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“Measurements are not to provide numbers but insight”.
— INGRID BUCHER.



ABSTRACT

Software-Defined Networking (SDN) is an emerging paradigm that arguably facilitates network
innovation and simplifies network management. SDN enables these features based on four
fundamental principles: (i) network control and forwarding planes are clearly decoupled, (ii)
forwarding decisions are flow-based instead of destination-based, (iii) the network forwarding
logic is abstracted from a hardware to a programmable software layer, and (iv) an element,
called controller, is introduced to coordinate network-wide forwarding decisions. Nowadays,
much has been discussed about using SDN principles to improve network management — where
SDN is taken as a management tool —, instead of discussing which are the new management
challenges that this network paradigm introduces. In the context of SDN, management activ-
ities, such as monitoring, visualization, and configuration can be considerably different from
traditional networks, thus deserving proper attention. For example, an SDN controller can be
customized by network administrators according to their needs. Such customizations might
pose an impact on resource consumption and traffic forwarding performance, which is diffi-
cult to assess because traditional network management solutions were not designed to cope
with the context of SDN. As a consequence, an SDN-tailored management solution must be
able to help the administrator to understand and control how the SDN controller behavior af-
fects the network. Considering this context, we initially performed an analysis of control traffic
in SDN aiming to better understand the impact of the communication between the controller
and forwarding devices. Afterwards, we propose an interactive approach to SDN management
through monitoring, visualization, and configuration that includes the administrator in the man-
agement loop, where SDN-specific metrics are monitored, processed, and displayed in interac-
tive visualizations. Thus, the administrator is able to make decisions and configure/reconfigure
SDN-related parameters according to his/her needs. To show the feasibility of our approach a
prototype has been developed, called SDN Interactive Manager. The results obtained with this
prototype show that our approach can help the administrator to better understand the impact of

configuring SDN-related parameters on the overall network performance.

Keywords: Software-defined networking. Monitoring. Visualization. Configuration.



Visualizacao, Monitoracao e Configuraciao Interativa de Redes Definidas por Software
baseadas em OpenFlow

RESUMO

Redes Definidas por Software (Software-Defined Networking — SDN) é um paradigma emer-
gente que sem duvida facilita a inovagdo e simplifica o gerenciamento da rede. SDN provém
esses recursos baseado em quatro principios fundamentais: (i) os planos de controle e encami-
nhamento da rede sao claramente desacoplados, (i) as decisdes de encaminhamento sdo basea-
das em fluxo ao invés de baseadas em destino, (iii) a 16gica de encaminhamento € abstraida do
hardware para uma camada de software e (iv) um elemento, chamado controlador, € introduzido
para coordenar as decisdes de encaminhamento. Atualmente muito se tem discutido acerca do
uso de SDN em beneficio do gerenciamento de redes — onde SDN € considerado uma ferra-
menta de gerenciamento —, ao invés de se discutir quais sao os novos desafios de gerenciamento
que esse paradigma introduz. No contexto de SDN, atividades de gerenciamento como mo-
nitoramento, visualiza¢do e configuracdo podem ser consideravelmente diferentes das mesmas
realizadas em redes tradicionais, merecendo a devida aten¢cdo. Por exemplo, um controlador
SDN pode ser customizado por administradores de rede de acordo com suas necessidades. Es-
sas customizagdes podem impactar em consumo de recursos e desempenho no encaminhamento
de trafego. Tal impacto € dificil de se avaliar porque solucdes de gerenciamento de redes tra-
dicionais nao foram projetadas para lidar com o contexto de SDN. Como consequencia, uma
solucdo de gerenciamento de SDN deve ser capaz de ajudar o administrador a entender e con-
trolar como o comportamento do controlador SDN afeta a rede. Considerando esse contexto,
nos inicialmente desenvolvemos uma andlise do trafego de controle em SDN visando melhor
entender o impacto da comunicagdo entre controlador e dispositivos de encaminhamento. Em
seguida, ndés propomos uma abordagem interativa para gerenciamento de SDN através do mo-
nitoramento, visualizacdo e configuragdo da rede incluindo o administrador em um ciclo de
atividades de gerenciamento, onde metricas especificas de SDN sdo monitoradas, processadas
e mostradas em visualizag¢des interativas. Assim, o administrador da rede € capaz de configu-
rar/reconfigurar parametros de SDN de acordo com seu/sua necessidade. Para demonstrar a
viabilidade da nossa abordagem, nés desenvolvemos um protétipo chamado SDN Interactive
Manager. Os resultados obtidos através do protétipo apresentaram que a nossa abordagem é
capaz de auxiliar o administrador a melhor entender o impacto da configuracio de parametros
relativos a SDN no desempenho da rede como um todo.

Palavras-chave: Redes Definidas por Software. Monitoramento. Visualizacdo. Configuragao.
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1 INTRODUCTION

Software-Defined Networking (SDN) is an emerging paradigm that enables network inno-
vation based on four fundamental principles: (i) network control and forwarding planes are
clearly decoupled, (ii) forwarding decisions are flow-based instead of destination-based, (iif)
the network forwarding logic is abstracted from a hardware to a programmable software layer,
and (iv) an element, called controller, is introduced to coordinate network-wide forwarding de-
cisions (ROTHENBERG et al., 2014). SDN is grabbing the attention of both academia and in-
dustry since it allows the easy creation of new abstractions in networking, simplifying manage-
ment, and facilitating network innovation (FOUNDATION, 2012). In this sense, SDN reduces
or even eliminates some traditional network management problems, such as enabling network
configuration in a high-level language or providing support for enhanced network diagnosis and
troubleshooting (KIM; FEAMSTER, 2013).

Nowadays, much has been discussed about using SDN principles to improve the network
management — where SDN is taken as a management tool —, instead of discussing which are
the new management challenges that this network paradigm introduces (KIM; FEAMSTER,
2013). For example, SDN principles can improve network management tasks due to the fact of
it provides a logically centralized view, but it can also introduce a Single Point of Failure (SPOF)
or, in case of more than one controller, can be extremely complicated to guarantee isolation of
network applications and maintain different and conflicting service requirements. Although
SDN can solve some traditional management problems, it also creates new ones that have not
been addressed yet (WICKBOLDT et al., 2015). Management aspects such as network security,
resilience, performance, and failover can be significantly different from traditional networks and

need to be managed properly.

Monitoring, visualization, and configuration are fundamental management activities to un-
derstand and control the network behavior (SALVADOR; GRANVILLE, 2008) (BARBOSA;
GRANVILLE, 2010) (GUIMARAES et al., 2014) (BONDAN et al., 2014) (MACHADO et al.,
2014). In the context of SDN, these activities can also be considerably different than in tradi-
tional networks, thus deserving proper attention (WICKBOLDT et al., 2015). For example, the
behavior of an SDN controller can be customized by network administrators according to their
needs. These controller customizations might impact in terms of resource consumption and
traffic forwarding performance. Such impact is difficult to assess because traditional network
management solutions were not designed to cope with the context of SDN. As a consequence,
an SDN-tailored management solution must be able to help the administrator to understand and

control how the SDN controller behavior affects the network.

The state-of-the-art in SDN has addressed monitoring using the OpenFlow protocol (MCK-
EOWN et al., 2008) — currently the most relevant SDN implementation — for different purposes
(JOSE; YU; REXFORD, 2011) (TOOTOONCHIAN; GHOBADI; GANJALL, 2010) (ZHANG,
2013) (YU et al., 2013) (CHOWDHURY et al., 2014). Most of these investigations are focused
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on proposing anomaly detection systems or mechanisms to establish a balance between con-
trol channel overhead and accuracy of the collected information. These investigations tend to
employ monitoring information to automatically adapt the network to specific conditions (e.g.,
switches lowest resource usage as possible). However, to the best of our knowledge, no solution
is available to integrate monitoring information with interactive visualization and configuration
tools for SDN. We argue that with such a solution the administrator could better understand and

interact with the network, significantly improving everyday tasks of SDN management.

An OpenFlow-based architecture introduces a simple way to develop and maintain com-
munication in SDN because of its centralized logic of controlling forwarding devices. How-
ever, this simplicity may allegedly impose a high cost on the network controller and create
bottlenecks on the control channel (YEGANEH; GANJALI, 2014). Recent solutions such as
Devoflow (CURTIS et al., 2011) and DIFANE (YU et al., 2010) attempted to alleviate these
bottlenecks by distributing the control logic of OpenFlow. Nevertheless, there is no detailed
study about in which situations such bottlenecks appear and whether they can or cannot be
mitigated or even avoided by simple configuration, i.e., without the need to develop a specific
distributed controller. We argue that is required a detailed study about the overhead imposed
by the communication protocol used to understand and then prevent bottlenecks on the control

channel.

In this dissertation we initially (i) perform an analysis of the control traffic in SDN to un-
derstand the overall impact of OpenFlow control messages on the control channel. Our analysis
focused on explaining the overhead of these messages in terms of resource consumption and
network performance resulting from the communication between the controller and forwarding
devices. Based on this analysis, we (ii) propose an interactive approach to SDN management
through monitoring, visualization, and configuration management activities. Our goal is to in-
clude the administrator in the management loop, where SDN-specific metrics are monitored,
processed, and displayed in interactive visualizations. Thus, the administrator is able to make
decisions by configuring/reconfiguring SDN-related parameters according to his/her needs. Our
main contribution is to integrate these three management activities allowing the administrator

to easily understand and control the network.

Regarding our control channel analysis, we quantify the load imposed by OpenFlow 1.0
control messages — this OpenFlow version is currently the most adopted SDN implementation
— and then we focused on messages that occur more frequently in our particular scenario of
study. Afterwards, we also point out configuration parameters that can influence on this load
and may be set to reduce the chance of bottlenecks in the control channel, especially on the
controller. Next, to emphasize the feasibility of our proposed approach, we developed a pro-
totype called SDN Interactive Manager as an SDN-devoted management system that performs
monitoring, provides interactive visualizations, and enables network parameters configurations.
Our prototype was developed to allow the administrator to interact with visualizations through a

Graphical User Interface (GUI) and enables to configure/reconfigure SDN-related parameters
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according to his/her needs. Our objectives in building the prototype are the following:

e Perform SDN monitoring with configurable polling intervals specifically focusing on in-

specting resource usage and control channel load metrics.

e Present monitoring information obtained in interactive visualizations that emphasize these

metrics.

e Support the administrator interaction by configuring and reconfiguring SDN-related pa-

rameters.

To evaluate our approach, we used the Floodlight! controller and a campus network scenario
emulated over Mininet (LANTZ; HELLER; MCKEOWN, 2010). Our control channel analy-
sis results present the impact of the SDN-related parameter rule idle timeout configuration and
the polling interval can affect both resource usage and control channel load (both directions).
Furthermore, our prototype SDN Interactive Manager shows that, by interacting with his visual-
izations on the provided GUI, the administrator is able to adjust SDN-related parameters on the
network, improving the controller configuration, and thus reducing the resource consumption
(number of idle flows installed on switches) and control channel usage (amount of messages
transmitted on the control channel) when it is possible.

The remainder of this dissertation is organized as follows. In Chapter 2, we provide a brief
description of the central background concepts associated with our approach and related work.
In Chapter 3, we present an analysis of control traffic in OpenFlow-based SDN. In Chapter 4,
we present our approach in detail and our developed prototype. In Chapter 5, we present the
evaluation of our proposed approach with the developed prototype. Finally, in Chapter 6, we

conclude this dissertation presenting final remarks and the perspective for future work.

'www.projectfloodlight.org/floodlight/
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2 BACKGROUND AND RELATED WORK

This chapter presents a brief overview of the main concepts required by our control chan-
nel analysis and proposed approach. Section 2.1 depicts the SDN concepts and architecture.
Subsection 2.2 presents an overview of OpenFlow specification and versions. Subsection 2.3
describes well-known controller behaviors in the literature that are used on both control channel
analysis and proposed approach evaluation. Next, Section 2.4 depicts management approaches

present in the literature that address SDN monitoring, visualization, and configuration activities.

