient way
of managing the service assurance process of large distributed
infrastructures.

This paper is organized as follows. Section II describes
the service assurance process before the introduction of 3i.
We then describe the architecture and implementation of 3i in
Section III. In Section IV, we describe the resulting process
and highlight efficiency improvements. The paper ends with
related work in Section V and concludes in Section VI.

II. CURRENT PROCESS

In this section, we describe the current service assurance
process. Our derived process is not specific to the Cable
monitoring environment. Instead, it is derived from four key
observations that we have encountered while interacting with
multiple Cable and Telco operators; thus, we believe that they
are representative of other infrastructure monitoring environ-
ments.

First, multiple management applications are used to monitor
different pieces of the entire infrastructure. Considers the set of
all components being monitored which includes both active

and passive devices as vertices V in a connected graph
Gtopology, representing the monitored topology. The connected
graph Gtopology also includes a set of edges Ephysical and
Elogical representing physical and logical pairings, respec-
tively. Figure 1 shows an example topology, with solid lines
representing physical pairings and dashed lines representing
logical pairings. The need for logical pairings will be appar-
ent shortly. In the mean time, we consider a management
application, app, as monitoring a subset of the monitored
component; each application, thus, forms a vertex-induced
subgraph G pp gy In Figure 1, there are four subgraphs, each
represented by the vertices and edges being monitored by the
four applications.

Second, each subgraph G aoogpp is hierarchically orga-
nized, reflecting some structuring of information. In Fig-
ure 1, we structure the monitored topology into six layers.
However, each application covers a portion of these layers.
This structuring can be derived from physical, logical, or
spatial relationships between components. Keeping in mind
that management applications must provide users with robust
information navigation, we see the relevance of Elogical above,
which are used for two purposes: (1) create new relationships
between components (e.g., group components within a specific
city together) and (2) reconnect the monitored components
which otherwise would form a disconnected subgraph if only
physical pairings are used.

Third, different applications are often configured with dif-
ferent name-spaces. We use the term name-space to describe
the way each application refers to the various monitored com-
ponents. Applications A and C in Figure 1 may use different
names to refer to node_1. In fact, it is quite common that
different applications do not follow a well-agreed upon naming
convention for monitored components, even when different
applications monitor the same components. This complicates
the diagnosis process by mandating (either implicitly or explic-
itly) a name-space translation step when navigating between
one application to another. It is also a common source of
misconfiguration issues.

Fourth, information from different applications relate to
each other via a path in Gtopology. For instance, interface_1
in Application A relate to cpe_2 in Application C by the path
{cpe_2,nodej1,interface_1}. We have observed that there is
no formal way (e.g., shortest path) to capture this relationship,
which, as we will describe later, is an important step in alarm
diagnosis. Instead, it is relatively ad hoc, focusing primarily
on matching name-spaces between different applications.

Based on the above four observations, we use Stochastic
Petri-Nets (SPN) [16] to model the observed process for
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Fig. 2. Stochastic Petri-Net representation of the Alarm-driven Service Assurance process

monitoring the cable infrastructure.3 Because the underlying
process have a large degree of concurrency, SPN's provide an

efficient way for capturing and analyzing the corresponding
state machine. The basic process is depicted in Figure 11.

The places in the figure can be organized into four groups:

(1) alarm generation (includes Palarm and Pactive-probe), (2)
alarm drill-down (includes Pi, P2, p3, & p4), (3) application-
cross referencing (includes Pcross-reference), and (4) report-
ing (includes Preport & Pmap). The remainder of this section
looks at each group in more detail, highlighting the major
source of inefficiencies.

A. Alarm Generation

Alarm generation includes both active and passive measure-

ment. Because alarms are typically updated (or generated) after
the completion of periodically-scheduled (passive) measure-

ments of the infrastructure, these alarms arrive in batches, with
periods ranging between 2 to 5 minutes. They are represented
by new tokens in Palarm. As noted earlier, because of the labor
intensive requirement of tracking an alarm, it is customary for
a technician to delay investigating the root-cause of the alarm
for one or two measurement cycles to eliminate the possibility
of transient problems. To that extent, we assume that alarms in
Palarm are persistent, requiring manual intervention to resolve
their root-cause. As a corollary, the volume of alarms (number

