
On the Design of a Flexible Software Platform
for In-Building OTT Service Provisioning

Tim De Pauw∗†, Bruno Volckaert∗, Filip De Turck∗ and Veerle Ongenae†

∗Department of Information Technology (INTEC)
Ghent University – IBBT, Gaston Crommenlaan 8 bus 201, 9050 Ghent, Belgium

†Faculty of Applied Engineering Sciences (INWE)
University College Ghent, Schoonmeersstraat 52, 9000 Ghent, Belgium

Email: tim.depauw@intec.ugent.be

Abstract—We propose a software platform which pairs context
awareness with over-the-top (OTT) service deployment. By aug-
menting OTT services with local context information, we allow
them to react upon various types of changes in the environment
in which they are being deployed. This lets service providers offer
more personalized and fine-grained applications, while making
use of a third-party infrastructure, via the OTT paradigm.

Through UML diagrams, we describe the architecture of the
proposed service platform. By means of a detailed illustrative sce-
nario, the components involved are further clarified. In addition,
in order to prove the feasibility of the architecture, a prototype
implementation was developed and deployed on a large wireless
sensor network test bed. Using a set of benchmarks, we identified
the strengths and weaknesses of both test bed and prototype.

I. INTRODUCTION

Recently, the introduction of so-called over-the-top (OTT)
service providers has given rise to new business models
for network-enabled services. OTT providers collaborate with
network operators in order to tune the services at hand to
the network infrastructure. The most common application of
the OTT model is without a doubt found in the digital video
domain, where content providers rely on network operators
to provide often interactive video content to set-top boxes,
television sets and personal computers.

In addition to this classic example of the over-the-top model,
the flexibility introduced by its loosely collaborative nature
is likely to drive a variety of services backing the future
Internet. One factor in such up-and-coming network-based
services is context awareness, i.e. the ability for an application
to intelligently adapt to its changing environment.

In order for a given application to adapt to the environ-
ment in which it is operating, context information must be
readily accessible. One way of collecting such information
is by processing data from hardware sensors. In a wireless
sensor network (WSN), sensor equipment is generally placed
alongside more traditional machines, to collect relevant data.

Once raw data has been collected, knowledge must be
extracted from it, so appropriate action can be taken. Often-
times, this operation is performed via ontological reasoning.
Ontologies allow for the specification of a semantic model of
the problem domain. By consequently applying a reasoner to
an ontology, additional information is inferred from the model.

The WiLab [1] experimental test bed is a typical WSN. It is
comprised of several hundred wireless mesh network nodes,
the majority of which are equipped with sensors measuring
temperature, humidity, and light intensity. The nodes are
embedded systems, modest yet capable of a fair amount of
local processing. Thus, the individual nodes’ resources can
be harvested to drive a distributed context-aware application
running on the WSN.

In this paper, we present a software architecture for the
operation of context-aware services in WSNs, using the over-
the-top paradigm. We also describe a deployment scenario and
use it to detail the purpose of the components we introduce. In
addition, we list the results of a set of benchmarks, which were
used to obtain performance metrics of key components of our
platform. These metrics were subsequently used as parameters
in resource provisioning algorithms we have developed.

The remainder of this paper is structured as follows. Sec-
tion II provides an overview of related work. In Section III,
we describe the building blocks of our context-aware OTT
service architecture, after which Section IV lists our technol-
ogy choices for its implementation. Section V introduces our
evaluation scenario and illustrates how the platform’s architec-
ture’s components interact. The supporting benchmarks from
the used experimental facilities follow in Section VI. We end
with a look at opportunities for future research.

II. RELATED WORK

Context awareness and ubiquitous computing are currently
important research topics. Ailisto et al. introduce a five-layered
model for context-aware applications [2]. Our platform builds
upon this model, extending it to support the OTT paradigm.