2.1 SDN Concepts and Architecture

Software-Defined Networking (SDN) is an emerging paradigm that originally refers to a net-
work architecture where forwarding decisions are clearly decoupled from the network control
logic. In other words, the network control logic is removed from forwarding devices — that be-
come simple packet forwarding devices — to a centralized element, called controller. Basically,
the SDN architecture was designed to enable network innovation based on four fundamental
principles: (i) network control and forwarding planes are clearly decoupled; (ii) forwarding
decisions are flow-based instead of destination-based, where a flow is defined as set of packet
header fields acting as a match to filter and perform actions with all matched packets; (iii) the
network forwarding logic is abstracted from hardware to a programmable software layer; and
(iv) an element, called SDN controller or Network Operation System (NOS), is introduced to
coordinate network-wide forwarding decisions (KREUTZ et al., 2015).

In the context of SDN, much has been discussed about SDN and network management by
itself, mostly from the perspective of where SDN is taken as a management tool (KIM; FEAM-
STER, 2013). Several approaches use SDN to deal with management activities because it sim-
plifies or even solves some traditional management activities. For example, because the fact of
forwarding devices need to be registered or discovered by the network, in SDN, all forwarding
devices establish a communication path with the controller (i.e., between forwarding and con-
trol planes) and the network discovery management activity — a traditional management activity
— 1s intrinsically solved. However, SDN also creates new management challenges that are not

yet discovered or widely addressed in the literature (e.g., controller placement and resilience).

Overall, SDN introduces an architecture with four planes: management, application, con-
trol, and forwarding (FOUNDATION, 2014). All these planes communicate with each other
through interfaces. For example, the management plane uses a set of Management Interfaces
(M) to exchange information and to control elements in other planes. In addition, an interface
called northbound API establishes bidirectional communication between application and con-
trol planes, while the southbound API does the same for control and forwarding planes. Ideally,
all these interfaces should be standardized to allow easy replacement of devices and technolo-

gies. In practice, the OpenFlow protocol is the current de facto standard southbound API. All
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other interfaces are undergoing discussion and development. Figure 2.1 depicts SDN planes

with Southbound and Northbound APIs, MIs and management solutions.

Figure 2.1 — SDN Architecture.
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Conceptually, each of the four planes has a set of specific functions that need to be fulfilled,

as following explained:

e Management Plane: is situated on the side of each of other planes and is able to coordi-
nate them individually through MIs. Contains one or more SDN management solutions
responsible for managing elements in other SDN planes (e.g., monitoring device status,

configuring and allocating resources, and enforcing access control policies).

e Application Plane: is situated on top-left of the architecture. Contains one or more
applications that can serve several different purposes (e.g., firewall, circuit establisher,
and load balancer). Each of these applications are granted with access to a set of resources

by one or more SDN controllers.

e Control Plane: is situated between the application and forwarding planes. Contains one
or more controllers that coordinate network devices (e.g., Floodlight, NOX, POX, and
Ryu). At least an SDN controller needs to execute the requests coming from the appli-
cation plane. Commonly, these controllers also include internal logic to handle network

events and make traffic forwarding decisions.

e Forwarding Plane: is situated on the bottom and comprises a set of forwarding elements
with transmission capacity and traffic processing resources. The notion of keeping for-
warding elements simple and making decisions at higher software layers is central in
SDN.
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Due to the introduction of these four principles and the flexible architecture, SDN is grab-
bing the attention of both academia and standardization bodies (e.g., ONF, IETF) and industry
(e.g., Google, Cisco, NEC, Juniper), since it allows the easily creation of new abstractions
in networking, simplifying management, and facilitating network innovation (FOUNDATION,
2014). In this sense, SDN reduces or even eliminates some traditional network management
problems, such as enabling network configuration in a high-level language or providing support
for enhanced network diagnosis and troubleshooting (KIM; FEAMSTER, 2013).

2.2 OpenFlow Brief Background

OpenFlow is a trademark of Stanford University that defines an open protocol with a stan-
dardized interface to manage networks through a logically centralized controller (MCKEOWN
et al., 2008). In OpenFlow, traffic forwarding decisions are handled flow-based, instead of
destination-based (SDN principle number (ii)). To establish flow paths over a network, an
OpenFlow controller adds and removes forwarding rules in network switches to coordinate the
data traffic. An OpenFlow forwarding rule is composed of a match of packet header fields,
e.g., source and destination IP addresses at least, and a set of actions to be performed, e.g.,
forward or drop a packet. The OpenFlow specification also defines that an OpenFlow switch
is composed of (i) a flow table to store forwarding rules, (ii) a secure communication channel
to establish a connection from forwarding devices with the controller, and (ii7) the OpenFlow
protocol itself (PFAFF et al., 2009).

All detailed requirements that an OpenFlow switch should follow are defined by the doc-
umentation of OpenFlow Switch Specification (PFAFF et al., 2009). Moreover, there are two
variations of an OpenFlow switch can assume: the dedicated OpenFlow and the OpenFlow-
enabled switch. The dedicated OpenFlow switch is a dumb forwarding element that is con-
trolled by one or more external control elements. On the other hand, some commercial forward-
ing devices have beyond their own proprietary software — to control the forwarding logic — also
a flow table, a secure channel, and the OpenFlow protocol, becoming an OpenFlow-enabled
switch (another variation of OpenFlow switch).

The OpenFlow version 1.0 is currently the most adopted by network hardware vendors
and controllers developers (KREUTZ et al., 2015). The specification defines three message
types: (i) Controller-to-switch, (ii) Asynchronous, and (iii) Symmetric (PFAFF et al., 2009).
Controller-to-switch messages are initiated by the controller and are used to manage or inspect
the state of OpenFlow switches. Asynchronous messages are initiated by the switch and are used
to send notification of network events and changes to the controller. Symmetric messages can be
initiated by either the controller or switches and are mainly used for network bootstrap, latency
measurement, and to keep alive the control channel. Each of these message types are composed
of multiple sub-types that are used for specific network coordination actions. Table 2.1 presents

all OpenFlow 1.0 message types with their respective sub-types and descriptions.
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Table 2.1 — Control messages defined by the OpenFlow 1.0 specification.

Message type Sub-type Description

Features Obtain features and capabilities about the switches.
Configuration | Set query configuration parameters in switches.
Modify-State Manage the state of the switches.

Controller-to-switch

Read-State Retrieve statistics about switch tables, ports, flows, and queues.
Send-Packet Send packets to a specific switch port.
Barrier Ensure message dependencies and receive notifications.

When a packet not match a flow entry or a matched flow does

Packet-In S -
entry action is “send to the controller”.

Asynchronous Flow-Removed | When a flow entry expires in the switch flow table.

Port-Status Send port configuration state changes.

Error Notify problems to the controller.

Hello Exchanged between switch and controller upon connection startup.
Symmetric Echo Sent by both controller and switch to establish connectivity.

Vendor Functionality to store a stagging area for other OpenFlow revisions.

Source: PFAFF et al. (2009).

Some of the main message sub-types defined by the OpenFlow specification are: Modify-
State and Flow-Removed to install and remove rules on forwarding devices; Send-Packet to send
a packet to a specific switch port; and Packet-In, to notify the controller when a switch receives a
packet that does not match with a forwarding rule entry in the switch flow table (Table 2.1). An-
other message sub-type that is used by monitoring solutions to retrieve statistics from switches
is Read-State. There are two variations of Read-State message sub-type: request and reply. The
request messages are sent from the controller to switches to request for statistics counters and
the reply messages are sent from the switches to the controller delivering the requested statistics
counters. As a result, the OpenFlow specification enables both the configuration of forwarding

devices and monitoring traffic statistics.

To proper use OpenFlow in an SDN-based network it is fundamental to understand the
operation of these messages, as well as the controller behavior implementation. The OpenFlow
specification does not state how messages should be used to proper manage an OpenFlow-
based network without considerably affect network performance. It is on the account of the
administrator to understand the OpenFlow specification and the controller’s behavior, and then

decide how OpenFlow can be employed to accomplish everyday management tasks.

2.3 Controller Behavior

OpenFlow messages are used to coordinate forwarding devices in different ways, depending
on the controller behavior implementation. Three well known controller behaviors that affect
the installation of forwarding rules and, consequently, the network operation are: Hub, Switch,
and Forwarding behavior (KLEIN; JARSCHEL, 2013). The Hub behavior implementation
dictates that every packet that does not match a flow entry is flooded to all switch interfaces

(obviously inefficient). The Switch behavior implementation dictates that when the controller
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receives a Packet-In the controller installs a rule and sends the packet to the switch that generates
this Packet-In. Last, the Forwarding behavior implementation needs only one Packet-In to
install rules on the entire flow path. This behavior is the most sophisticated implementation of
those mentioned, presenting a lower control overhead imposed by OpenFlow messages.

An example of how the Forwarding behavior coordinates rule installation between Source
Host and the destination File Server is depicted in Figure 2.2. First, when Source Host sends a
data packet to Switch A (1), this switch checks whether there is a forwarding rule entry match-
ing this packet’s header fields in the flow table. If the header fields match with an entry, the
corresponding actions should be applied to this data packet, e.g., forward or drop. However, if
no match exists, by default, Switch A generates a Packet-In message to the controller (2). Upon
receiving the Packet-In, the controller calculates the flow path and sends a set of Modify-State
messages to install forwarding rules in all switches in the path between source and destination,
except to Switch A (3). Afterwards, the controller sends Send-Packet and Modify-State messages
to Switch A that originated the Packet-In (4). Finally, once all forwarding rules are installed on

switches, the data packet is sent through the flow path (5) to the destination.

Figure 2.2 — OpenFlow controller Forwarding behavior example.

Flow path OpenFlow Controller

— — Packet-In
--------- Send-Packet |— — — — \\\ T T

— - - = Modify-State

% Switch A Switch B Switch C

Source Host File Server
Source: by author (2015).

A few extra points need to be clarified regarding the Forwarding behavior. First, the ex-
ample in Figure 2.2 assumes that the location of the destination File Server is known by the
controller in advance. In practice, before every host originates traffic, the controller will gen-
erally need to discover these locations by flooding the network. Also, the controller does not
guarantee that rule installation messages, i.e., Modify-State, arrive in switches properly ordered,
since these messages can be sent in parallel. Thus, if Modify-State messages do not arrive in
the switch before the data packet, extra Packet-In messages will be generated and sent to the
controller. In addition, the controller behavior does not orchestrate how Read-State messages
are used by either the controller or forwarding devices. As such, a monitoring solution is still re-

quired alongside the OpenFlow controller to fill this gap and help in managing OpenFlow-based
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networks.

In addition to the forwarding rule installation, the behavior implementation also dictates
which OpenFlow header fields are installed as wildcard fields (i.e., field is a match, regardless
of value). The Forwarding behavior installs a forwarding rule specifying only the ingress port,
and the Ethernet source and destination MAC addresses. The rest of fields that compose the
entire match are set as wildcards (represented by ‘*’). These header fields are: the Ethernet
type, Virtual Local Area Network (VLAN) ID, VLAN Priority, Internet Protocol (IP) source
and destination addresses, IP protocol and Type of Service (ToS), and Transmission Control
Protocol (TCP) or User Datagram Protocol (UDP) source and destination ports. All header
fields and their granularity based on Forwarding behavior are presented on Table 2.2.

Table 2.2 — OpenFlow 1.0 header fields installation based on Forwarding behavior.

Ingress | Ethernet | Ethernet | Ethernet | VLAN | VLAN | IP | IP 1P IP ToS | TCP/UDP | TCP/UDP
port sre dst type ID priority | src | dst | protocol | Dbits src port dst port

Specific | Specific | Specific " " " " " " " " "
value value value

Source: by author (2015).

It is important to emphasize that the forwarding rule installation granularity also affects the
resource usage and control channel load metrics. To store a forwarding rule with wildcard fields,
the switch generates matches on the flow table according to his internal functionality. Given that
the switches having expensive and limited Ternary Content-Addressable Memories (TCAM), it
is necessary to carefully manage the amount of rules installed to avoid network devices running
out of resources. Moreover, Read-State-reply messages are also affected because the length of

these monitoring messages can grow with the amount of specific rules installed.