3For readers who are unfamiliar with Petri-Nets, they can concisely capture
non-deterministic execution of state machines. They consist of places, transi-
tions, and arcs. Each place can have one or more tokens (with the distribution
of tokens across all places is referred as a marking). A transition can fire when
there are enough tokens in the corresponding input. When the transition fires
it consumes the token and produces one in the output place. A delay can

be associated with each transition. Typically, a filled rectangle represents a

deterministic delay, an empty rectangle represents a stochastic one, and a line
represents no delay. Finally, each arch can have a weight. The weight reflects
the number of tokens that a transition consumes or produces.

of tokens) is lower than if we also consider transient ones,

which would only generate additional work for technicians.
Finally, given the periodicity of alarm generation, we model
talarm (the transition between alarm generation and the drill-
down process) using a discrete value with parameter D.

While Palarm reflects passive measurements, infrastructure
monitoring also includes an active measurement component,
focusing on end-devices like cable modems and set-top boxes.
This is captured by Pactive-probe in Figure II. As we will
describe shortly, active probes are initiated as part of the
drill-down process. An active probe, while clearly provides
more up-to-date information than its passive counterpart, in-
curs two penalties. First, results are not instantaneous, with
delays reaching several minutes. Second, it requires substantial
resources on the back-end servers. Unlike the transition talarm,
tactive-probe seems to be a function of the number of probed
devices.
The above also highlights the information synchronization

problem that arises from the fact that different applications
can operate over different timescales. This is not just limited
to information coming from passive measurements (i.e., the
information is trailing the real status of a device), but also
includes active measurements. Because of the large number
of devices being monitored, even active probes can take
long enough times that the information they provide is stale
(especially, for transient errors).

B. Alarm Drill-Down

The drill-down steps mirror the de facto approach of
structuring monitored devices into different layers (Figure 1).
Although the number of layers can be arbitrary, we have
observed that having three to five layers (per management
application) is a standard practice (hence our use of four layers
in describing the process). The first layer typically reflects
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a geographical or physical grouping (e.g., region or device
type). Thus, an alarm (or token) at level P1 the starting
point reflects the highest level of alarm aggregation. Another
common logical grouping is based on sensor type. A specific
device, for instance, can be observed by multiple metrics
such as power, signal-to-noise ratio, temperature, etc. It is not
uncommon for multiple sensors to simultaneously indicate an
alarm. Especially for open source tools, we have observed a
lack of automation to correlate different sensor information,
requiring further drill-down to relate the information.

Because of this hierarchical structuring of information,
topologically higher-level components reflect aggregate status
of child components. Thus, aggregation functions can affect
the (observed) arrival of alarms. We have observed the use of
two aggregation functions, one for active components of the
monitored graph and the other for passive ones.

* In the case of a component being actively probed, a
threshold-based aggregation function is commonly used,
with typically two thresholds indicating a yellow (atten-
tion) or red (critical) alarm. For example, when monitor-
ing the number of online modems on a specific interface,
if we assume a yellow threshold of 90% and a red
threshold of 80%, then at least 20% of modems need
to go offline before a red alarm is generated.

* In the case of passive components, a boolean function
is typically used. This is because a passive (parent)
component (for example, the status of a city) mirrors the
status of all child components. In this example, the status
of the city is indicated as red if one or more of its children
are red, with red having precedence over yellow alarms.

Looking at the SPN, the drill-down process is multiplicative:
as one drills-down, additional tokens can be generated. These
are indicated by the weight of the transition edges, which are
functions of two variables: (1) the branching factor between
a parent an its child components in the monitored subgraph
of an application, and (2) the failure probability of a child
component. Here, we assume that in absence of external
events (e.g., power outage, storms, flooding, etc), components
fail independently. This assumption holds true even when a
component is passive and uses the aggregate status of its child
components, because two parents at the same hierarchical level
will typically form two disjoint subtrees. Not surprisingly,
because external events can impact large areas, these failures
are not as independent as one would hope. Nonetheless,
assuming a Poisson failure process (a counting process N(t)
with stationary increments), we can describe w as follows:

w, = E[Ni(t)] = Alt (1)

where A1 is the failure rate at a hierarchical level 1. In
many ways, we are oversimplifying things here as different
devices can have different failure probabilities. Nonetheless,
the equation above is intended to illustrate the time and
hierarchical level dependencies that are part of the drill-down
process.

