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Abstract—Development and continuous operation of network
management systems is a major challenge to future networks,
where a large number of semi-independent devices jointly try to
realize a working network. This work considers network testbed
management, and more specifically on testbed management soft-
ware for community networks. Because of the inherently unstruc-
tured and chaotic nature of community networks, managing com-
ponents inside a community network with a frequently varying
and unpredictable performance is particularly challenging. This
paper focuses on the verification of community network testbed
control software which has to cope with these challenges. We show
how the application of a container-based unit testing approach
has a positive impact on development efforts and testbed stability.

I. INTRODUCTION

Community networks can be described as “bottom-up
broadband”, or “networks by the people for the people”.
Evolving away from the centrally managed and commercially
operated ISP networks, community networks have appeared
around the world as an organic and highly distributed approach
to networking [1]. Apart from the economic and social op-
portunities and possibilities, a number of challenges in terms
of network operation and management quickly arise. Because
community networks are managed by the members using
them, they operate completely distributed, requiring robust
self-management and where possible distributed quality of
service within a highly heterogeneous network environment.

A number of research projects are currently studying
community networks and their application in various scenarios.
The GAIA IRTF working group is studying methods which
enable global access to the internet for all, and considers
community networks as a means to realize this ambitious
goal [2]. Clommunity is a European FP7 project started in
2013 that researches the deployment of distributed, cloud-like
infrastructures in the highly distributed community networks
[3]. The European FP7 CONFINE project started in 2011
and studies the feasibility of community networks as a future
internet, including related non-technical aspects such as social
and economical opportunities and challenges [4].

To allow for remote experimentation on and with com-
munity networks by both community members and interested
researchers, the CONFINE project has developed and currently
operates the Community-Lab experimental infrastructure, a
testbed for community networks experimentation. Community-
Lab is based on the idea of embedding relatively modest
research nodes in the partnering community networks, which

can then be used to experiment with existing or new proto-
cols, software or even hardware to investigate and improve
performance in community networks.

Strongly modeled after PlanetLab [5], the project has
developed a distributed testbed controller to manage the testbed
research nodes [6]. After logging in to the Community-Lab
controller website, researchers let the controller deploy their
slices and slivers in research devices located in different com-
munity networks around Europe. When allocated, the slices
and slivers are available over an IPv6 mesh tunnel with strong
security properties (tinc), which allows providing uniform
access over the independent and heterogenous networks [7].
Figure 1 gives an overview of the Community-Lab architecture
where community network devices (CD) connect CONFINE
nodes (CN) to the testbed server which runs the Community-
Lab controller software. The slivers are depicted as diamond
shapes, joined in slices.

Although Community-Lab tries to follow the PlanetLab
pull-based management structure where possible, the develop-
ment of the Community-Lab controller still proved to be very
challenging and error prone. Given the nature of distributed
systems, it is expected that the development of critical soft-
ware such as a testbed controller is hard [8] [9]. Moreover,
Community-Lab nodes are often installed in remote loca-
tions where manual intervention is cumbersome. An unstable
Community-Lab controller would cause a large logistical over-
head and could cause community network members currently
hosting nodes voluntarily to stop their commitment. This paper

Fig. 1. Overview of the Community-Lab architecture



will explain how testing has helped overcome this stability
challenge.

Testbed management software can take multiple ap-
proaches, we highlight the most popular ones. A number of
systems follow the Slice-based Facility Architecture (SFA)
from PlanetLab [10] such as GENI [11], while others follow
a more operational approach such as the Orbit Management
Framework (OMF) [12]. In both cases, development of cross-
platform cross-testbed management software is a daunting
task [13]–[15], although projects like Fed4FIRE try to tackle
this by bringing together testbed operators and tool develop-
ers [16].

Unfortunately, to the best of our knowledge very little net-
work research software is tested or verified more structurally.
Often this is caused by time constraints, combined with a fear
of the burden of testing and the uncertainty of the scale of
testing benefits. In this respect, this work wants to motivate
people to invest in testing. One interesting exception is the jFed
tool developed in Fed4FIRE, used for daily verification of the
testbeds federated in the project [17]. However, this verification
only entails a high-level functional verification (e.g. logging
in, reserving a slice). While better than no testing at all, this
approach comes with a number of limitations. E.g., it will not
detect crashing nodes and does not limit impact on production
testbed resources. This work will outline a more elaborated
testing strategy.