2.4 Related Work

This Section describes recent studies that deal with overheads at the control channel such
as bottlenecks in OpenFlow-based SDN and present management approaches that address as-
pects of SDN monitoring, visualization, and configuration to provide relevant information to
the administrator. In Subsection 2.4.1 several approaches that deal with bottlenecks at the con-
trol channel are presented. In Subsection 2.4.2, we describe monitoring, visualization, and
configuration approaches in other network contexts. In Subsection 2.4.3, SDN management
approaches that deal with monitoring, visualization, and configuration are described in detail.
In Subsection 2.4.4, these approaches are discussed and compared considering the trade-off

between control channel load and resource consumption.
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2.4.1 Control Channel Bottlenecks

Because the fact of SDN centralize the logic of forwarding devices on one or more con-
trollers, some approaches argue that control messages can create bottlenecks between device-
controller. Recent solutions, such as Devoflow presented by CURTIS et al. ( 2011), attempt to
alleviate these bottlenecks by distributing the control logic of OpenFlow. Devoflow avoids these
bottlenecks through mechanisms to control forwarding devices and statistics collection. To bet-
ter control the network without invoking the controller decision, Devoflow uses a rule cloning
mechanism to deal with micro-flows with fewer rules. Moreover, the switch also has local ac-
tions that do not require controller decisions as well. For statistics collection, the solution has
triggers, sampling, and approximate counters that also help to reduce the imposed overhead of
monitoring messages at the control channel.

Another solution that attempts to avoid bottlenecks in the control channel is the DIstributed
Flow Architecture for Networks Enterprises (DIFANE), presented by YU et al. ( 2010). The
authors argue that these bottlenecks occur because the flow-based networking rely too heavily
on centralized controller that installs rules reactively, based on the first packet of each flow. To
solve this problem, they proposed a solution that decentralizes the control logic by keeping it
on SDN forwarding plane. DIFANE relegates the controller to the simple task of partitioning
rules over the switches, called authority switches, that are responsible for a network slice. In
this context, a network slice is a part of the network that is controlled by an authority switch.
These authority switches receive packets (e.g., Packet-In messages), — that were previously sent
to the controller — and reply with the proper rule installation message (e.g., Modify-State and
Send-Packet messages).

2.4.2 Monitoring, Visualization, and Configuration in Different Contexts

Some recent studies have addressed monitoring, visualization, and configuration manage-
ment activities in other network contexts. SALVADOR; GRANVILLE (2008) proposed a study
for Simple Network Management Protocol (SNMP) traffic using visualization techniques. As
a proof of concept, the authors also prototyped a software called Management Traffic Analyzer
that has been used to visualize SNMP traces. BARBOSA; GRANVILLE (2010) also analyzed
SNMP traffic through information visualization. However, the authors proposed interactive vi-
sualization techniques and an insight-based approach that aim to better understand the protocol.

In the same context of traffic visualization, GUIMARAES et al. (2014) proposed a solu-
tion named mtAnalyzerV2 that improves the collaboration among network operators in SNMP
traffic measurements and analysis. The authors explore visualization techniques and a set of
user-friendly capabilities to archive collaboration among network operators. Moreover, from a
different perspective and more similar to our approach, BONDAN et al. (2014) addressed mon-

itoring, visualization, and configuration management activities by using SNMP for monitoring
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and thus, enabling the network administrator to continuously learn how to better configure the
spectrum sensing function in Cognitive Radio (CR) context.

As a conclusion, monitoring, visualization, and configuration are fundamental management
activities to understand and control the network behavior. All proposals presented intend to
provide a better understanding of the network through these activities. Therefore, in the next
Subsection, we present some recent SDN solutions that deal with these management activities

that are more related to our proposed approach.

2.4.3 SDN Monitoring, Visualization, and Configuration

Currently, many investigations consider using monitoring information obtained with the
OpenFlow protocol for different purposes. Zhang (2013) proposed the use of monitoring mes-
sages to develop algorithms for anomaly detection systems based on methods for statistics in-
formation collection. They propose OpenWatch that performs adaptive zooming in aggregation
of flows to be measured, i.e., an algorithm that dynamically change the granularity of measure-
ment. This proposed solution mainly aims at establishing a balance between the monitoring
overhead — imposed by monitoring messages — and the anomaly detection system accuracy.

Jose et al. (2011) employ these aforementioned monitoring messages to propose mecha-
nisms for online measurement of large traffic aggregates, which can be used for both anomaly
detection and traffic engineering. The authors explore a measurement framework that matches
packets according to a small collection of rules and updates traffic counters based on the highest
priority match. Moreover, they proposed a measurement model based on OpenFlow switches
that archived high accuracy and a low traffic overhead to monitoring rules in Hierarchical Heavy
Hitters (HHH) problem.

Yu et al. (2013) proposed FlowSense, which aims to keep the lowest control channel over-
head and the highest information accuracy as possible. FlowSense, however, uses only Open-
Flow Asynchronous messages to collect statistics information. The statistics collection are made
only based on Packet-In/Flow-Removed to receive statistics about flows. Although FlowSense
introduces zero cost in the monitoring process, the statistics information may be inaccurate in
the case where OpenFlow messages received by the controller are too sparse. To separate the
SDN monitoring, YU; JOSE; MIAO (2013) proposed OpenSketch that provides a clear separa-
tion between monitoring and control planes. The monitoring plane extracts the statistics while
the control plane has the monitoring libraries that self configure to supply different monitoring
tasks programmed by the controller.

Chowdhury et al. addressed SDN monitoring from a different perspective. The authors
proposed a framework, called Payless (CHOWDHURY et al., 2014), able to deal with moni-
toring considering the polling frequency and data granularity. This framework is able to adjust
the polling frequency to balance the control channel overhead, imposed by monitoring mes-

sages, and accuracy of monitored information. Payless relies on OpenTM (TOOTOONCHIAN;
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GHOBADI; GANJALL 2010) to select only important switches to be monitored, also aiming
to reduce the overhead imposed in the control channel. The authors employed a modularized
architecture with an algorithm to set the polling frequency for monitoring a set of selected
switches. Therefore, it is possible to extract just the relevant information while keeping the
control channel overhead low.

Another OpenFlow-based monitoring framework is PaFloMon, proposed by ARGYROPOU-
LOS et al. (2012). PaFloMon aims to perform a user-aware passive monitoring using a slice-
based perspective. In the context of SDN, a network slice is a logical topology build on top
of the physical topology that allows many controllers to share the same physical infrastructure.
Moreover, this framework also provides per-slice monitoring plane isolation and separates the
monitored data into different repositories that represent each slice. In addition, this framework
allows to aggregate these monitored information along different repositories.

The aforementioned proposals are focused on the use of monitoring information to automate
tasks, such as reducing control traffic overhead and protecting the network. None of previous
investigations aim to employ monitoring information to neither help the administrator under-
standing the network behavior nor interact with it. However, there are some solutions such as
the Floodlight' controller, the OpenDaylight? platform, and OpenFlow MaNangement Infraesc-
tructure (OMNI) (MATTOS et al., 2011) that deal with SDN physical and logical topology vi-
sualization and configuration in addition to manage the network. Moreover, these solutions also
allow the administrator to view the network topology and enable to set some network configu-
rations, but they do not address control channel statistics to enable the network administrator to
consider this aspect in their configurations.

The Floodlight controller is an Open Source software for building SDN with 1.0 and 1.1
versions of the OpenFlow protocol. It is a Java-based controller, modular, that has a Graphical
User Interface (GUI) to interact with network visualizations and flow configurations. Through
Floodlight Representational State Transfer (REST) Application Programming Interface (API)
it is possible to request network information allowing to view the physical topology, nodes and
edges that represent switches or hosts, and links of the network. In addition to network topology
visualization, this controller also provides switch vendor information and data traffic counters
such as per switch number of packets, bytes transmitted and overall flows.

OpenDaylight is an open platform for network programmability to enable SDN and Net-
work Functions Virtualization (NFV). This platform — as the Floodlight controller — has a Web
interface that allow the administrator to view the physical topology and enables to set some
network configurations on the controller. Using the OpenDaylight Web interface it is possible
to set static flows into switches flow tables, change switches information and operation mode
(e.g., reactive or proactive forwarding), view network flows information in details, in addition

to ports, interfaces and data traffic counters also. Proactive forwarding could be used to install

Thttp://www.projectfloodlight.org/floodlight/
2http://www.opendaylight.org/
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flow tables entries for all possible matches eliminating any latency induced by consulting a con-
troller. On the other hand, the reactive forwarding is when a switch forwards every packet that
does not match any entry to the controller.

OMNI provides a framework in addition to visualize the network physical topology, nodes
and links information. The OMNI framework also enables the administrator to view the logical
topology. Moreover, it provides a Web interface that allows the administrator to execute flow
migrations at the controller. However, Floodlight, OpenDaylight and OMNI solutions do not
address metrics such as control traffic statistics and forwarding devices resource consumption
rates as well. These metrics can help to identify bottlenecks at the control channel and may help

the administrator to better understand the controller behavior implementation.

2.4.4 Discussion and Comparison of SDN approaches

As cited before, the aforementioned SDN proposals are focused on automated tasks and do
not include the administrator decision on the network management. These presented solutions
address SDN monitoring for other purposes (e.g., an anomaly detection system or traffic engi-
neering) and not to provide visualizations or configurations so the network administrator can
improve the network configuration or solve network problems. Moreover, these presented solu-
tions do not include statistics information about the control channel given that is an important
rate to be observed in a management solution also. In addition, many authors argue that bottle-
necks at the controller control channel occur because SDN approaches use a single controller,
but they do not mention in what proportion or when they can occur.

It is important to emphasize that OpenDaylight, OMNI and Floodlight presented solutions
that address SDN visualization. All of them present the physical topology view and only OMNI
present the logical topology view. However, none of them has features to count the control
traffic messages and help the administrator to improve SDN-related parameters configuration
considering control channel load and resource consumption. SDN configuration also has been
addressed by some of these approaches, but to the best of our knowledge, there are no solutions
that leverage OpenFlow monitoring messages to create network visualizations and address the
interactive configuration of SDN-related parameters.

Just the Floodlight controller supports monitoring, visualization and configuration manage-
ment activities. But, the default implementation of Floodlight controller does not perform all
of these activities by itself. Applications that perform this SDN monitoring, visualization and
configuration activities are needed to integrate and show to the network administrator. Flood-
light only provides interfaces to other solutions request for informations through its REST API
and GUI. Table 2.3 depicts each of presented solutions that deal with SDN monitoring, visual-

ization, and configuration aspects.
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Table 2.3 — Comparison of SDN proposals for monitoring, visualization, and configuration.

Name Monitoring Visualization Configuration
Devoflow (CURTIS | Performs sampling and | Not addressed. Not addressed.
etal., 2011) statistics triggering based
on thresholds for flow
counters and by using
approximate counters.
OpenWatch An algorithm that per- | Not addressed. Not addressed.
(ZHANG, 2013) forms statistics collection
with an adaptive zooming
in aggregation of flows for
an anomaly detection sys-
tem.
Measurement model | Measurement model that | Not addressed. Not addressed.
(JOSE; YU; REX- | deals with SDN monitor-
FORD, 2011) ing on online traffic aggre-
gations with high accuracy
and low overhead.
FlowSense (YU et | An algorithm that uses | Not addressed. Not addressed.
al., 2013) OpenFlow Asynchronous
messages to retrieve statis-
tics about flows with zero
measurement cost.
Payless (CHOWD- | Performs monitoring us- | Not addressed. Uses OpenTM to select the
HURY et al., 2014) ing an algorithm that dic- monitored switches, an al-
tates the polling frequency gorithm to automatically
and store this data in a configure the polling fre-
database. quency, and has an inter-
face to choose options to
store the monitored data.
OpenTM Proposes a low-overhead | Not addressed. Not addressed.
(TOOTOONCHIAN; | accurate traffic matrix es-
GHOBADI; GAN- | timator to measure the
JALI 2010) switches and keep track of
flow statistics.
PaFloMon (ARGY- | Performs user-aware pas- | Not addressed. Not addressed.