For example, if we assume a single red alarm arriving in
Palarm indicating a critical problem in one or more of the

monitored cities. Drilling down from P1 to P2 may generate
additional tokens in P2, indicating that some of the underlying
components have failed. The technician would then have to
individually drill down into each component, consuming one
token from P2 and generating additional tokens in p3 to
indicate that even more subcomponents have failed (e.g., an
interface in Figure 1). At that point, an active probe on each
failed interface is invoked, generating additional tokens in p4.

While we cannot present exact figures, it is common for
several interfaces to indicate some form of an alarm at any
instance in time. Part of the reason is explained by Eq. 1,
which when combined with actual failure probabilities yields
consistent results.

C. Cross-Referencing

So far we have assumed that drilling down is confined
to a single subgraph that is being monitored by a single
application. In reality, an alarm is a symptom of a problem
which is manifesting itself across multiple components that
exist in different application subgraphs [7,14]. That said,
cross-referencing different applications (manually) to validate
an assumption about the root cause of a problem is common
practice. Cross-referencing, however, involves translating the
context of one application to a different application. The
translation of context would naturally involve a lookup step
(depicted by Pcross-reference) in Figure II.

This step, informally, matches the name-space of one ap-
plication to that of the application to be cross-referenced. For
example, if one application is monitoring end-services (e.g.,
Video-On-Demand) and another application is monitoring the
digital set-top box (STB) infrastructure, then a lookup on
a given STB should return those VoD servers providing
content to that STB. In many cases, this lookup process is
learned through experience. In other cases, like for location
information of a MAC address, more involved lookup might be
required. In Figure II, we indicate that after the cross-reference
lookup is performed, it transitions back into P1 (however now
it refers to the application to be cross-referenced). Because
applications have few entry points, this transition points to
the top-level of the new application (Pi), requiring some
navigation to get to the needed information.

D. Reporting

The final set of steps involves report generation. They
include Preport and Pmap. They can also be considered the
natural termination points of the process even if no explicit
output is generated. We distinguish between two types of
reports: (1) topological reports, which are based on the logical
relationships between components (e.g., interface report for
a specific sensor), and (2) physical or location-based reports
which show the geographical map of specific elements. In our
engagement, we have observed that most applications focus
on topological reports and limited location-based reports (in
most instances focusing on mapping individual devices).
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E. Reflecting on the Current Process

The described process captures the essential elements for
alarm monitoring, with most inefficiencies originating from the
cumbersome process of correlating alarms across different ap-
plication and manual process of invoking active probes. There
is another important element which we have not described
in our process, namely, the role of information accuracy. As
expected, information accuracy plays a critical role in the iden-
tification of root-causes. Unfortunately, information inaccura-
cies are common, with two types of inaccuracies of particular
interest: (1) misconfiguration and (2) name-space errors. These
inaccuracies are often caused by database corruption, disparate
application configuration, infrastructure upgrades, etc. In both
cases, we have observed the lack of automation in detecting
and correcting such inaccuracies, relying on the technician's
field knowledge to account for such inaccuracies. In Figure II,
we have not explicitly captured the process of dealing with
such inaccuracies. However, one can assume that they are part
of Pl, P2, p3, P4 and Pcross-reference-

III. DESIGN & IMPLEMENTATION

To address the inefficiencies in the current process, we have
fully implemented an application called 3i that projects logical
structuring of end-to-end infrastructure graph on top of a geo-
coded map [1 1]. While contextualizing events in a Geographic
Information System (GIS) is not new [18], this paper describes
the use of GIS-based methodology to provide the following
three features: (1) dynamic scoping based on user-configurable
functional maps, (2) spatial event aggregation and projection,
(3) minimizing overhead of active probing.

Fig. 4. Screen-shot of 3i

Before describing each feature, we briefly highlight the main
components of 3i. Figure 3 shows the architecture of 3i, which
follows similar software stack to other monitoring solutions
like Micromuse [17] and SMARTS [5]. Figure 4 shows an
anonymized screen-shot of 3i. At the lowest level is the event
collection fabric. Here, events are assumed to come from
other management applications. Events are normalized (i.e.,
converted into a standard format), compressed (by removing
duplicate information) and persisted into a database (DB). The
middle layer includes the core components that achieves the
above features. They are described in the remainder of this
section. The remaining components in Figure 3 are essentially
responsible for packaging the information and sending it to the
user front-end. In our implementation it is based on Google
Maps API [6].