Ahmad and Begen predict that next-generation networks
will be mostly driven by demand for over-the-top video
services. An important aspect of these so-called medianets will
be targeted advertising. As digital media environments become
more and more aware of their users and surroundings, content
providers will be able to identify micro-scale advertising
opportunities. Thus, sophisticated monetization schemes are
likely to emerge in the not so distant future. [3]

Ontological reasoning is often used in context-aware appli-
cations, as ontologies support specification and processing of
context information independent from other application logic.



Fig. 1. Component diagram showing the global platform architecture

Originally designed to further the Semantic Web, OWL ontolo-
gies allow for semantic modeling of entities and relationships.
[4] Furthermore, using a reasoner such as Pellet [5], RACER
[6], or FaCT++ [7], knowledge can be inferred from ontolo-
gies. The SPARQL language allows one to query ontology
information much like SQL with a relational database.

Pairing ontologies with sensor networks, the Semantic Sen-
sor Web enhances the network with spatial, temporal and the-
matic semantic metadata, resulting in a model unburdened by
interoperability issues. [8] This technology is likely to prove
useful in a more extensive implementation of our platform.

In light of the resource-intensive nature of ontological
reasoning, Verstichel et al. describe a distributed approach. [9]
While the concept is certainly compatible with the platform
we propose, we chose to focus on key components first and
postpone the distribution of reasoning processes.

Component-based distributed applications are an integral
part of our context-aware OTT service architecture. While
various middlewares are available to support component-based
applications, many of these are not suitable for use in a
resource-constrained environment such as a wireless sensor
network. Arguably the most widely known lightweight Java-
based solution is the OSGi framework [10]. Various implemen-
tations of the standard are available, such as Eclipse Equinox
[11] and Apache Felix [12]. Frénot et al. [13] describe an
extension to OSGi to support context awareness in distributed
environments. A few concepts may be extrapolated to our
platform, but we refrain from this so as not to overcomplicate
the model.

Our implementation of video playback uses a simple one-
way TCP stream. Numerous extensions are imaginable. An
advanced application would be the time-shifted multicast
solution proposed by Noh et al. [14].

Scheduling tasks in heterogeneous computing environments

such as sensor networks is known to be an NP-complete
problem. Various researchers have tackled the problem, with
mixed results; Dhodhi et al. cite examples of “optimal se-
lection theory-based approaches, graph-based approaches, ge-
netic algorithm-based techniques and other heuristics.” [15]
Our own bin-packing-based algorithms have been shown to
produce acceptable solutions. [16]

III. SOFTWARE ARCHITECTURE

Figure 1 shows a high-level architectural view of the plat-
form we propose. It is composed of three main parts.

On the left, the five layers introduced in [2] are displayed.
These support the extraction of knowledge from raw data. In
Section V, we will illustrate the exact purpose of each layer
by means of an example scenario.

A key aspect of the envisaged platform is its distributed
nature. To allow for maximum flexibility in this area, we
introduce a set of loosely coupled enterprise services, located
in the middle of the figure. These are accessed through two
message buses. On one hand, internal components use the
Enterprise Message Bus to communicate with them; on the
other hand, similarly, OTT service providers (on the right)
interact with selected services through the OTT Message Bus.

By delegating the location of service components and data
to the OTT Message Bus, we can focus on the platform’s actual
purpose. Similarly, the OTT provider does not need to be con-
cerned with the platform’s internals, or even communication
with it over the Internet; this task is handled by the OTT Proxy.

Among the enterprise services we propose are four profiling
services, which maintain knowledge about the network infras-
tructure, the software components and the users present:

• The Service Profiling service keeps track of OTT services
that may be deployed throughout the network. These OTT
services are either made available by service providers



or by the network operator. Each OTT service’s profile
specifies its constraints and requirements in terms of re-
sources. Profiles are dynamic in nature: during operation,
the platform monitors the individual services and updates
their profiles accordingly.

• Similarly, the Node Profiling service maintains informa-
tion about the network nodes. A node profile contains
information about the node’s installed hard- and software,
energy conservation schemes, etc. Node profiles, too, may
be updated during operation; for instance, memory may
be allocated differently, or hardware may fail.