ROPOULOS et al.,
2012)

sive monitoring and per-
slice monitoring plane iso-
lation.

Floodlight Con-

troller

Supports monitoring of
its memory usage, per-
formance and data traffic
counters.

Through a GUI it allows to
view the physical topology
with nodes and links, flows
and data traffic counters.

Supports to load different
applications and modules
to configure the network.

OpenDaylight Plat- | Not addressed. Allows to view the phys- | Not addressed.
form ical topology with nodes
and links, flows and data
traffic counters.
OMNI (MATTOS et | Not addressed. Allows to view the phys- | Perform static flow pusher

al., 2011)

ical and logical topology
with nodes and links, flows
and data traffic counters.

and flow migration.

Source: by author (2015).
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3 CONTROL CHANNEL ANALYSIS

This chapter presents an analysis of the control channel load imposed by OpenFlow 1.0 con-
trol messages. Section 3.1 presents the motivation and the methodology in addition to present
the user traffic profile developed for the analysis in Subsection 3.2. Section 3.3 presents a
preliminary study performed on a simplified topology to better understand the impact of Open-
Flow 1.0 messages on the control channel based on forwarding rules installation and monitoring
process. Section 3.4 depicts the analytical modeling made based on Forwarding behavior. Sec-
tion 3.5 explains and discusses the results obtained on a campus network for messages related

to install forwarding rules and collect statistics mainly.

3.1 Motivation and Methodology of Analysis

OpenFlow-based SDN introduces a simple way to develop and maintain communication
networks because of its centralized logic of controlling forwarding devices. However, this sim-
plicity may allegedly impose high cost on the network controller and create bottlenecks at the
control channel (YEGANEH; GANJALI, 2014). Recent solutions, such as Devoflow (CURTIS
et al., 2011) and DIFANE (YU et al., 2010), attempted to alleviate these bottlenecks by dis-
tributing the control logic of OpenFlow. Nevertheless, to the best of our knowledge, no other
study has detailed in which situations such bottlenecks appear and whether they can or cannot
be mitigated or even avoided by simple configuration, i.e., without the need to develop a specific
distributed controller. Therefore, in our analysis, we initially quantified the load of OpenFlow
1.0 control messages that appear most frequently in our specific scenario of study. Afterwards,
we also pointed out configuration parameters that can influence this load and may be set to

reduce the chance of bottlenecks in the control channel.

Our analysis is divided into two perspectives of resource consumption: (i) control channel
load related to installation of rules on forwarding devices (Packet-In, Modify-State, and Send-
Packet) and request/reply messages for monitoring flow statistics (Read-State); and (ii) resource
usage in terms of forwarding rules, active and idle, installed on network devices. These four
sub-types of messages have been selected because, in our scenarios of study, they represent
the absolute majority of control traffic (accounting for 97.78% of the number of messages
exchanged between the controller and forwarding devices, and 99.76% of the overall control
traffic). Furthermore, regarding resource usage, the amount of rules installed in switches’ ex-
pensive and limited TCAM needs to be carefully managed to avoid network devices running
out of resources (CURTIS et al., 2011).

The metrics that we analyzed for control traffic load are: (i) bit rate and number of messages
per second for monitoring, (i7) bit rate and number of messages for rule installation processed
on the controller, and (ii7) bit rate and number of messages for rule installation processed by

network devices. The analyzed metrics for resource usage on forwarding devices are: (i) the
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total number of installed forwarding rules and (if) the amount of those installed forwarding rules

which are idle, i.e., counters unchanged between two monitoring intervals.

3.2 User Traffic Profile

The general prevalent traffic profile of users is characterized by everyday Internet surfing
and access to the university’s virtual learning environment. We modeled user behavior to gen-
erate emulated Internet traffic based on several previous studies (SYSTEMS, 2014; XIE et al.,
2013; CHENG; LIU; DALE, 2013; KATSAROS; XYLOMENOS; POLYZOS, 2012; 3GPP,
2004). Table 3.1 summarizes all parameters used to emulate user traffic profile during our ex-
perimentation. In our experiments we generate only video and Web traffic, in a proportion of
75% to 25% respectively. Given the size of requests, i.e., video streams generate more traffic
than Web requests, we selected one user to place video requests for every 6 Web users. We
included in our topologies one Web Server and one Video Server to respond to users’ requests,
so that we were able to control precisely the size of responses. We also assumed that all hosts

are active during the whole experiment time and placed a request in average every 30 seconds.

Table 3.1 — Configuration parameters of user traffic profile.

Parameter Value

Web request size Lognormal Distribution (1 = 11.75, 0 = 1.37)
Mean: 324 KBytes, Std. Dev.: 762 KBytes
User reading time Exponential Distribution (A = 0.033)

Mean: 30 seconds

Video watch time 180 seconds

Video bit rate 300 kbps

Traffic Mix Video: 75%, Web: 25%

User Mix 1 video user for every 6 Web users
Monitoring Polling frequency: 5 seconds

Controller behavior | Floodlight’s default Forwarding Behavior implementation
Experiment duration | 30 min
Source: by author (2015).

The experimentation workload was emulated on Mininet (LANTZ; HELLER; MCKEOWN,
2010) in one server with the following hardware description: Dell PowerEdge R815 with 4
AMD Opteron Processor 6276 Eight-Core processors and 64GB of RAM.

3.3 Preliminary Study
This section describes a preliminary study performed in a simplified topology with an in-

ducted network traffic and controller behavior in order to evaluate OpenFlow 1.0 control mes-

sages overhead at the control channel.
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To better identify the impact of every OpenFlow 1.0 control message, we designed a simpli-
fied topology with a single switch connecting two hosts, one Video Server and one Web Server.
We conducted this experimentation using the Forwarding behavior implementation (see Sec-
tion 2.3) — default controller implementation provided by Floodlight v0.90 — and we used the
User Traffic Profile (see Section 3.2) except the User Mix parameter that was set to 50% for
both Video and Web servers. This simplified scenario was chosen to easily identify which are
the most common messages transmitted during the experimentation period. Figure 3.1 depicts

the simplified topology with a single switch, two hosts, one Web Server and one Video Server.
Figure 3.1 — Simplified topology with a single switch connecting two hosts, a Web Server and a Video

Server.

@ Web Sver

Switch 1
Flow path .
------------------- Control Channel Video Server

Source: by author (2015).

During the 30 minutes of experiment time, the controller has installed several forwarding
rules on this single switch to enable hosts A and B to request for content on Video and Web
servers. Further, the Floodlight controller also maintained its counters for every OpenFlow 1.0
sub-type of message (see Section 4.3 for details about our implemented extension on the Flood-
light controller to support control channel statistics). These counters are accessible through
the same Representational State Transfer (REST) API provided by Floodlight controller to
report switch Individual-Flow-Statistics. We performed 300 monitoring requests for switch
Individual-Flow-Statistics during each of all 30 experiments sized so to achieve a 95% confi-
dence and an error no higher than 2%. When the experiment ends, we counted the amount of
each sub-type of message to analyze which are the more frequent in our scenario of study.

Overall, the results shows that Read-State, Modify-State, Packet-In, and Send-Packet sub-
types of message represent the four largest amounts of control messages generated. There are
two different directions that these messages exchanged between the controller and forwarding
devices can go: from switches to controller (S — C) and from the controller to switches (C — ).
Table 3.2 presents all OpenFlow messages sub-types organized by its types (Controller-to-
switch, Asynchronous, and Symmetric). Each sub-type of message was placed together with
its respective percentage of packets processed and control overload in addition to separate them

in request and reply messages indicating their direction on the control channel.
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Table 3.2 — Percentage of packets processed and control channel load of each OpenFlow 1.0 control
message transmitted in our preliminary scenario.

Message type Sub-type Packets processed | Control channel load Direction
percentage percentage
Features (Request) 0.00% 0.00% C—S
Features (Reply) 0.21% 1.23% S—C
Configuration (Request) 0.00% 0.00% cC—S
Configuration (Reply) 0.21% 0.05% S—C
Controller-to-switch Modify-State 17.28% 25.01% cC—S
Read-State (Request) 36.11% 36.68% C—S
Read-State (Reply) 62.62% 31.31% S—C
Send-Packet 20.74% 34.52% cC—S
Barrier (Request) 0.12% 0.02% cC—S
Barrier (Reply) 0.42% 0.07% S—=C
Packet-In 36.13% 67.20% S—C
Asynchronous Flow-Removed 0.00% 0.00% S—=C
Port-Status 0.00% 0.00% S—C
Error 0.00% 0.00% S—=C
Hello (Request) 0.24% 0.03% C—S
Hello (Reply) 0.21% 0.04% S—C
Symmetric Echo (Request) 25.39% 3.69% C—S
Echo (Reply) 0.00% 0.00% S—=C
Vendor (Request) 0.12% 0.09% C—>S
Vendor (Reply) 0.21% 0.09% S—C

Source: by author (2015).

Echo request and reply messages — messages sent by both controller and switch to estab-
lish connectivity — also have an expressive amount of messages transmitted. However, this
percentage is higher because there is a simplified scenario, there are only two hosts request-
ing for content and the User Traffic Profile (see Section 3.2) dictates that an user may delay
its requests making the network idle most of the experiment duration. When the network is
idle, the Forwarding behavior dictates that the controller does not need to send any other packet
to switches and vice-versa, except using Echo messages to guarantee the connectivity of both.
So, we decided to study the impact of other four sub-types of message aforementioned (Read-
State, Modify-State, Packet-In, and Send-Packet sub-types). In the next section, we present an

analytical modeling to understand what is the proportion that these messages are generated.

Because of the fact that Read-State messages are invoked by our monitoring mechanism
and the Forwarding behavior does not use these messages by default, we decided to study the
overhead imposed by these messages too. We focused on Individual-Flow-Statistics that are
used to monitor individual flow counters and to analyze the amount of rules that these messages
can retrieve, we performed several rule installations on a single switch and then we monitored
those rules. The results obtained show that requests for Individual-Flow-Statistics have always
the same length (12 bytes). On the other hand, the length of replies grow based on the number
of rules installed on the switch. We noted that a Read-State can retrieve 682 rules per message.

If the amount of rules pass this value, another Read-State is generated to reply the reminder.
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3.4 Analytical Modeling

In this section, we present an analytical modeling for the impact of the Forwarding behavior
implementation and our monitoring messages generated on the control channel. We divided our
analytical modeling in two steps. First, we analyze OpenFlow messages related to monitoring
(Read-State) that depends on the number of switches requested and the quantity of forwarding
rules installed on them. Second, we analyze OpenFlow rules installation process (Packet-In,
Modify-State, and Send-Packet) which depend on the Forwarding behavior implementation —
used by default on Floodlight controller — that we used in our entire study.

Regarding Read-State messages, there are two variations to be considered in our analysis: (i)
messages sent from the controller to the switches (Read-State request), requesting for statistics,
and (i) messages sent from switches to the controller, replying the statistics collected to the
controller (Read-State reply). Messages sent from the controller to the switches are called
by Floodlight controller as Stats-Request and messages that reply the collected statistics to
controller are called Stats-Reply. Based on OpenFlow switch specification 1.0 (PFAFF et al.,
2009), it is possible to forecast the overhead imposed by the size of Stats-Request and Stats-
Reply messages analyzing the switches characteristics (e.g., number of port and tables) and the
quantity and granularity of forwarding rules installed.

All Read-State messages have a fixed header size with 12 bytes and a message body with
a variable size. The variable size depends on the type of statistics requested and data that are
collected in the reply message. Stats-Request messages have an expected size due to the type
of statistics requested. Individual-Flow-Request, Aggregate-Flow-Request, Port-Request, and
Queue-Request message requests require to include an additional information in the message
body. This information size corresponds to 44, 44, 8, and 8 bytes respectively. Description-
Request and Table-Request do not require additional information in the message body, therefore,
do not include additional size to the message body.