A. Dynamic Scoping

Combined with the topology information, the active DB has
a complete view of the end-to-end graph G. This bring us to
the first feature: dynamic scoping, which focuses on producing
a consistent subgraph of G. Dynamic scoping addresses the
requirement that different role-players might be interested in
different types of information as well as different levels of
aggregation.
A data scoping layer is introduced (Figure 3). It exposes

a subgraph of G that can be scoped across three dimensions:
(1) functionality, (2) time, and/or (3) space. Scoping by func-
tionality allows a role player to define the type of components
and sensors s/he is interested in. It operates at the functional
map level. For instance, a technician can express interest in
monitoring REG events from the Cable Modem Termination
System (CMTS) interfaces (Figure 5). Scoping by time allows
a role player to define a time-window of interest, which would
effectively show events within the specified window. Finally,
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active if there is a sensor connected to it, and passive otherwise.

scoping by space allows a role player to look at a components
(and related events) within a specific geographical bound.

Implementing the above across the three dimensions is
straightforward especially given capabilities of advanced
databases like DB2 and Oracle (using Quadtrees indexing
for fast lookups [22]). Where these databased fall short is in
ensuring that the scoped graph is connected, especially since it
is common for a scope to produce a disconnected subgraph of
the end-to-end graph. Thus, the second role of the data scoping
layer is to reconnect missing links between nodes (due to data
scoping). It basically works by introducing logical connections
when a child-parent chain is broken. It does not re-introduces
missing components into the graph.

At this point, we can see that graph connectivity can be
guaranteed if every node has at least one ancestor within the
scope. Typically, only the spatial scoping dimension produces
disconnected graphs. Because spatial scoping is used during
map navigation, the resulting disconnected graph is still useful.

Figure 6 shows an example of how the data-scoping layer
re-connects the scoped graph. The algorithm takes the full
topology as its input and iterates over all of the vertices in the
scoped graph as follows:

1. Find noes in a specific range;
2. for each node, find closes ancestor;
3. if no link is present, create a virtual like between node

and ancestor;
4. connect events to visible components, from the specified

time window.
Data scoping is used not just to create custom views for

different role players, but to also create a scoped view of the
components that are affected by a failure. In this paper, we
refer to such view as a correlated group. The primary use of a
correlated group is to be (1) a reference for other role players
that are co-diagnosing the same failure or (2) a fingerprint

used by an automated problem management system. Consider
incident management systems like ManageNow [8] or Rem-
edy [2], where formal trouble tickets are created to dispatch
work-orders to technicians. Because failures can trigger large
number of alarms, which are reported by different monitoring
systems as well as user calls, the generated tickets would refer
to one or more of the effected components as textual input
in the ticket. To help bridge the gap between process-based
solutions (like incident management systems) and an IT based
solution (like 3i) and to maximize the efficiency of the govern-
ing processes, correlated groups can be pushed automatically
(via a SOAP interface) into incident management systems.
They can be queried (as if they are a single component) for
their aggregate status (e.g., to allow a technician to check if a
fix has resolved all of the corresponding alarms).

B. Aggregation and Status Projection
From a user's perspective, the map contains a set of compo-

nents (e.g., CMTS, interfaces, cable modems, etc), each with
specific event information. However, a typical map cannot
display a large number of components, especially for lower-
level ones (like cable modems). For example, a city may
contain hundreds of thousands of homes, each with multiple
monitored devices (e.g., one or more set-top boxes and/or a
cable modem). It is natural then that at a high-level view, an
aggregate status of the low-level components is presented. This
aggregate is based on aggregation functions that operates on
the spatial information, not the logical one.
As shown in the example of Figure 7, two specific issues

arise. First, aggregation does not necessarily reflect logical
groupings. That is, if one is drawing a grid or a shaded box,
that box might span multiple branches of the monitored graph.
Second, aggregation can only reflect information about a single
component layer. For example, it does not make sense to
aggregate the status of fiber nodes and cable modems in Fig-
ure 7. To that extent, we define the spatial aggregation function
for a given geographical box (defined using longitudes and
latitudes) as follows:

(2)Sbox = sx (l)
xCC (box)
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Fig. 7. Aggregation by spatial relationship

where C1 (box) represents the components at topological level
1 in the corresponding bounding box, and sx is the status of
component x. We also assume that E reflects an appropriate
aggregation algebra of two component statuses (e.g., sum of
a red and a green alarm is red). For instance, if we consider
customer premise equipments (CPEs), 1 0 as depicted in
Figure 5. Then, for a given area, Co (box) would contain all
CPEs in that area and sx (0) corresponds to the status of a
single CPE.