• By means of the Environment Profiling service, the plat-
form keeps track of the physical environment in which the
network infrastructure is installed. Environment profiles
may for instance list the locations of vending machines,
elevators, first aid kits, andsoforth. Evidently, a change in
the environment is reflected by a change in its profile.

• Finally, the User Profiling service aggregates information
about the persons using the platform and the services in-
stalled. While users perform various actions, their profiles
are constantly enriched.

Two more enterprise services, the Reasoner and Sched-
uler support the processes of knowledge inference and task
scheduling, respectively.

IV. IMPLEMENTATION DETAILS

In this section, we provide an overview of the tools we en-
visage for implementation of the proposed software platform.
However, while the platform may have been conceived with
these tools in mind, its architecture in no way constrains the
developer’s technology choices.

In terms of hardware, as mentioned, the platform was
deployed on our test bed WiLab [1]. It consists of 400 ALIX
3c3 [17] nodes, equipped with a 500 MHz AMD Geode LX800
processor and 256 MB of DDR DRAM. In addition, most of
the nodes have a Moteiv Tmote Sky [18] sensor board attached,
which allows them to measure temperature, humidity, and light
intensity. The nodes are equipped with two IEEE 802.11g
antennas for wireless communication, while the sensor boards
may interact using any IEEE 802.15.4 protocol.

Software-wise, we used the following technologies:
• WiLab nodes have Voyage Linux [19] installed, an em-

bedded derivative of the Debian GNU/Linux distribution.
• The OSGi framework [10] offers a lightweight solution

for component-based Java development. Our implemen-
tation of choice is Eclipse Equinox [11].

• To manage ontologies in Java, we used the Jena Ontology
API [20]. One of the advantages of this common library
is its straightforward integration with the Pellet reasoner
[5], which we also deployed.

• To transcode video material, we relied on FFmpeg [21].
• Video files were streamed using the headless version of

the popular VLC media player [22].
• Scheduling the deployment of OTT services is done using

algorithms based on the bin packing metaphor; these were
previously published in [16].

V. ILLUSTRATIVE SCENARIO

Having introduced the prime components of our platform,
let us now describe a typical scenario in which it is applied.

Say an OTT provider wants to run a video advertisement for
a refreshing new soft drink. To this end, a wireless sensor net-
work not too dissimilar from our test bed is installed, and video
screens are installed near vending machines. The OTT provider
pushes his video advertisement service to our platform. Based
on context information provided by the platform, the OTT
service detects advertising opportunities; for soft drink ads, a
rising temperature may be an excellent incentive. Once such an
opportunity manifests itself, the platform provisions resources
for the deployment of the advertisement. For instance, steps
may be taken to play the ad on the video screens, or even
the mobile devices of the users present, accompanied by a
personalized coupon code.

Now, we will analyze this real-life scenario and pinpoint
the components involved. By means of sequence diagrams,
we will clarify the interaction between the various parties.

A. OTT Service Registration

First of all, the OTT service provider registers a new OTT
service with the platform, e.g. the soft drink advertisement
service. The corresponding sequence diagram is shown in Fig-
ure 2. Via the OTT Message Bus, information about the newly
registered OTT service is made available to the platform, and
then propagates to the classes involved:

• A call to Service Registration ensures that the platform
becomes aware of the existence of the OTT service.

• If the service provider did not supply a profile with the
OTT service, the platform performs an initial analysis of
the executable code supplied.

• The service profile is subsequently registered with the
Service Profiling service.

• Finally, the OTT service’s executable code is placed in the
Service Repository, rendering it available for deployment
on the network.

Fig. 2. Sequence diagram detailing OTT service registration



Fig. 3. Sequence diagram detailing session initiation

Fig. 4. Sequence diagram detailing pull-based OTT service invocation

B. OTT Service Activation

After the registration of an OTT service, the service provider
may activate or deactivate it at will. This subscenario is a
simple application of the OTT Message Bus. The OTT Proxy
contacts the bus, which forwards the request to the Service
Profiling service. Thus, as already outlined in Section III, the
distributed nature of the platform barely imposes additional
complexity regarding OTT service management.