On the other hand, Stats-Reply messages vary depending on both type of statistics and
quantity of information requested. For example, messages that retrieve port information (Port-
Request) include an additional message body of 104 bytes for each switch port that each con-
tains. Assuming that a switch does not change the number of ports — this is possible on virtual
switches —, a switch with 24 ports always generates Stats-Reply messages with 2058 bytes.
However, for Individual-Flow-Statistics messages for instance, this forecasting is significantly
more complex, since the quantity of installed rules on switches and their granularity depends
on both controller behavior implementation and user traffic generated on the network.

The OpenFlow specification 1.0 (PFAFF et al., 2009) dictates that a Read-State message
can reply counters with a length representable on a 16 bits Unsigned Integer. This means
that the counter of these messages retrieved can be represented in 65536 bytes. Consequently,
if we discount the Read-State fixed header size (12 bytes) of this value and divide the rest
(65524 bytes) by the length of each forwarding rule installed (96 bytes), the result is the same
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of the previous experiment made in Section 3.3. Each Read-State messages can reply at most
682 forwarding rules about Individual-Flow-Statistics and one request for these statistics can
generate more than one reply message, depending on the number of exceeding rules installed.

Assuming that each flow is a logical connection — normally bidirectional and unicast —
between two endpoints/hosts of the network that pass through several devices, each flow path
device needs at least two rules installed to establish the end-to-end connection (forwarding rules
to from both directions). Since the size of Stats-Request messages are simple to calculate, the
monitoring overhead imposed by Stats-Reply messages (SRMQO) are more complicated. To
make the explanation more didactic, we decided to divide the overall monitoring overhead in
two parts, considering a fixed and a variable equation. Equation 3.2 represents the fixed mon-
itoring overhead, Equation 3.3 represents the variable monitoring overhead, and Equation 3.1
represents the sum of the two previous. The equations are affected by the quantity of switches
in the flow path and forwarding rules installed at the moment.

SRMO = SRMOpg + SRMOy, 3.1
SRMOF - Nswitches * (HOF + HStatReq) (32)
SRMOy = " Y (Bodyrs *2) (3.3)

feF \ sePath;

The fixed part of the monitoring overhead (Equation 3.2) corresponds to the OpenFlow de-
fault header (Hor) plus the specific header for Stats Reply messages (Hggr), totaling 12 bytes.
This value is also multiplied by the quantity of requested switches in the network, once each
switch is responsible to reply individually about their forwarding rules statistics (having for-
warding rules installed or not). However, this fixed part also grows if the number of forwarding
rules installed exceed the length of a Stats-Reply message. A Stats-Reply message can retrieve
only 682 rules per message, accounting a length of 65536 bytes. If this value is exceeded, an-
other Stats-Reply is generated for each 682 rules to retrieve all the information. Then, another
packet with a 12 bytes header (Hor) is generated on the channel. On the other hand, the vari-
able part of the monitoring overhead depends on the quantity of active flows (set F') and the
quantity of requested devices that these flows pass through (set Pathy). Therefore, for each
active flow f and switch s in the flow path the Individual-Flow-Stats (Bodyrgs) size is calcu-
lated by adding data for these flows on both directions (source to destination and destination to
source). The Body;rg size is 88 bytes plus 8 bytes per action totaling 96 bytes considering that
the flows are unicast and have always just one action associated.

Regarding the forwarding rules installation process, the Forwarding behavior uses Packet-
In, Send-Packet, and Modify-State messages to coordinate all flows in the network. They are

mostly invoked when a switch receive a message that the packet header does not match with any
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entry in the flow table. In this case, the default switch action is to encapsulate the message and
send it in a Packet-In message to the controller. After that, the controller sends Modify-State
messages to the entire flow path and one Send-Packet message to the switch that generated the
Packet-In (See the detailed explanation in Section 2.3). Obviously, the controller is only able
to operate this way when the host is known. On the other hand, i.e., when the host is unknown,

messages are flooded until the controller finds the source and destination hosts.

Packet-In messages are sent from switches to the controller always when a packet header
does not match any entry in a flow table to forward this packet. These messages are composed
by a header with 20 bytes plus the entire received packet. Generally, Address Resolution Pro-
tocol (ARP) or Transmission Control Protocol-SYN (TCP-SYN) are the most common types of
messages that are sent with Packet-In messages, just because in most cases, these messages are
the first messages of new flows. For example, in this case these messages will add 42 and 72
bytes on Packet-In size respectively. However, because a forwarding rule has an idle and a hard
timeout which determines when a forwarding rule expires without the controller intervention,
Packet-In messages can be generated by other types of messages also. Thus, Packet-In are gen-
erated more frequently when idle and hard timeouts are short, on the other hand, when they are

bigger, the probability of a Packet-In arrive to the controller is more sporadic.

Send-Packet and Modify-State messages are commonly used as an answer for a Packet-
In messages received from switches. Equation 3.4 represents the overhead imposed by these

messages to forwarding rule installation (F'O) generated by an OpenFlow network.

Nwitches * (HOF + Hsp + MOriginal) Zf unknown host

FO = (3.4)
Z (HOF -+ HMS) + (HOF + HSP + MOriginal) Zf known host

s€Pathy

FO is calculated differently in two occasions: (i) when the controller receives a Packet-
In message to install a forwarding rule in a switch and the position of the destination host
of the flow is unknown by the controller and (if) when it is known by the controller. In the
first occasion, the controller will flood Send-Packet messages (Hor + Hsp + Moyigina) to all
switch (Ngyitenes) to find the destination host. In the second occasion, when the position of
the destination host of the flow is known, the controller sends several Modify-State messages
(Hor+ H\s) for each switch s over the flow path Path ¢ and one Send-Packet and Modify-State
(Hop + Hsp+ Morigina) for the switch that generated the Packet-In. Generally, the occasion (i)
occurs once to establish the going traffic and the occasion (ii) occurs for the subsequent traffic
because the host is already known by the controller.

It is important to emphasize that the overhead imposed by transport protocols such as TCP,
User Datagram Protocol (UDP), and Secure Socket Layer (SSL) for example, are not included

in the control traffic for controller neither switches. Moreover, Packet-In messages are not
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included in F'O — as well as Stats-Request are not included in S RM O also — once that represent
traffic on different directions in the control channel. However, to estimate the overhead of
Packet-In messages is simple. In the occasion i are generated one Packet-In message from
every switch that receive the flood, on the other hand, in the occasion ii, only the first switch of

the flow path generates a Packet-In to the controller.

3.5 Experimental Evaluation

In this section, we provide an analysis of the control channel traffic load of OpenFlow 1.0
messages in a campus topology, emphasizing those messages that occur most frequently in our
previous scenario of study. First, in Subsection 3.5.1 is detailed the scenario with the topology
and workload chosen to perform our control channel analysis. Next, in Subsection 3.5.2 is
presented and discussed the experimental results obtained in order to identify the impact of

those messages related to control channel load and resource usage metrics.

3.5.1 Case-Study: A Campus Network

To conduct our control channel analysis and also to evaluate our approach to SDN manage-
ment (later discussed in Chapter 4), we have chosen to use a campus network scenario inspired
in our own university premises. This type of network infrastructure is well suitable to benefit
from features of SDN with OpenFlow, which has actually been originally conceived for this
type of scenario (MCKEOWN et al., 2008). The OpenFlow 1.0 was chosen because of the fact
that this version is considered the most relevant SDN implementation nowadays. Our emulated
campus network consists in 11 OpenFlow switches connecting 230 hosts from laboratories and
administration offices forming the topology. Each switch of the network is connected through
a dedicated channel to a remote controller. More specifically, a centralized Floodlight v0.90
controller is set to coordinate network-wide forwarding decisions.

To generate traffic in this experimental evaluation we used the User Traffic Profile (see
Section 3.2) characterized by everyday Internet surfing and access to the university’s virtual
learning environment. This model dictates the user behavior to generate emulated Internet traffic
based on several previous studies (SYSTEMS, 2014) (XIE et al., 2013) (CHENG; LIU; DALE,
2013) (KATSAROS; XYLOMENOS; POLYZOS, 2012) (3GPP, 2004). In this experiment we
generate only video and Web traffic, in a proportion of 75% to 25% respectively. Given the size
of requests, i.e., video streams generate more traffic than Web requests, we selected one user
to place video requests for every 6 Web users. We include in the campus topology (shown in
Figure 3.2) one Web Server and one Video Server to respond to users’ requests, so that we are
able to control precisely the size of responses (in a real campus network these requests would
normally go through a gateway or proxy). We also assume that all 230 hosts are active during

the whole experiment time and place a request in average every 30 seconds.
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Figure 3.2 — Campus network topology.
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Source: by author (2015).

The experimentation workload was emulated on Mininet in one Dell PowerEdge R815 with
4 AMD Opteron Processor 6276 Eight-Core processors and 64GB of RAM server.

3.5.2 Experimental Results & Discussion

To understand the variations of control traffic, we varied one factor present in any OpenFlow-
based network, which is the idle timeout configuration of forwarding rules. This factor indicates
when an entry of the flow table of an OpenFlow switch, i.e., a forwarding rule, is removed due to
lack of activity. The default idle timeout (in seconds) is configurable in the Floodlight controller
and is applied for every new forwarding rule installed. Figures 3.3, 3.4, and 3.5 show how the
idle timeout configuration affects both the control channel load and resource consumption due
to the frequency of rules installation process. Moreover, referring to analyze Read-State mes-
sages, we fixed the polling frequency in 5 seconds to understand how the variation in size (not

the frequency) of these messages impacts control traffic, specially related to their size.

Figure 3.3 shows how the control traffic load (in Kbps) varies as the idle timeout increases.
The height of each bar shows the total control traffic in both directions, i.e., from the controller
to the network (Send-Packet, Modify-State, and Read-State (Request)) and from the network to
the controller (Packet-In and Read-State (Reply)). It is clear to notice that the average traffic
of Read-State requests remains constant, while Read-State reply traffic increases significantly.
This happens because Read-State replies contain forwarding rule statistics, thus as the idle
timeout increases so does the chance of a given forwarding rule being installed at a switch in
each monitoring poll. However, Packet-In, Send-Packet, and Modify-State traffic decreases in

average as the idle timeout increases. This happens because all these messages will appear
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mostly if users remain inactive for a period longer than the configured idle timeout, which is

fairly unlikely to happen for long idle timeout values.

Figure 3.3 — Control channel load vs. idle timeout configuration.
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120

Figure 3.4 shows the number of packets processed per second by both the controller and net-

work devices. Similar to Figure 3.3, this chart also shows in the total bar height an accumulated

value, i.e., the number of messages flowing in each direction. Mainly, the results in Figure 3.4

show that when the rule idle timeout configuration is set to low values, the average of Packet-In

generated to the controller direction and Send-Packet/Modify-State messages sent to network

devices both increase. Most importantly, both network and controller have a limit of packets

that can be processed before reaching the warning operation mode. Thus, the administrator

needs to watch over this configuration to avoid bottlenecks at the control channel.

Figure 3.4 — Packets processed per second vs. idle timeout configuration
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Figure 3.5 shows the total number of forwarding rules and which of those are idle for a
given idle timeout configuration. A forwarding rule is idle when its counters do not change
between two monitoring polls. The results show that increasing the idle timeout value causes
a larger number of idle rules installed in switches. This occurs because the user traffic profile
of most users generates sparse and short-lived requests (e.g., Web requests). Considering our
scenario, when the idle timeout is set to 120 seconds, for example, the average rules installed in
the network is about 1042, being 77% of these rules inactive. Given that the switches’ TCAM
are an expensive resource to be wasted and the number of rules that can be stored in these
memories is limited, it is important to control this configuration closely to avoid running out
of resources. Thus, for this point of view, the best configuration is to define 1 second to rules
idle timeout that maintain almost zero idle rules installed on switches and less control traffic
due to less rules to be monitored. On the other hand, setting the idle timeout configuration as
1 second also generates more packets processed per second on the controller’s direction due to

rule installation process is frequent (Packet-In, Modify-State, and Send-Packet messages).