Notice here that we have defined sx as a also function of
1, which is the projection level. The projection level reflects a
topological level, and sx(1) is then the status of the ancestor
of component x at level 1. The idea is that a device can inherit
(during the computation of the status) the status of one of its
parents.

Clearly, status projection can be used to quickly identify
impacted areas by a specific failure. For example, by projecting
the status of an alarm in the CMTS level onto the CPE
components, the technician can quickly visualize the impacted
area. The impacted area is the area covered by leaf nodes,
like CPEs. As we will describe in Section III-C, we have
found that status projection can also improve the efficiency
of active probing. In some cases, we have also found that
status projection is also an effective mechanism for visual
identification of misconfigured devices. Consider, for example,
that device cpe-3 in Figure 7 is connected to the wrong node
(node-1 instead of node 2). Then, if we project node status
on cable modems, when node-1 fails, cpe-3 may show up in
the aggregation grid as an incorrect color and can be a strong
visual indicator of a failed device.

Implementing status projection can be done efficiently by

caching the relationship of the parent tree for all leaf nodes.
For instance, if we want to project the status of a CMTS onto
customer cable modems, then for each customer, we have to
identify its parent CMTS. This can be easily done offline.
Then, when geographical-based aggregation is performed (as
part of showing the impacted area), the status of the parent
CMTS is looked up. Because this status is shared by many
customers, having a small dynamic cache of this information
further reduces the projection overhead.

C. Active Probing
In Figure II, we show that active probing is manually

invoked to check the status of a device. We have automated
this task by invoking these probes for all failed components at
the end of every monitoring cycle. As expected, we have found
that in many cases not all of the actively probed information
is needed. The reason being that not all alarms are actively
diagnosed within a probing cycle. To minimize the number of
active probes, we use spatial scoping to invoke those probes
on components that are in view.

Unfortunately, one cannot simply invoke active probes on
components in view because at the highest-map level (e.g.,
city view) all of the devices can be in view also noting that
high-level view is typically the most natural starting point of
infrastructure monitoring.

Here, we see another benefit of status projection, whereby
at the highest levels, the status of the leaf nodes inherits the
closest ancestor that is being passively probed. In the case
of the current process of Figure II, a CPE (defined as the
most granular information in p4) would inherit the status of
its immediate parent. Only when the view is scoped down that
the active probe is invoked.

Consider the example of multiple interfaces reporting dif-
ferent failures. By projecting the status of these interfaces onto
the corresponding CPEs, the technician can immediately see
the possible impacted area by these failed interfaces. However,
not all failure indicators are critical. For instance, a low signal-
to-noise ratio, even though it can generate an alarm, it may
not disrupt service. Also, if a field technician has already
been dispatch to investigate that root-cause of the alarm, the
technician does not need to continue looking at the alarm.
A technician will prioritize which alarms to investigate first.
Thus, as the technician zooms in, the probe is automatically
launched for the chosen interface.

D. Discussion
In the discussion so far, we have assumed that the end-

to-end graph is constructed from different applications with-
out concern for time synchronization issues. In reality, time
synchronization plays an important role in problem diagnosis.
For instance, if events from application A arrive at time t =
O, 4, 8, ....min and application B at times t = 1, 3, 5, ....min,
then if at t = 4 an alarm is triggered, the technician must
wait for another minute t = 5 to correlate information
coming from different apps. Even worse, because different
event sources (e.g., applications A and B above) may report
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alarms from different devices, a cyclical dependency between
information from both applications is formed. Breaking this
dependency requires better configuration of applications. In
the absence of such careful application timing, we have found
that contexualizing events on a map reduces some of the
dependencies on information from different applications as
spatial localization produces another "hint" of the source of the
problem. Automating the reduction of cyclical dependencies
as well as maximizing the use of spatial information is the
focus of ongoing research.