C. Session Initiation

Having registered and profiled the OTT service, the platform
is now ready to receive users. As mentioned, we want to be
able to interact with them: not only do we want to detect
their presence in a certain area and whatnot, but ideally, we
would also like permission to push useful information and
advertisements to their mobile device. Therefore, we wish to
be able to install a software agent on it. Figure 3 shows this.

It is assumed that the user has received account information
prior to session initiation, or, alternatively, that anonymous
logins are allowed. Upon access to the platform, the User Pro-
file Service is contacted to store new information about the user
and his device. Consequently, a Web page is served, containing
a link to the device-specific installer for our software agent.
Upon the installation of this agent, the device becomes capable
of sharing context information with the platform, as well as
receiving rich media from it.

D. OTT Service Invocation

Ultimately, of course, our goal is to invoke the video
advertisement OTT service. This final step in our scenario is

Fig. 5. Sequence diagram detailing push-based OTT service invocation

therefore probably the most interesting one. It embodies the
transformation of sensor data to context information, as well
as the inference of knowledge and the subsequent response.

In Figure 4, we illustrate the case where the OTT service,
located in the Application Layer, takes the initiative to pull
updates from the underlying layers. Thus, from left to right,
the first five lifelines in the diagram correspond to the five
layers in Figure 1, whereas the rightmost lifeline, Enterprise
Services, is a placeholder for the platform’s profiling services.

Using our example scenario, let us walk through the archi-
tecture’s five major layers, so we can obtain a clear insight in
how the raw sensor data is transformed.

1) Responding to the getData() message, the Physical Layer
embodied by a Sensor provides the raw measurement
301 to the Context Data Layer. The fact that this number
actually represents a temperature expressed in Kelvin is
unknown at this point. Another example may be a list of
mobile devices that are currently in the sensor’s vicinity.

2) The Context Data Layer is embodied by the Context
Analyzer, which builds a local representation of context.
In our example, this boils down to obtaining a more
accurate room temperature by computing an average
of several sensor readings. Which sensor readings to
include is determined by consulting an environment
profile, meaning that the Context Analyzer must commu-
nicate with the enterprise services. Having obtained the
necessary profile, it uses the additional measurements
298 and 310 to compute an average temperature of 30
degrees Celsius. In the case of positioning, user profiles
may be obtained to produce a list of users in the room.

3) The Semantic Analyzer, part of the Semantic Layer, takes
the resulting value and analyzes it further. In this case,
30 degrees is taken to be “quite high,” prompting an
opportunity to play the OTT provider’s ad. When dealing
with the users present, their profiles may be analyzed to
see if they are part of the target demographic for the ad.

4) Having been notified of the advertisement opportunity,
the Service in the Application Layer acts upon it. For
instance, it may contact the Scheduler to provision
resources for streaming video to the appropriate devices.

Sometimes, it may be more efficient for intermediate layers
to produce events, which are then pushed to the layer above.
This scenario is exemplified by Figure 5, where the Context
Analyzer eventually triggers an update to the topmost layer.



TABLE I
UOB SPARQL QUERY EXECUTION TIMES

Query Time
1 6,536 ± 152 ms
2 12,209 ± 137 ms
3 4,726 ± 120 ms
4 1,552 ± 55 ms
5 5,209 ± 120 ms
6 1,963 ± 60 ms
7 8,657 ± 142 ms
8 –
9 2,405 ± 61 ms

10 1,711 ± 45 ms
11 5,808 ± 108 ms
12 993 ± 24 ms
13 –

(a) OWL Lite

Query Time
1 3,906 ± 42 ms
2 10,770 ± 150 ms
3 12,176 ± 132 ms
4 7,095 ± 94 ms
5 14,433 ± 153 ms
6 13,171 ± 142 ms
7 10,101 ± 122 ms
8 –
9 9,371 ± 120 ms

10 9,417 ± 107 ms
11 7,551 ± 90 ms
12 19,180 ± 154 ms

13–15 –

(b) OWL DL

VI. TEST BED BENCHMARKS

To accurately provision resources on our test bed, the plat-
form must be aware of various characteristics of the hard- and
software involved. In this section, we describe the benchmarks
we used to compose service and node profiles.