Figure 3.5 — Total/idle rules vs. idle timeout configuration
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In summary, this analysis shows how a single factor, i.e., the idle timeout, configured at the
controller can significantly affect the control channel traffic and resource consumption of an
OpenFlow-based network. Moreover, all experiment samples were sized so to achieve a 95%
confidence and an error no higher than 2%. We also suppressed error bars from Figures 3.3
and 3.5 for the sake of visualization. Furthermore, it is important to mention that we discovered
a hard limit to collect statistics with Read-State messages on the controller implementation (in
our experiment this limit was 682 rules per Read-State Reply message). If a Read-State Request
is sent to a switch with more than 682 rules installed, the switch generates all necessary Read-
State reply messages to retrieve all information from switches. Thus, when a switch has more
installed rules than a Read-State message supports, more packets are generated in order to reply

all flow statistics about this switch on the control channel.
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4 SDN INTERACTIVE MANAGER

In this chapter is presented our interactive approach to SDN management through moni-
toring, visualization, and configuration. First, Section 4.1 details all components and how our
approach lines up with the general SDN conceptual architecture. Second, Section 4.2 presents
our SDN management requirements that our approach achieved. Next, Section 4.3 presents our
developed extensions on the Floodlight controller to support advanced control channel manage-

ment features. Last, Section 4.4 details our prototype implementation.
4.1 Conceptual Architecture

Our conceptual architecture was designed to archive a management loop that involves the
administrator interactions with SDN monitoring, visualization, and configuration components.
Basically, we designed an approach in the SDN Management Plane — called SDN Interactive
Manager — that integrates the administrator interactions with SDN monitoring, visualization
and configuration management activities. Figure 4.1 shows the SDN architecture, the admin-
istrator and the Graphical User Interface (GUI) along with the components added to enable
management via monitoring, visualization, and configuration. To introduce concepts more di-
dactically, we organize the explanation in two steps. First, we present an overall explanation
of our proposed architecture and a brief explanation about the SDN architecture. Second, we

explain all components of our approach and how the Administrator can interact with them.

Figure 4.1 — Conceptual Architecture
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SDN Interactive Manager includes three main components: Monitoring Manager, Visual-
ization Manager, and Configuration Manager. The SDN Interactive Manager sits in the man-
agement plane of SDN alongside other existing or yet to be developed solutions. Since our
approach to SDN management comprises interactive network management, we also depict in
the architecture the Administrator who interacts primarily with the Visualization Manager and
the Configuration Manager components through a Graphical User Interface (GUI). Therefore,
our solution creates a loop of activities by integrating these components with the Administrator
interactions. Each of these components perform independent tasks described as follows.

Monitoring Manager — This component is responsible for retrieving updated information
about the network and storing it in a local Database. This is performed mainly through a module
called Infrastructure Synchronizer, which collects information, such as traffic statistics, network
topology and device data, by accessing an MI to one or more controllers situated in the control
plane. Currently, there is no standard MI, though we envision that such interface could present
at least the same functionality as the northbound API. Also, customizations in this API could
be added to support information relevant to network management (e.g., control traffic counters
and resource usage data). Then, the Infrastructure Synchronizer module stores both control and
data traffic statistics, maintaining a history of the last network state and changes on SDN-related

configurations performed by the Administrator.

Visualization Manager — This component comprises the Statistics Processing & Provider
and Chart Visualizations modules. With information stored in the Database, the Statistics Pro-
cessing & Provider module is able to aggregate data per host, switch, controller, or even the
entire network to be used by the Chart Visualizations module. Furthermore, the Statistics Pro-
cessing & Provider module is also able to identify which rules are active and which are idle on
forwarding devices. To build interactive visualizations that can be analyzed by the Administra-
tor, the Chart Visualizations module uses a rich library of interface components (e.g., graphs,
charts, and diagrams) that enables data updates in real time. Then, based on these visualiza-
tions, the Administrator can be aware of possible issues or bottlenecks and plan for adjustments
and improvements in the network configuration.

Configuration Manager — This component allows the Administrator to check and configure
SDN-related parameters on network controllers through the MI. The Floodlight Adapter module
permits setting up the polling interval for monitoring network devices through a friendly GUI.
Moreover, through the same GUI, the Administrator can trigger the Floodlight Adapter module
to set the idle timeout to be configured globally, per device, or per flow. All SDN-related
parameter configurations on the controller are performed using an extension of the northbound
API implementation that is embedded in MI between management and control planes. This
extension is needed to support SDN-related parameters configuration changes and requests for
current configurations.

Our prototype requirements, diagrams, and the development of our conceptual architecture

are detailed in the next sections. Our sequence diagrams present only the case of success.
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4.2 Prototype Requirements

In this section, we present all Functional Requirements (FRs) identified to develop a proto-
type for SDN management through monitoring, visualization, and configuration. We summa-
rized all relevant requirements identified to manage and control the control traffic generated in
OpenFlow-based networks. We chose to emphasize the control traffic because it is practically
neglected nowadays, specially using the OpenFlow version 1.0. Therefore, our FRs for SDN
management through monitoring, visualization, and configuration are the following presented
in Table 4.1.

Table 4.1 — Prototype functional requirements and descriptions

Functional Description
Requirement P
The prototype must be able to perform monitoring on an SDN controller
FR-01 ..
to collect statistics about the control channel
The prototype must sync and store statistics about controllers, switches,
FR-02 . .
links, flows, ports, tables, and counters into a database
The prototype must identify, count, and aggregate all active and idle
FR-03 ) . .
flows installed on forwarding devices
FR-04 The prototype must calculate data and control traffic bit rates and

packets processed to all switches of the network

The prototype must present a physical topology visualization with node
FR-05 information (DPID, data and control channel load rates and level, rules
installed/overall, MAC, and IP addresses depending on node type)

The prototype must generate visualizations based on the control channel
FR-06 load rates and number of packets processed for the chosen messages
(Packet-In, Modify-State, Sand-Packet, and Read-State)

The prototype must present the total number of active and idle rules
installed by controller in interactive visualizations

The prototype must enable the administrator to perform SDN-related
FR-08 parameter configurations through an GUI (rule idle timeout and polling
interval configurations)

The prototype must update interactive visualizations on each monitoring

FR-07

FR-09 interval and change its physical topology visualization based on control
channel load and resource usage metrics
FR-10 The SDN controller must count, aggregate, and provide all collected

statistics about the control channel for OpenFlow 1.0 version
Source: by author (2015).

In addition to presenting all prototype implementation, it is also important to depict all
restrictions that we needed to develop on the controller. Because the fact that OpenFlow con-
trollers — by default — did not concern on counting statistics about the control channel, we mod-
ified the standard implementation of a SDN controller aiming to enhance the statistics collector

by adding the control channel messages counters. For example, the FR-10 was developed on a
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Floodlight v0.90 controller in order to count and reply for statistics about the control channel.
In this case, we implemented all counters for OpenFlow 1.0 sub-types of message. Further-
more, we also added this information together with the switch flow information provided by its
RESTful API. A more detailed description about this implementation is presented in the next

section.
4.3 Controller Modifications

This section presents all modifications made on Floodlight v0.90 to support our advanced
management features. First, is presented the Floodlight architecture with some abstractions
and new modules added to support control channel statistics. Next, in Subsection 4.3.1 is
depicted the Configuration Adapter component with its respective relationship with other de-
veloped components. Last, in Subsection 4.3.2 is presented the Control Statistics Aggregator
module developed to handle all control channel counters and provide them to the REST API.

To develop our interactive visualizations, we also needed to request for information that the
default controller already provides, such as physical topology information (e.g., details about
hosts, switches, links, ports and controller memory). The OpenFlow Services component com-
prehends the Topology Manager/Routing and Controller Memory modules that allow to request
for topology and controller memory usage information respectively. These modules receive a
request, process an updated information, and provide it through Core Web Routable component.
The Core Web Routable component offers Uniform Resource Locators (URLSs) that enable to
retrieve/send data from/to these modules. Other OpenFlow services are accessible and can be

implemented on Floodlight v0.90, but all used modules are shown in Figure 4.2.
Figure 4.2 — Controller Modifications
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4.3.1 Configuration Adapter

The Configuration Adapter component is responsible for modifying — when requested by
the administrator — the Forwarding implementation parameters in order to change its behav-
1or. This component is composed by the Request Interpreter / Parameter Modifier module that
performs SDN-related parameters reception and recognition (sent from SDN Interactive GUI
through Floodlight’s Core Web Routable module) and makes SDN-related parameters changes
on Forwarding behavior implementation as well as the administrator requested. To better ex-
plain this configuration process, a sequence diagram is presented in Figure 4.3 that represents

an example of an idle timeout parameter configuration made through our developed prototype.

Figure 4.3 — Sequence diagram of Floodlight controller configuration process
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Basically, this sequence diagram (Figure 4.3) illustrates the administrator sending the idle
timeout configuration value through SDN Interactive Manager GUI in order to alter this value
on Floodlight’s Forwarding behavior. First, the SDN Interactive Manager GUI receives this
value and sends it in a Javascript Object Notation (JSON) to the Floodlight’s REST API. Then,
this API routes the request — with the Core Web Routable module — to reach the Request In-
terpreter & Parameter Modifier module. Next, the Request Interpreter & Parameter Modifier
module recognizes all parameters to be modified and changes these values on Forwarding be-
havior implementation. Last, the updated values are replied on reverse path until SDN Interac-

tive Manager updates its GUI and shows the current configuration to the administrator.
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4.3.2 Control Statistics Aggregator

The Control Statistics Aggregator component includes Message Sub-Types Counters and
Aggregator modules. The Message Sub-Types Counters module comprehends all OpenFlow
message types with their respective sub-types in addition to define their characteristics and
available memory dedicated to each one. This module is responsible to count the number and
length of each message sub-type transmitted over the control channel. To perform this count-
ing, this module communicates with two components: OpenFlow Channel Handler (to count
messages that came from switches to controller) and OpenFlow Channel Writter (to count mes-
sages that are sent from controller to switch’s direction). The OpenFlow Channel Handler uses
Process OFMessage and OpenFlow Channel Writer uses the Switch Base module to perform
this counting. Last, the Aggregator module aggregates all counters per switch and provides it to

Core Web Routable. An example of control channel statistics retrieving is shown in Figure 4.4.

Figure 4.4 — Sequence diagram of Floodlight controller counting process
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Source: by author (2015).

In this sequence diagram (Figure 4.4) is presented the entire process to retrieve control
channel statistics through our prototype. First, the administrator accesses the SDN Interactive
Manager GUI in order to visualize charts about control channel statistics. Our GUI performs
several monitoring polls (as previously configured by the administrator) to Floodlight’s REST
API that interacts with Core Web Routable module to route this request to the Aggregator mod-
ule. The Aggregator module gets all counters for all sub-types of message transmitted at the
moment on Message Sub-Types Counters module and replies them to Floodlight’s REST API.

The Message Sub-Types Counters counts all messages sent to Switch Base (from controller to
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switches) and received by Process OFMessage (from switches to controller). Last, the API
returns these counters in a JSON format to SDN Interactive Manager GUI that stores into a

database and performs updates on all charts showing them (in real time) to the administrator.
4.4 Prototype Implementation

We designed our prototype as a modular application with independent and integrated func-
tionalities for SDN monitoring, visualization, and configuration. The prototype was based on
an laaS (Infrastructure as a Service) cloud platform — called Aurora Cloud Manager (WICK-
BOLDT et al., 2014) — following the Model-View-Template (MVT) design pattern and Python
2.7" with Django 1.6? as development framework. The Database used to store network devices
information as well as traffic statistics is a PosgreSQL? database and it has been implemented as
Django Models. Each of monitoring, visualization, and configuration functionalities were de-
veloped as Views and the GUI as Templates. Moreover, we also integrated our prototype with
Floodlight v0.90*, which is a Java-based SDN controller, supported by a community of devel-
opers and engineers of Big Switch Networks. Figure 4.5 depicts our prototype implementation

based on MVT design pattern.