IV. EVALUATING THE AFTER PROCESS

This section describes the resulting process as well as
the preliminary work in evaluating the overall improvement
between the old and the new ADSA process. We base our
evaluation on the Process Complexity Model [4]. The model
consists of a framework that approximates the complexity of
IT processes. It breaks down processes into tasks, roles, and
interactions, and assigns a complexity score for each task. The
resulting score is a scalar value that is indicative of the total
complexity of the process. By itself, the complexity score is
not immediately usable. It can be used however in two ways:
(1) to analyze the individual tasks that compose a process and
identify bottlenecks in these tasks (i.e., quickly identify tasks
with high complexity scores), and (2) to compare the absolute
complexity scores of two processes and based on that derive
an improvement score.

Very briefly, the model works as follows: Starting from
a model of the process, identify the tasks that compose

the process, the actors and their roles (the different people
involved), and the data artifacts that need to be exchanged in
order to perform each task. The model then tries to assign
complexity metrics in the following dimensions:

* Execution Complexity covers the complexity involved
in performing the tasks that make up the IT process.
There are two metrics for execution complexity: Base
Execution Complexity and Decision Complexity. The base
Execution Complexity indicates complexity of the task
according to its execution type. Values for this score are
assigned according to a weighting scale for different task
types. The Base Execution Complexity for that task is
then the sum of values from all the roles. The Decision
Complexity quantifies additional execution complexity
due to decision making. For a non-decision making task,
its value is zero. If a decision needs to be made, its
complexity is based on the four complexity sub-metrics:
the number of branches in the decision, the degree of
supplied guidance, the consequence of impact, and the
visibility of impact.

* Coordination Complexity measures the complexity of the
different roles coordinating between the different tasks
that compose the process. The coordination complexity is
zero if it is linked to an automated task, and progressively
increases depending on whether the artifacts transfered
between the tasks need to be interpreted further.

* Business Item Complexity captures the complexity of
involving business items, such as supplying the value of
a field of a configuration item. Again, the model assigns
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an increasing complexity score based on whether deter-
mining the value is automatic, or requires consideration
of external information sources.

Not surprisingly, the resulting process (herein referred to
as the after process) from integrating 3i into ADSA pro-
cess enables higher efficiency. Informally, higher efficiency
is achieved across two complexity parameters.

* First, the consolidation of alarm sources yields improve-
ments in the Base Execution Complexity by reducing the
number of application monitoring tasks to one, and the
Decision Complexity is reduced to zero since there are
no decision branches.

* Second, the drill-down process also reduces the number
of tasks. This again impacts both the Base Execution
Complexity and the Decision Complexity. The Coordina-
tion Complexity is also reduced as a result of the previous
reduction in the number of tasks.

The resulting SPN process is depicted in Figure 111-C.
Unlike the before process, the resulting process can be divided
into three groups: (1) alarm generation, (2) process drill-down,
and (3) reporting, with the cross-referencing group eliminated.

A. Alarm Generation

In the after process, there is only a single and unified
event source of alarms. This source represent events from all
passive and active probes (Palarm and Pactive-probe in the
before process). This had a clear impact on the day-to-day
operation as it eliminated the need for a technician to monitor
the disparate applications for status changes. The improvement
can be observed by looking at the SPN, specifically between
p3 and p4. This improvement is due to two reasons: (1)
elimination of transition delay tactive-probe, this effectively
reduces the wait time to get the results of the active probe,
and (2) consolidation of Pactive-probe as described in Sec-
tion 111-C. Looking carefully at the before and after processes,
quantifying the improvement is not straightforward because
the before process allows for the concurrent invocation (hence,
pipelining) of active probes.

B. Process Drill-Down

The drill-down process is more connected and has smaller
transition weights. The former is a result of two features: (1)
dynamic projection and (2) event scoping. As we described
earlier event scoping allows a role player to customize the
monitored event graph. Specifically, by allowing a role-player
to select what components to monitor, the corresponding
number of drill-down steps also changes. For example, if a
role player chooses to monitor the CMTS and CPE devices
only in Figure 5, then the resulting process will only have
two steps in the drill-down process. To capture the variation
in role-player preference, we add transitions between every
pair in the drill-down process.

In Section II, we mention that the transition weights are a
function of the branching factor and failure probabilities of

devices at each hierarchical level. Because monitoring appli-
cations traditionally use list views4, drilling down typically
requires investigating different failures for each entry of the
view. Using a map, on the other hand, enables a role player
to see not just a large set of components, but also provide
additional geographical context. This enhanced context, from
our experience, improved fault localization and verification.
Both reduce the effect transition weight. Additionally, status
projection further improves the drill-down requirement as it
allows a role player to immediately identify impacted areas.