A. Reasoning Throughput

While conceptually, ontological reasoning is well suited to
the context awareness problem domain, unfortunately, working
with ontologies quickly becomes a resource-intensive oper-
ation. Consequently, to quantify the capabilities of our test
bed regarding ontologies, we used the well-known University
Ontology Benchmark [23].

It quickly became apparent that the larger variants of the
benchmark, containing information about 5 and 10 fictitious
universities, respectively, are too complex for analysis on a
single node. Both with an in-memory model and a TDB-based
one, we were unable to load the full ontology. This is not
surprising, as far more powerful machines have been known
to struggle with the benchmark as well. [24]

The single-university version of the benchmark, however,
did provide us with some insight. For the OWL Lite flavor,
on average, it took Jena and Pellet 131 seconds to load the
full ontology from flash storage and infer additional facts;
in the OWL DL case, this process required 137 seconds.
Subsequently applying the supplied set of SPARQL queries
to the model yielded mixed results; the means and variances
of 20 runs are displayed in Table I. As can be observed,
certain queries did not complete properly. In addition, query
11 produced a result set different from the reference solution
in both cases; this behavior, too, has been documented in [24].

In the case of OWL Lite, memory usage peaked at 96 MB,
whereas the OWL DL variant required 103 MB of RAM. Both
these values solely apply to the ontological reasoning thread,
not the Java Virtual Machine itself. As our nodes only have
a total of 256 MB of RAM, it is safe to assume that they are
unable to perform reasoning tasks concurrently. On the other
hand, we can also conclude that the nodes are capable of a
fair amount of ontology processing within acceptable time.

B. Video Transcoding Performance

We envisage two scenarios for adapting a video clip to
various device profiles. In the first scenario, a video clip is
transcoded using a set of profiles for common devices, yielding
a collection of video files. When a video is to be played
back, the most appropriate file is selected and streamed to
the devices. The second scenario transcodes any given video
clip or stream in real time and immediately streams it to one or
more devices. It goes without saying that this is a time-critical
operation, but it does of course offer more flexibility.

To assess our test bed’s capabilities in terms of video
transcoding, we used FFmpeg to transcode three video files of
varying qualities, in an attempt to represent popular choices.
The characteristics of these files are given in Table II. The
files were transcoded to two formats, each time at minimal,
half and maximal quality. The formats we chose were Dirac
and Ogg Theora. We had hoped to include H.264 as well, but
were unable to get the required software functioning; the Dirac
codec is however assumed to provide similar performance.
The results of the benchmark are summarized in Table III, in
which ratios were calculated by dividing the time required for
transcoding by the video’s duration.

With none of our benchmarks approaching real-time
transcoding (i.e., a ratio of 1 or less), even without any trans-
formations such as scaling, we must conclude that our hard-
ware does not meet the requirements for combined transcoding
and streaming. Streaming itself, however, does not pose a
problem; we verified this by streaming the same files using
VLC media player, without any transcoding applied.

The transcoding operation must consequently be carried out
in advance. Either the OTT provider must therefore supply
video files adhering to the platform’s requirements, or a
transcoding service must be added to the platform.