Figure 4.5 — Prototype Implementations

§@ SDN Interactive Manager
©
*g | Visualizations (RS
g | <« Topology View & Chart Visualizations Resources
| Interactive
< -t GUI p (g 4 Controller
CSS | | D3js| | Visualizations Data Form
A
=
M\ = a
/ , Forwarding Plane Handler & s
Floodlight Controller
< o Adapter Handler
= y Database Statistics Processing
< i CRUD
P . ; & Provider :
=< Infrastructure Synchronizer [« Operations
E Y
\m
€ |l ol
— | |
§ : Link [ |Switch||Controller||Floodlight| (OFHeader||BaseModel | |Host | | Port :
o I I
- | Configuration| | OFSwitch1.0| |OFPortCounter1.0| | OFHeaderCounter1.0 | |
| |
| OFTable1.0| | OFTableCounter1.0 || OFMessageCounter1.0|| OFAction1.0 :
\/ L T s RN I
Source: by author (2015).
"https://www.python.org/

Zhttps://www.djangoproject.com/
3http://www.postgresql.org/
“http://www.projectfloodlight.org/floodlight/



46

Figure 4.5 presents all prototype layers, components and modules with their respective in-
teractions with the administrator and Floodlight’s REST API. The bottom layer (Model layer)
comprehends classes as Django models to maintain the necessary characteristics of OpenFlow
specification 1.0. On the middle layer (View layer) are implemented the Controller Handler
component that performs Create, Read, Update and Delete (CRUD) operations on controllers
and the Forwarding Plane Handler component that is responsible for configuring SDN-related
parameters, syncing, processing, and providing statistics to the upper layer (Template layer). On
Template layer is developed the Resources component to coordinate operations with controllers
and the Visualizations component that comprehends the interactive GUI including graphs using
D3.js’ library, jQuery®, Bootstrap’ Cascading Style Sheets (CSS), and JSON data necessary to
generate interactive visualizations.

Regarding Model layer, our Django models are modeled from scratch because the fact of
the Distributed Management Task Force’s (DMTF) Common Information Model (CIM) is rather
complex and may cause an extra overhead on storing all data into a database®. Complex models
can introduce higher overhead on our prototype syncing and configuring processes and in this
case we preferred to extract just the data that we used on our prototype evaluation. Therefore, we
modeled a more simple data scheme to support control messages of OpenFlow-based networks

with classes presented below on Figure 4.6.

Figure 4.6 — Class diagram of prototype models
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Our prototype implementation was guided to accomplish the three main components of
our conceptual architecture (Monitoring Manager, Visualization Manager, and Configuration
Manager) making a loop with these management activities together with the administrator in-
teraction. To better explain prototype functionalities, we divided the explanation presenting a
(7) brief description about the implementation and the correlation of these components with the
conceptual architecture (see Section 4.1) and then we (ii) present sequence diagrams used on

development process to configure and retrieve statistics information from Floodlight controller.

Regarding the Monitoring Manager component, our implementation focused on periodi-
cally updating network information into a database. The Infrastructure Synchronizer module
syncs data from controller (e.g., data and control traffic counters of every rule installed on each
switch of the topology) through the RESTful API provided by the Floodlight controller. This
data is mapped in Django models to the database and provides them to Statistics Processing &
Provider module. The Statistics Processing & Provider accesses information about the physical
topology, including links, switches, and hosts in order to calculate traffic rates, active and idle
flows on the network. Then, this information is calculated and serialized to be sent to Topology
View & Chart Visualizations interface. Moreover, the Floodlight Adapter module is responsi-
ble to receive the requested configuration from GUI and send it to the Floodlight’s REST API.
Therefore, when the Floodlight controller finishes the configuration and sends a reply to our

prototype, the administrator receives the updated configuration on GUL.

The Visualization Manager component is implemented as a Web based application relying
mainly on Visualizations and Resources components. The Resources component includes the
interface to perform CRUD operations with controllers. The Visualization component is com-
posed mainly of an Interactive GUI with HyperText Markup Language (HTML) pages with
CSS and charts made from Visualizations Data using D3.js library and jQuery mainly. The
major purpose of this component is to provide an interactive way for the administrator to under-
stand the current network status and visualize the impact of his/her configurations in real time.
Thus, as the network is periodically monitored by the Monitoring Manager, visualizations are
updated in the same pace. The integration between these two components allows our prototype
to display network visualizations, such as: topology view and chart visualizations (Topology
View & Chart Visualizations) with intuitive hints on where resource bottlenecks might be oc-
curring, charts of idle and active rules installed on forwarding devices, amount of OpenFlow

messages flowing in control channels, and the traffic rate these messages generate.

The implementation of the Configuration Manager aims to provide an easy way for the
Administrator to change the network configurations through the same Interactive GUI where
visualizations are displayed. For that purpose, we developed a module as an extension of the
Floodlight default REST API so that configuration parameters can be sent from our prototype
to the controller. Our prototype currently supports the configuration of the rule idle and hard
timeouts parameters on the controller — made through Floodlight Adapter module —, but the

implementation can be easily extended to support others. The forwarding rule hard timeout dic-
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tates how many seconds a rule remains installed on a switch independently of their status (active
or idle). Parameters as the polling interval and the chart update interval can also be set through
our prototype. The monitoring polling interval affects the frequency of reading information
from counters of network devices and the chart update interval only impacts on GUI refresh
interval. The impact of these parameters on the control channel load and resource consumption,
as well as how visualizations reflect their changes are presented in the next chapter.

In next subsections are presented both configuration and syncing (Subsecs 4.4.1 and 4.4.2)

processes made through our prototype.

4.4.1 Configuration Process

The controller configuration process initializes with the administrator interacting by request-
ing a new configuration through the Interactive GUI. The administrator can change the moni-
toring interval or idle timeout of forwarding rules installation. If the administrator chooses to
change the monitoring interval, the process goes from the administrator interaction to the Inter-
active GUI that changes this value and starts to operate with the new one. On the other hand, if
the administrator chooses to alter the forwarding rule idle timeout configuration, the Interactive
GUI receives the parameter value and sends it to the controller to change the current value. The

entire process is illustrated on Figure 4.3 as a sequence diagram.

Figure 4.7 — Sequence diagram of prototype configuration process
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The administrator sends a request for new configuration through the Interactive GUI until
reach Floodlight Adapter module to serialize the configuration data. Then, a new request is
generated to the Floodlight’s REST API in order to send the new configuration parameters to the
controller. This API receives the request and sends these parameters values to inside modules
that deal with the rest of configuration process already mentioned on Figure 4.3. When the
controller finishes applying all changes requested, the Floodlight’s REST API sends the updated
configuration to the Floodlight Adapter module that replies this configuration in a JSON format
to the Interactive GUI. Last, the Interactive GUI is updated to show the newest configuration

parameters to the administrator.

4.4.2 Syncing Process

The syncing process is the most sophisticated and costly process of our prototype. The sync-
ing process involves: requesting updated statistics about the control channel, sync all Django
models into database, calculate necessary bit rates and packets processed, identify active and
idle rules to provide this information to interactive visualizations. In order to better explain this

entire process, Figure 4.8 presents step-by-step of the syncing process in a sequence diagram.

Figure 4.8 — Sequence diagram of prototype syncing process
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First, the administrator accesses the Interactive GUI to view charts in real time. At this

time, the SDN Interactive Manager prototype initiates the monitoring poll loop on a controller.
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The first action is a request sent by the Interactive GUI to sync a selected controller information
through Infrastructure Synchronizer module. The Infrastructure Synchronizer module requests
the information about control channel statistics, topology, switches, hosts, links, ports, tables,
and controller memory usage to the Floodlight’s REST API. This API sends a reply with all data
necessary to Infrastructure Synchronizer module that initiates to sync every Django model into
a database. Firstly are created all models and then they are synchronized. Then, the statistics
information is sent to the Statistics Processing & Provider module.

After the Statistics Processing & Provider module receives the statistics information, control
channel rates and packets processed are calculated, active and idle flows are identified, and this
information calculated is serialized and sent to the Visualizations Data interface. This interface
is used by the Topology View & Chart Visualizations module to build and update Javascript-
based graphs made using D3.js library, CSS, Bootstap, and jQuery. Then, graphs are updated
and presented to the administrator through the Interactive GUI again. In the next chapter is
presented the evaluation of our approach made through several experiments performed using

our developed prototype.
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5 CASE-STUDY, RESULTS AND EVALUATION

In this chapter is presented an evaluation — as a proof of concept — of one case-study in
order to simulate administrator interactions with an OpenFlow-based SDN. Based on our pro-
totype interactive visualizations, our objective is to demonstrate the administrator improving
SDN-related parameters configurations according to his/her necessity. Section 5.1 presents the
evaluation based on interactive charts that present control channel load and resource usage met-

rics and Section 5.2 presents the same evaluation but using the topology chart visualization.

5.1 Management Through Control Channel Load and Resource Usage Interactive Charts

In this section it is described the evaluation of our approach using our developed prototype
through interactive charts. We performed this evaluation using the same campus network of
our Control Channel Analysis made in Chapter 3. The detailed campus topology and workload
was presented in Subsec 3.5.1 and the user traffic profile in Section 3.2. Our goal is to mea-
sure control channel load and resource usage considering the administrator interactions over the
experiment time span. To understand the impact of changing SDN-related parameters, we simu-
lated some administrator interactions to control the controller behavior presented in Section 2.3.
In addition to varying the forwarding rule idle timeout configuration, we also change the mon-
itoring polling interval to understand the impact of Read-State messages as well. Table 5.1

presents all configurations changes simulated during the evaluation period.

Table 5.1 — Simulated administrator interactions

Parameter Value

Reconfiguration time (hour:minutes) | 11:05 | 11:12 | 11:25 | 11:37 | 11:47 | 11:57
Rule idle timeout (seconds) 5 60 30 30 30 30
Monitoring interval (seconds) 5 5 5 40 30 15

Source: by author (2015).

Figure 5.1 depicts the user-friendly Web interface (SDN Interactive Manager GUI) devel-
oped in order to provide the administrator with interactive visualizations and to allow easy
configuration of SDN-related parameters. The visualization of the physical topology allows to
alternate between two different perspectives (available on the top-right corner): control traffic
and data traffic. Depending on the active perspective, different colors of switches are used to
represent different levels of control or data traffic. Regarding resource usage, due to switches
TCAM usage vary depending on flow granularity and switch particular specifications, our pro-
totype implementation used the percentage number of flows installed on each switch related to
the network overall to determine the level of their sizes. The other two buttons on the top-right
corner are related to: view information about nodes used on physical topology visualization and

view configuration options available to change through our prototype implementation.



52

Figure 5.1 — Web interface of the prototype developed.
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Triggering the top-right corner button (configuration change button) of SDN Interative GUI,
a dialog window is shown with four configuration parameters that can be adjusted: polling
interval for monitoring, chart update interval for charts refreshing, idle and hard timeouts of
forwarding rules (see Figure 5.2). When the administrator changes the polling interval for
monitoring or the chart update interval on the SDN Interactive GUI, our prototype adjusts the
interval of statistics request, or charts refreshing respectively on Infrastructure Synchronizer
module in order to set the newer values for these intervals and starts to operate with them. On
the other hand, when the administrator changes the rule idle or hard timeouts, the chosen values
are sent to the controller through the RESTful APIL.

Figure 5.2 — Web interface dialog window to perform configuration changes.
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Source: by author (2015).
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To explain the different representations of the physical topology visualization such as node
color, size and level, our Interactive GUI has another dialog window in order to provide it
to the administrator. In the same top-right buttons group, the administrator can trigger the
info button to show a dialog window that has the topology chart elements representation with
their respective descriptions. Moreover, in the same window are shown control channel load
and resource usage metrics level representation. These levels are calculated for each switch and
they are classified by the proportion of control traffic generated or resource usage of each switch

related to network overall. Figure 5.3 presents the information dialog window.

Figure 5.3 — Dialog window to physical topology elements descriptions.
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The percentage range to each metric level (resource usage or control traffic levels) was
defined as follows: 0% to 5% as Very Low, more than 5% to 10% as Low, more than 10% to
15% as Medium, more than 15% to 20% as High, and more than 20% as Very High level. For
example, a switch that generates 17% of control channel load related to the network overall is
classified as a switch that generates a Medium control traffic on the network (between 15% and
20% of traffic on the control channel). On the other hand, this switch has 54 rules installed on
its flow table. This 54 rules represent 48.2% of resource consumption related to overall network
(54/112 rules). Thus, the switch size will be correspondent of a switch with more than 40% and
less than 60%, i.e. a switch with a Medium resource usage compared to the entire network.