The contributions this work consist of the description of the
application of unit testing on a community network testbed
control system. The impact of deploying the testing system
on development of a testbed control system is measured by
considering the bug repository, which shows a significant
difference.

The results of this work are more generally applicable,
other related testbed control systems such as PlanetLab or
OMF could also be tested using a very similar approach,
resulting in more stable code and less uncertainty and doubt
about the quality of these tools. Moreover, other network
management systems could also be verified based on the
proposed approach, because of related goals such as efficiency
or isolation.

The remainder of this work is structured as follows. First,
the goals for a testing system will be outlined. Then, the
testing strategy to fulfill these objectives is detailed, including
an overview of the tests building on such a strategy. In what
follows, the impact of testing on the development of testbed
control software is assessed with an evaluation of bug report
data. Finally we present some conclusions and outline future
work.

II. TESTING GOALS

Because of the high up-front effort when unit testing a
software system, for Community-Lab a number of goals were
first outlined before starting the testing system implementation.
Based on this, a viable testing approach was chosen and
implemented.

A. Isolated

An important testing strategy goal is to isolate system under
test from the production systems. Otherwise, testing the real

systems might cause high-impact failures when the testing
system uncovers bugs (which is paradoxically a good result
for the tests). A number of strategies could be followed to
realize isolation, including testing on separate hardware or with
different software installations.

More interesting from a development perspective is the
isolation of the testing system from the system under test.
Only standardized, publicly usable APIs should be used to test
the system, rather than resorting to low-level quick-and-dirty
hacks to test functionality. In this respect, testing a system will
also make its APIs more feature complete, as all manual user
interactions now have to be realized via the API. This implies
that isolation should happen both at a resource level and a
functional level.

B. Reproducible

One of the best results of a testing run is the uncovering of
(previously unknown) bugs1. Preferably, these bugs are found
before they arise in a production environment, although it is
also beneficial to reproduce encountered erroneous situations
in test code or even use tests to drive development [18].

To this end, similar to (network) experiments and bench-
marking [19], the ability to accurately and deterministically
reproduce test results with detailed background information is
crucial in order to be able to properly debug and fix the issue
triggered by the test.

C. Realistic

The testing system has to perform realistic tests, to be
certain that the uncovered issues are practically viable on
the one hand and to make sure that all possible issues in a
production system can be reproduced by the testing system
on the other hand. To realize this goal, the system under
test clearly should closely match the real production systems,
which entails testing with similar software, hardware and
network settings.

D. Automated

Ideally, a test system should operate completely indepen-
dently. It should not require any manual intervention from
developers with tests triggered when applicable, at the most ef-
ficient moment (also see the next goal). Clearly, it is unfeasible
to expect a developer or researcher to manually trigger a test
run each time code is committed. This should be orchestrated
intelligently.

E. Efficient

Although sometimes overlooked and a lower priority than
the previous goals, it is important for a testing system to be
efficient. Developers should not have to wait multiple days
before their code is tested, as this will encourage ignoring the
obsolete results from the testing system. Notice how this might
contrast with the realism requirements outlined above.

1The best test result is an error-free test run with maximum coverage.



III. TESTING APPROACH

To fulfill the goals outlined above, during the CONFINE
project a testing system for Community-Lab was set up. Figure
2 gives an overview of the different components involved in
the testing system.

A. Test Control Software: Jenkins

The top component is formed by the existing test control
software Jenkins [20], which allows managing and reporting
on tests via a user-friendly web interface. This directly helps to
fulfill the automation goal, Jenkins is equipped extensive and
flexible test management features. In the case of Community-
Lab, all tests are triggered by monitoring the Community-Lab
development git repositories. Tied to git, tests are started upon
each change to the git repositories. The result is automated
testing of every version, which allows to go back and verify
the test results for previous code to trace back the cause of
issues.

Adding to the efficiency goal, Jenkins allows the configu-
ration of different testing schedules based on git repository
polling schedules. In Community-Lab this is used to run
the most important tests immediately while postponing more
elaborate and longer tests, see the test descriptions in what
follows for more detailed information.

Moreover, Jenkins allows running multiple jobs in parallel
on a single machine or on multiple slave nodes. This paral-
lelization offers additional efficiency improvements which are
easily enabled by adding more hardware to the testing setup. In
the case of the Community-Lab testing system older hardware
has been used to speed up testing at limited cost.