C. Scheduling Performance

The measurements above formed the basis of a test case for
the scheduling heuristics we published in [16]. We used time
slots representing 10 seconds of wall clock time. Starting from
200 WiLab nodes divided into 6 zones, and assuming that each

TABLE II
VIDEO FILE CHARACTERISTICS

Video Video Video Audio Audio
File Codec Bitrate Resolution Codec Bitrate

1 MPEG-1 1,098 kbps 352×240 MP2 112 kbps
2 H.263 2,228 kbps 640×352 MP3 160 kbps
3 H.263 5,849 kbps 1,280×720 PCM 1,536 kbps

TABLE III
VIDEO TRANSCODING RATIOS BY FORMAT AND QUALITY

File Format Minimum Half Maximum
1 Dirac 22.292 27.197 29.177

Ogg 2.947 7.033 4.641
2 Dirac 48.634 114.032 60.878

Ogg 6.148 7.609 8.211
3 Dirac 38.981 38.824 105.500

Ogg 27.115 38.572 34.557



TABLE IV
SCHEDULED TASK TYPES

Type Amount Memory Usage Duration
Reasoning 50 150 MB 13–15 slots
Streaming 50 150 MB 3–6 slots

Miscellaneous 50 50–100 MB 1–5 slots

TABLE V
RESULTING SCHEDULE METRICS

Heuristic Execution Time Loss Nodes Used
First Fit 31.53 ± 11.77 slots 6.53% 99.33 ± 14.04
Next Fit 31.60 ± 11.74 slots 6.74% 102.68 ± 10.93
Best Fit 31.40 ± 13.25 slots 6.15% 99.62 ± 9.61
Fair Fit 32.29 ± 14.05 slots 8.73% 121.16 ± 14.14

node already had a number of tasks assigned, we scheduled
additional tasks on the network, with a minimization of the
combined execution time as the objective. In what follows, all
random values have a discrete uniform distribution.

The tasks which were previously assigned did not overlap
and were between 5 and 20 slots apart; their duration varied
between 1 and 10 slots and they used 50 to 150 MB of RAM,
155 MB being the total amount available. We then proceeded
to schedule 3 types of tasks, as summarized in Table IV. Each
task was randomly tied to one of the 6 zones. “Miscellaneous”
tasks, which represent any sort of task carried out by an OTT
service, were made dependent on a randomly chosen task with
a lower number; this enforces an order relation.

We ran these simulations 100 times on our test bed WiLab,
using Java 6. The resulting combined execution times—i.e.,
for all the tasks—are presented in Table V. The average loss
compared to the optimal execution time is also displayed;
optimal schedules were obtained by means of integer linear
programming [25], using far more powerful hardware.

Like in [16], the Best Fit heuristic lives up to its name and
slightly outperforms its peers. For our type of problem, Fair
Fit appears to be the worst choice, both in terms of combined
execution times and node occupancy; we do however note that
its time loss of 8.73% is still a fairly competitive result.

On average, the four solvers executed in a mere 790 ms and
required just 24.58 MB of RAM. These modest requirements,
combined with the acceptable results which the heuristics
produce, render them highly suitable for real-time use on our
resource-constrained test bed.

VII. CONCLUSIONS AND FUTURE WORK

We described in detail an architecture for enabling context
awareness in OTT applications. Using an illustrative scenario,
the components involved were subsequently discussed. Pro-
totype deployment on our test bed allowed us to carry out
various benchmarks, which evaluated the feasibility of the
platform. Thus, we have shown how our proposed architecture
can support context-aware OTT services, as well as proven that
our test bed may be used as a deployment environment for
this architecture. At the same time, we have identified some
limitations of the test bed. Based on our findings, we will now
focus on the implementation of more extensive scenarios.

ACKNOWLEDGMENT

Tim De Pauw would like to thank the University College
Ghent Research Fund for financial support through his Ph.D.
grant. Part of this work has been funded by the IWT SBO
SymbioNets project.

REFERENCES

[1] L. Tytgat, B. Jooris, P. De Mil, B. Latré, I. Moerman, and P. Demeester,
“Demo abstract: WiLab, a real-life wireless sensor testbed with environ-
ment emulation,” in European conference on Wireless Sensor Networks
(EWSN), Cork, Ireland, Feb. 2009.

[2] H. Ailisto, P. Alahuhta, V. Haataja, V. Kyllönen, and M. Lindholm,
“Structuring context aware applications: Five-layer model and example
case,” in Workshop on Concepts and Models for Ubiquitous Computing,
2002.