Consider the example in Section II where a sensor for
a specific interface generates an alarm. At this point, the
technician would project the status of the interface on the
customer base to visualize the impacted area. The role player
can also project the status of the underlying fiber nodes to
quickly see if any of them is the source of the alarm. In
either case (a fiber node is the cause of the alarm or not),
the technician can zoom to the affected area (automatically
launching the active probe) to view street-level information.
The example above brings us to the need to capture the

map navigation in the after process. These are captured by
transitions ti,, t2,2, t3,3 and t4,4. These transitions have a
weight of 1 as map navigation does not produce additional
tokens within any process step. They also point back to the
same process step since navigation maintains the same context
within a hierarchical level.

C. Reporting
In the after process, reporting includes both geographical

and logical information and can be produces at all process
steps. Because these reports also cover impacted areas, they
depict the customers that are experiencing failures and the ones
that do not. Not surprisingly, we found that for problems like
cable cuts, where a large number of geographically proximate
customers are affected, such reports can pinpoint good starting
locations to field technicians (e.g., between homes showing
green status and those showing red).

V. RELATED WORK

The topic of infrastructure monitoring and management has
been explored in many research studies (e.g., [7, 12, 14, 15, 19,
21], to name a few). It has also been the focus of commercial
and open source tools [5, 17]. In this section, we will look at
a narrower scope. Specifically, we will look at related work
that intersects with location-aware or GIS-based technologies.
OpenGIS defined various standards for encoding and deal-

ing with observations and measurements [ 1 8]. While we
present monitored events in the backdrop of a geo-coded
map, the scope of OpenGIS is much broader, as it defines
inter-operable GIS-based applications. At the same time, the
OpenGIS standard does not address specific problems in
service assurance process that we have described. Indulska and
Orlowska [10] have looked at aggregation issues in spatial data
management, focusing on database data aggregation. Their

4a list view is used here to refer to tables or tree branches that list a set of
components, each with some status information
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scheme focuses on information pre-processing to improve the
efficiency of the back-end data-store. In 3i, we address the
data aggregation by restricting frequent spatial aggregation
queries to a fixed grid (with different granularity at different
zoom levels). This allowed us to efficiently pre-compute the
aggregates. 3i also supports more dynamic spatial aggrega-
tion. These are less frequently accessed (once every several
minutes) and incur, on average, a 3 second delay.

In [23], the authors investigate scripting in GIS systems.
Large portions (specifically, application server components) of
3i is implemented in PHP [20], which, can thus be viewed as
an example of the usefulness of scripted languages to create
advanced monitoring solutions. The authors of [1] present a
specification language for describing events that can be used
in location-aware systems. Our work, encompasses a similar
approach during the normalization of events. We have focused
on using such event information to improve the efficiency of
the corresponding management process. In [3], the authors
look at using spatial information to customize information
being published to mobile users. While this seems a departure
from the focus of this paper, our approach of using spatial
information to launch an active probe is related to some extent.
Here, we are using the view of a technician as an indicator of
what information to subscribe to.
From a tooling perspective, solutions like iGlass [9] provide

a location-aware view of the cable infrastructure. Our work in
this paper was not just to implement a location-aware system,
but to address key performance and implementation issues that
affects in managing a large number of interrelated components,
thus ultimately, affecting the corresponding service assurance
process.

VI. CONCLUSIONS

GIS technology has the potential of trasforming many
aspects of the service management process in converged
IP networks. Based on an engagement with a large Cable
provider, we have designed and built 3i to address key issues in
the service assurance process. 3i is highly componentized and
provides an intuitive way for creating role-based views through
dynamic scoping, event aggregation and status projection, and
location-driven active probing. We analyzed the current service
assurance process and the improvements after introducing 3i.
Beyond the service assurance process, we are already seeing
industry interest in using it for planning and marketing, since
it can study changes in customer densities and underlying
infrastructure capacities and correlate with growth numbers
in new service offerings. We have observed similar interest
from other service providers in the Telco and Cable space.
It is also applicable to the utilities industry. We have a fully
functional prototype working on live operations data.
We are actively working on quantifying the productivity

improvements of using 3i by modeling in detail the before
and after process using a process modeling framework. We
anticipate to present these results in an extended version of
this paper.
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