Finally, for Community-Lab Jenkins is configured to run
completely from shared scripts. This in contrast to the typical
Jenkins setup, where a lot of code is hidden deep inside the
configuration of Jenkins. In the case of Community-Lab, all
Jenkins code is run from publicly available scripts, allowing
developers to quickly and easily reproduce the testing setup
locally. This strongly contributes to the reproducibility goal.

Notice that the specific software choice is arbitrary, any
testing system or continuous integration system with similar
features could have been chosen. Popular alternatives include
hosted Jenkins setups like CloudBees [21], the Jenkins pre-
decessor Hudson [22] and the hosted continuous integration
system Travis CI [23]. In this case Jenkins was selected
because of its open source code base and highly customizable
plugin system.

B. Emulated and Hardware Testbeds

To perform realistic tests, the Community-Lab testing
system is set up to test both an emulated testbed and real
hardware. Both components are controlled by Jenkins over
SSH, as shown in Figure 2.

The real hardware testbed consists of Community-Lab
hardware dedicated to testing, connected over a network built
after a community network. The emulated testbed on the other
hand is built after the Community-Lab testbed, but with virtual
nodes (run on virtual machines and containers) instead of real
hardware.

The emulated testbed has a slightly lower performance
because of the virtualization overhead. The only other major
difference is the connection to nodes over plain SSH instead
of tinc tunnels, which are unnecessary because all emulated
nodes reside on the same physical system.

In essence, by design both the real hardware testbed and
the emulated testbed are very similar to each other and to
Community-Lab, to allow a high degree of realism.

C. Containers

Linux containers (LXC) are a lightweight virtualization
solution which has recently become very popular in technolo-
gies such as Docker [24], [25]. Compared to full virtualization
solutions containers can provide a more lightweight isolation
by sharing one kernel with multiple isolated process groups
[26].

Community-Lab relies on LXC to try and guarantee stable
and (to a certain degree) non-interfering experiments on its
embedded, relatively limited research devices.

For the testing with the emulated testbed, two containers
are introduced. One researcher simulator, which implements
the role of a researcher using the API to control Community-
Lab resources, and one testbed container. The latter uses the
Virtual CONFINE Testbed (VCT) container, which implements
both a controller and mechanisms to spawn virtual nodes (with
KVM virtualization). In the case of real hardware tests the
VCT container is replaced by real nodes on separate hardware
and controller software running on a separate machine.

For the testing system, the containers offer strong isolation,
both from resources in case of crashed testbed controllers but
also for the API. Completely separated systems allow properly
testing the API, without resorting to hacks to test a given
feature. Moreover, containers allow restarting from the same,
clean environment for each test. This allows inter-test isolation
and better reproducibility, while remaining efficient.

D. Coverage Tracking

Automated unit testing comes with an additional advan-
tage: the test coverage can be measured. In Community-Lab,
this allows us to measure test coverage to locate untested code.
Often this obsolete code is caused by missing tests for certain
functionality, but sometimes this also indicated recent code
changes which were not tested yet. In both cases, test coverage
tracking allowed focusing testing effort with minimal effort.

Another interesting advantage of test coverage tracking
turned out to be dead code removal. While discussing code
with low coverage, Community-Lab developers discovered
various parts of code which could be removed without any lost
functionality because the code was simply not used anymore.
Because of the high complexity of testbed control software,
any removed code is beneficial to lower the maintenance
burden.

E. Test Jobs

A naive approach would consist of running all tests in one
test job (running all tests consecutively), or running all tests
as separate jobs. While the latter allows for highly parallel
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Fig. 2. Testing architecture overview

testing, the burden of adding all tests to Jenkins is high. For
Community-Lab testing, the tests were organized in multiple
logical jobs.

The first job consists of the simple, basic API tests. They
involve logging in, creating slices and slivers and testing
permissions related to those actions. This job triggers every
5 minutes, depending on git repository information.

The next job consists of the strict tests, which is a superset
of the basic API tests. These tests trigger non-critical bugs
which are strictly issues but e.g. depend on improvements to
external software. This test only triggers daily because these
issues are considered to be lower priority.

The installation tests start from a clean environment with-
out any Community-Lab code and try to install a new testbed
controller from scratch. Moreover, the tests also test upgrading
from a previous version and from the stable to the development
branches of the controller code. This job only triggers hourly.

The integration tests run more elaborated testbed scenarios,
e.g. allocating multiple nodes and verifying network connectiv-
ity between the different nodes. These tests take considerably
longer but are essential to guarantee basic testbed functionality.
They are triggered hourly.