[3] K. Ahmad and A. Begen, “IPTV and video networks in the 2015 time-
frame: The evolution to medianets,” IEEE Communications Magazine,
vol. 47, no. 12, pp. 68–74, 2009.

[4] D. L. McGuinness and F. van Harmelen. (2004, Feb.) OWL Web
Ontology Language Overview. [Online]. Available: http://www.w3.org/
TR/owl-features/

[5] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical OWL-DL reasoner,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 5, no. 2, pp. 51–53, Jun. 2007.

[6] V. Haarslev and R. Müller, “RACER system description,” Automated
Reasoning, pp. 701–705, 2001.

[7] D. Tsarkov and I. Horrocks, “FaCT++ description logic reasoner: System
description,” Automated Reasoning, pp. 292–297, 2006.

[8] A. Sheth, C. Henson, and S. Sahoo, “Semantic Sensor Web,” IEEE
Internet Computing, pp. 78–83, 2008.

[9] S. Verstichel, F. Ongenae, B. Volckaert, F. De Turck, B. Dhoedt,
T. Dhaene, and P. Demeester, “An autonomous service platform to sup-
port distributed ontology-based context-aware agents,” Expert Systems:
The Journal of Knowledge Engineering on Engineering Semantic Agent
Systems, Accepted for publication.

[10] OSGi Alliance. (2003) OSGi Service Platform, release 4. [Online].
Available: http://www.osgi.org/

[11] Eclipse. Equinox. [Online]. Available: http://eclipse.org/equinox/
[12] Apache Foundation. Felix. [Online]. Available: http://felix.apache.org/
[13] S. Frénot, N. Ibrahim, F. Le Mouël, B. Hamida, J. Ponge, M. Chantrel,

and D. Beras, “ROCS: a remotely provisioned OSGi framework for
ambient systems,” in 2010 IEEE Network Operations and Management
Symposium (NOMS), 2010, pp. 503–510.

[14] J. Noh, A. Mavlankar, P. Baccichet, and B. Girod, “Time-shifted
streaming in a peer-to-peer video multicast system,” in 2009 IEEE
Global Telecommunications Conference (Globecom), 2010, pp. 1–6.

[15] M. Dhodhi, I. Ahmad, A. Yatama, and I. Ahmad, “An integrated tech-
nique for task matching and scheduling onto distributed heterogeneous
computing systems,” Journal of Parallel and Distributed Computing,
vol. 62, no. 9, pp. 1338–1361, Sep. 2002.

[16] T. De Pauw, S. Verstichel, B. Volckaert, F. De Turck, and V. Ongenae,
“Resource-aware scheduling of distributed ontological reasoning tasks
in wireless sensor networks,” in 2010 IEEE International Conference
on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC),
Newport Beach, USA, 2010.

[17] PC Engines GmbH. ALIX system boards. [Online]. Available:
http://pcengines.ch/alix.htm

[18] Sentilla Corp. Moteiv Hardware Product Transition Notice. [Online].
Available: http://www.sentilla.com/moteiv-transition.html

[19] Voyage. Voyage Linux. [Online]. Available: http://linux.voyage.hk/
[20] I. Dickinson. (2009, Feb.) The Jena Ontology API. [Online]. Available:

http://jena.sourceforge.net/ontology/
[21] FFmpeg. [Online]. Available: http://ffmpeg.org/
[22] VideoLAN. VLC. [Online]. Available: http://www.videolan.org/
[23] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu, “Towards a complete

OWL ontology benchmark,” vol. 4011, pp. 125–139, 2006.
[24] M. Luther, T. Liebig, S. Böhm, and O. Noppens, “Who the Heck is

the Father of Bob?” The Semantic Web: Research and Applications, pp.
66–80, 2009.

[25] R. J. Vanderbei, Linear Programming: Foundations and Extensions,
3rd ed. Springer, Nov. 2008.