The real hardware job run the basic tests and the inte-
gration tests, on real research device hardware. These tests are
essential to avoid hardware interoperability issues, which could
otherwise possibly crash research devices in remote locations.
This job triggers hourly.

The coverage tests run the same basic tests and integration
tests, but considerably slower as test code coverage is mea-
sured. Because this takes longer and coverage is not essential,
this job is only triggered daily.

Community-Lab also provides an Object-relational map-
ping (ORM) library to simplify API integration. While non-
essential, this code is used by Fed4FIRE integration code.
Therefore it is also included in the testing system but only
triggered daily.

Finally, any new job will trigger the VCTBuilder job which
will trigger the Firmware Builder job. The latter is responsible
for checking for new CONFINE research device firmware,
which will be built from scratch upon each commit. The
generated firmware is uploaded to a shared server so any new
firmware release only has to be built once. This firmware
can then be included in a new build of the VCT container,
possibly based on new testbed controller software. The result
of these two special jobs which are not actual test jobs is the
formation of a build pipeline, which allows efficiently building
and verifying firmware and controller code. Figure 3 gives an
overview of the job dependencies in this configuration.

IV. EVALUATION

The testing system defined above has been implemented
in the CONFINE project and is actively running at http:
//testing.confine-project.eu, with test reports and test statistics
publicly available. A logical next step entails the evaluation of
the impact and efficiency of this effort. When talking to the
CONFINE developers they are very happy with the testing



Project # Reports mentioning Total Mention
testing # reports percentage

Community-Lab controller 54 193 28%
Community-Lab firmware 10 166 6%

TABLE I. THE RELATIONSHIP BETWEEN THE TESTS AND BUG
REPORTS.

system, this section tries to show these benefits with hard
numbers.

To prove the positive impact of this testing approach on the
project and to motivate other researchers to invest in this effort
and apply similar testing strategies, in what follows we present
the results from an analysis of issued posted to the Community-
Lab bug tracker at http://redmine.confine-project.eu almost one
year after the start of the testing efforts.

When the testing system was introduced, the Community-
Lab was already relatively mature after two years of develop-
ment. Related work indicates that the number of bug reports
in a project typically declines [27]. Given the project plan and
the inspiration by existing systems, it was expected that the
Community-Lab software would be relatively mature by the
beginning or the testing efforts.

A. Bug reports

At the moment of writing, the test suite contains a total
of 143 tests that cover 75% of the lines of the Community-
Lab controller code, a very decent coverage considering the
size of the project. As shown in Table I, after less than
one year the number of bug reports mentioning the testing
framework for the Community-Lab controller accounts already
for 28% of the bug reports in only ten months. For the
Community-Lab firmware, the bug reports created from the
testing framework account for 6%. This illustrates a shifting
approach and increasing adoption of testing by Community-
Lab developers, which correlates with their positive feelings.
The lower adoption by firmware developers correlates to a
significantly lower testing of the CONFINE firmware code,
which is not explicitly tested at this moment.

Next, consider the bug reports in the set of pre test frame-
work reports, comparing to the post test framework reports, as
shown in Table II. The rate of bug reports per month (brpm) for
the Community-Lab controller increase from 3.7 brpm to 15.2
brpm, which is more than four times as many. Considering
only the post test framework reports, the testing framework is
mentioned in 36% of the reports since its introduction. The first
three months, the contribution of bug reports mentioning the
testing framework accounted for 25%. The last three months,
this increased to 45% as the testing framework matured and
the developers relied more on this system.

Basic tests

Strict tests
Installation tests

VCT BuilderFirmware Builder Integration tests

...

Fig. 3. Overview of the testing pipeline

Project # Pre testing # Post testing Reports rate
(reports per month)

Community-Lab controller 41 152 3.7 to 15.2
Community-Lab firmware 102 64 6.8 to 6.4

TABLE II. THE RELATIONSHIP BETWEEN THE TESTS AND BUG
REPORTS PRE AND POST THE INTRODUCTION OF TESTING.

Project #Pre resolved #Post resolved Open bug
rate rate rate

Community-Lab controller 0.82 16 2.88 to -0.8
Community-Lab firmware 2.9 7.9 3.9 to -1.5

TABLE III. THE RELATIONSHIP BETWEEN THE RESOLVED BUG RATES
AND THE OPEN BUG RATE.

For the Community-Lab firmware, the bug report rate
did not change significantly since the introduction of the
testing framework. However, out of the 64 bug reports since
the introduction, 10 reports mention the testing framework,
accounting for 16% of the bug reports. Clearly, firmware
development in general was more active before the introduction
of the testing system and developers are less actively using the
testing framework. This can be explained by the testing system
which until now focused on testing the controller API rather
than directly testing the firmware API.

B. Resolved bugs

Looking at the number of bugs resolved since the intro-
duction of testing, 47 out of the 54 Community-Lab controller
issues mentioning the testing framework are resolved, this
corresponds to 87%. Before the introduction of the testing
framework the rate of resolved bugs for the Community-Lab
controller was around 0.82 resolved bugs per month and thus
lower than the rate of new filed bug reports shown in table II
(3.7 brpm). Since the introduction of testing, this resolve rate
increased to 16 resolved bugs a month. The testing framework
is mentioned in 29% of those resolved bugs. This clearly
indicates adoption for testing and more specifically verification
of bug fixes, which is considered to be a very good practice.

For the Community-Lab firmware we find an increase in
resolved bug rate from 2.9 resolved bugs a month (less than
the 6.8 brpm) to 7.9 which is greater than the 6.4 brpm report
rate (implying the number of open issues is declining). For the
latter, 10% mentioned the testing framework. An overview of
these results can be found in Table III.

As demonstrated, the resolved bug report rate exceeds the
corresponding new bug report rate meaning that since the
introduction of the testing framework, more bugs are resolved
than filed in a month. In other words, the rate of open bugs is
a negative rate since the introduction of the testing framework.
We can conclude that the testing framework had and still has
an impact, especially on the Community-Lab controller. This
confirms the positive impact of a testing system, besides the
positive feedback from the developers.

V. CONCLUSIONS AND FUTURE WORK

This work has described an automated, container based
testing system with a demonstrated impact on the stability
and efficiency of community-network testbed development.
The up-front goals for a testing system were outlined and a
design to fulfill these goals has been described, together with
the positive impact shown by looking at bug report statistics.



The authors are aware that although the impact of testing on
this system was shown to be positive and although the devel-
opers appreciate this system, more extensive verification of the
claims in this work are necessary. An immediate candidate for
application is the Community-Lab firmware API, which is not
directly tested extensively at this moment. PlanetLab is another
excellent candidate, because the SFA architecture adopted
in Community-Lab is exactly this of PlanetLab. Moreover,
although very powerful, the OMF framework is notoriously
hard to install and operate for prolonged periods. We believe
this popular testbed management system could also benefit
from more elaborated testing.

The Community-Lab tests themselves could also be im-
proved to cover more cases including user interfaces, because
for an experimental facility properly working user interfaces
are critical for user satisfaction and testbed adoption in general.
To this end, currently a number of tests are being added which
use the Django tests to verify functionality. Moreover, the
project is actively considering using Selenium, which has a
strong track record in user interface testing [28].

Finally, to have a stronger verification of robustness, a
number of communication tests are also being designed. The
goal is to deterministically interrupt network connectivity at
various points during the interaction with the testbed, to verify
resilience. Because of strong dependence on timings which
could vary strongly with Jenkins slave performance, no such
tests are present at this moment.

ACKNOWLEDGMENT

This work is supported by the CONFINE Integrated Project
288535. The authors would like to thank the Community-Lab
developers for their feedback.

REFERENCES

[1] J. Avonts, B. Braem, and C. Blondia, “A questionnaire based examina-
tion of community networks,” in Wireless and Mobile Computing, Net-
working and Communications (WiMob), 2013 IEEE 9th International
Conference on. IEEE, 2013, pp. 8–15.

[2] B. Braem, L. Navarro, E. Pietrosemoli, E. L. de Redes, C. Rey-Moreno,
A. Sathiaseelan, M. Zennaro, and A. S. ICTP, “Global access to the
internet for all j. saldana, ed. internet-draft university of zaragoza
intended status: Informational a. arcia-moret expires: December 20,
2014 universidad de los andes,” Internet-Draft, 2014.

[3] U. C. Buyuksahin, A. M. Khan, and F. Freitag, “Support service
for reciprocal computational resource sharing in wireless community
networks,” in World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2013 IEEE 14th International Symposium and Workshops
on a. IEEE, 2013, pp. 1–6.

[4] B. Braem, C. Blondia, C. Barz, H. Rogge, F. Freitag, L. Navarro,
J. Bonicioli, S. Papathanasiou, P. Escrich, R. Baig Viñas, A. L. Kaplan,
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