Below the physical topology visualization (Figure 5.1), there are interactive charts showing
online resource usage in terms of installed rules (active and idle), aggregated control traffic
and packet processing rates related to the whole network. Figures 5.4 to 5.6 detail interactive
charts available from the Interactive GUI of our prototype related to resource usage and control
channel load respectively. These charts present the total and idle rules, control traffic rates in

kbps from the controller to switches, and control packets processed per second also in both
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directions. Moreover, they show information for the whole network during the time span of the
experiment (1 hour). Vertical dashed lines mark the moments when the administrator changes

a configuration (see Table 5.1).

Figure 5.4 — Total and idle rules behavior during the experiment duration
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Figure 5.5 — Control channel traffic rates over the experiment duration
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Figure 5.6 — Control channel packet rates over the experiment duration
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At the beginning of the experiment, the amount of installed rules is approximately 200,
while nearly zero are idle, as shown in Figure 5.4. As mentioned before, a rule is considered
idle when its counters do not change between two monitoring polls. This small number of idle
rules is a consequence of the low rule idle timeout value set to 5 seconds (default Floodlight
configuration). On the other hand, the controller is processing a large number of Packet-In
messages, as displayed in Figure 5.6 (b). To reduce the load on the controller, at 11:12, the
administrator changes the rule idle timeout to 60 seconds. After this change, it is possible to
visualize a dramatic decrease in control packets processed both by the controller and network
devices. However, this configuration also affects immediately resource consumption, especially
in terms of idle rules (Figure 5.4) and control traffic rate towards the controller (Figure 5.5 (b)).
With this rule idle timeout configuration the interactive graph visualization of network rules
(Figure 5.4) and upload traffic rate (Figure 5.5 (b)) presents that nearly 77.7% of all forwarding

rules remain idle and upload control traffic increases almost threefold.

Close to 11:25, the administrator decreases the idle timeout to 30 seconds as an attempt to
bring down traffic in the control channel and the amount of rules installed. From Figures 5.4
and 5.5 (b) it is possible to visualize such configuration does indeed decrease these values over
time. Nevertheless, instead of observing a hard drop in traffic rate and installed rules, this time
we notice a gradual decrease. This behavior can be explained because the new idle timeout
settings will only be applied to newly installed rules. Thus, rules installed before the change
will respect the previous configuration. Also, packet processing rates tend to increase again
with this configuration, but nowhere near the values from the beginning of the experiment.

After the first two changes, the amount of traffic in the control channel towards the controller
remains very high (Figure 5.5 (b)). Most of this traffic is due to Read-State reply messages,
which are loaded with counters for as many rules as are installed in all switches. To decrease
the amount of Read-State messages, the administrator increases the monitoring polling interval
to 40 seconds at roughly 11:37. Immediately after this change, we can visualize that the control
traffic rate generated by these messages is significantly reduced. However, looking at Figure 5.4,
we are also able to notice an unexpected decrease in the amount of idle rules installed. This
behavior is actually a distortion or loss of precision in monitoring given the way of identifying
for idle rules. To be considered idle a rule needs to be monitored twice without changing its
counters, which will rarely happen with too sparse monitoring polls. Finally, the administrator
decreases the polling interval to 30 seconds (at 11:47), which is still insufficient to capture idle

rules, and to 15 seconds (at 11:57), when the monitoring process returns to identify idle rules.

5.2 Management Through Physical Topology Visualization

In this section is presented another evaluation of our approach through our prototype. At
this time, the administrator made his decisions by configuring SDN-parameters based on phys-

ical topology visualization issues. We simulated some administrator interactions based on this
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interactive visualization provided by our prototype implementation. Table 5.2 presents all con-

figurations changes simulated during the evaluation period.

Table 5.2 — Simulated administrator interactions

Parameter Value
Reconfiguration time (hour:minutes) | 10:19 | 10:24 | 10:36 | 10:44
Rule idle timeout (seconds) 5 60 30 30
Monitoring interval (seconds) 25 25 25 60

Source: by author (2015).

At the beginning of the experiment, we applied 5 seconds to rule idle timeout configuration —
Forwarding behavior default configuration — and 25 seconds to the monitoring polling interval.

Figure 5.7 presents a screen shot of our prototype GUI with the current configuration.

Figure 5.7 — Web interface the prototype developed at the first configuration period.
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Based on the physical topology visualization indicators (e.g., switch sizes and colors), the
administrator identifies that one of the network switches is bigger than the others in addition
to its orange color. By positioning the cursor over this switch, the administrator can observe
that this switch has a high level of control channel load and resource usage. It is important
to emphasize that the switch size represents the resource usage level in terms of number or
rules installed and the switch color represents the control channel load level both compared to
the network overall. This switch with Datapath ID (DPID) 00:00:00:00:00:00:00:01 (shown
in Figure 5.7) connects the Web and Video servers with all other network devices and due to
the lower idle timeout value configured at the controller, this switch is generating many packets

processed per second and control traffic on both directions.
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If the controller cannot handle with rate of 20 packets to be processed per second on con-
troller’s direction, i.e., the controller cannot process all Packet-In and Read-State reply mes-
sages that arrives to him due to processing limitations, this controller can become a network
bottleneck. Because of this fact, the administrator needs to act over configuration parameters
to mitigate this bottleneck. One possible configuration is to increase the idle timeout value to a
higher value, for example to 60 seconds, in order to decrease the rate of packets processed per
second generated on both directions. This configuration chosen the inactive rules installed for
a longer time in flow table. Figure 5.8 shows a screen shot of our prototype GUI some minutes

after the administrator applies the newer configuration value to idle timeout configuration.

Figure 5.8 — Web interface the prototype developed at the second configuration period.
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At this moment, the rate decreases from approximately 20 to 10 packets processed per
second that are sent from switches to controller and from about 80 to 60 packets processed per
second sent from controller to switches in overall. This occurs because fewer rules are installed
due to more rules that are reactivated by the user traffic profile of most users. On the other hand,
the drawback of this configuration is the growth of the number of rules installed on switches.

Supposing that the maximum limit of rules that can be installed on the switch’s flow table
is known — without exceeding TCAM available — and because the current number of rules in-
stalled is close to the limit it indicates that the administrator needs to reconfigure some network
parameter to prevent running out of resources. Assuming that the limit is around about 400
rules and the central switch has almost 350, the administrator decides to act over idle timeout
value again to decrease the amount of rules installed. Thus, the administrator decides to change
the idle timeout configuration to an intermediate value (30 seconds) and wait a while until old
flows be removed by inactive to receive the newer configuration. Figure 5.9 presents a screen

shot of our prototype GUI after few minutes of experiment.
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Figure 5.9 — Web interface the prototype developed at the third configuration period.
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After this change, the administrator verifies that the amount of rules installed on that switch
is under control (about almost 300 rules installed in the central switch). On the other hand,
the amount of traffic generated by monitoring process on controller direction is unnecessarily
high (Read-State reply messages) with peaks of almost 100 kbps. Therefore, the administrator
decides to increase the polling interval value in order to decrease the rate of control traffic
generated on controller’s direction. Figure 5.10 presents a screen shot of our prototype GUI

after few minutes of the last configuration performed.

Figure 5.10 — Web interface the prototype developed at the fourth configuration period.
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When the prototype applies the newer value to the polling interval, the control traffic rate of
messages that goes to the controller decreases considerably, from approximately 100 to 60 kbps,
adjusting the rate of control traffic is managed according to the administrator needs. Therefore,
our prototype visualizations have enabled the administrator to manage control channel load and
resource usage regarding control traffic generated, packets processed per second, and number
of rules installed on network devices. Our evaluation showed that the physical topology visu-
alization indicators help the administrator to prevent running out of resources and may avoid
bottlenecks at the controller by a simple change in a configuration parameter at the controller

(e.g., idle timeout configuration).
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6 CONCLUSION

Although network monitoring, visualization, and configuration are considered common
management activities, in the context of SDN, they can be considerably different from tradi-
tional networks and deserve proper attention. For example, the SDN controller behavior can
be customized by network administrators and these customizations might affect resource con-
sumption and forwarding performance. As a consequence, such impact is difficult to assess
because traditional network management solutions were not designed to cope in the context of
SDN. Moreover, current solutions deal with SDN monitoring, visualization, or configuration
activities for automating tasks (e.g., reduce control traffic overhead or protect the network) and

they do not aim on helping the administrator to better understand and interact with SDN.

Currently, the state-of-the-art in SDN has addressed monitoring using the OpenFlow proto-
col — the most relevant SDN implementation — for different purposes (e.g., proposing anomaly
detection systems or mechanisms to establish a balance between control channel overhead and
accuracy of collected information). These investigations tend to employ monitoring information
to automatically adapt the network to specific conditions (e.g., switches lowest resource usage
as possible). Moreover, to the best of our knowledge, there is no solution that has integrated
monitoring information with interactive visualization and configuration tools for SDN. Due to
this gap, we addressed an interactive approach to SDN management through monitoring, visual-
ization, and configuration activities with the administrator interactions. We argue that with such
a solution the administrator could better understand and interact with the network, significantly

improving everyday tasks of SDN management.

In this context, an OpenFlow-based architecture introduces a simple way to develop and
maintain communication in SDN because of its centralized logic of controlling forwarding de-
vices. However, this simplicity may allegedly impose a high cost on the network controller and
create bottlenecks at the control channel. Recent solutions attempted to alleviate these bottle-
necks by distributing the control logic of OpenFlow. Nevertheless, there is no detailed study
about in which situations such bottlenecks appear and whether they can or cannot be mitigated
or even avoided by simple configuration, i.e., without the need to develop a specific distributed
controller. Based on this argumentation, we identified that is required a detailed study about the
overhead imposed by communication protocol used to understand and then prevent bottlenecks
at the control channel. As a consequence, we performed an analysis of control channel traffic

generated in OpenFlow networks in order to understand these bottlenecks.

6.1 Main Contributions and Results Obtained

In this work, we initially presented an analysis of the control channel traffic generated in
OpenFlow networks in order to verify the impact of specific SDN-related parameters and their

influence in terms of resource consumption and traffic forwarding performance resulted from
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the communication between controller and network devices. To understand the variations of
control traffic, we decided to vary the idle timeout configuration that indicates when a for-
warding rule can be removed due lack of activity. The results showed how this single factor
configured at the controller affects both control channel load and resource usage metrics. We
verified that the higher the value of idle timeout configuration, the larger is the number of rules
installed on switches — which most of them remains inactive during the experimentation time —
in addition to less control packets related to forwarding rules installation are generated on the
network. On the other hand, the opposite occurs when the idle timeout is configured to lower
values, i.e., a higher number of packets processed per second are generated and fewer rules

remain installed on network devices.

Next, based on the results that we obtained through our control channel analysis, we verified
the necessity to correctly adapt SDN-related parameters according to the network demand and
resource available (e.g., idle timeout configuration of forwarding rules according to user traffic
profile and switch’s TCAM available on forwarding devices). Due to this necessity, we have
proposed an interactive approach to SDN management that integrates monitoring, visualization,
and configuration activities by including the administrator in a management loop. Our approach
allowed the administrator to interact with SDN and better understand and manage the control

traffic generated in OpenFlow-based network.

As a proof-of-concept, we developed a prototype as a Web application that is able to:

e Perform monitoring with configurable polling interval in order to collect control channel
statistics of an SDN controller in addition to sync and store its data into a database (FR-01
and FR-02 presented in Section 4.4).

e Identify active/idle rules (FR-03), calculate control traffic and packets processed per sec-
ond rates (FR-04), aggregate data per host, switch, or even the entire network (FR-03),
present interactive visualizations of physical topology (FR-05, FR-09), and control traffic
metrics (FR-06, FR-07).

e Support the administrator interaction by configuring/reconfiguring SDN-related parame-
ters as the idle timeout of forwarding rules installation and the monitoring polling interval

of the monitoring process (FR-08).

In order to integrate our prototype development with an SDN controller, we needed to mod-
ify the standard implementation of the Floodlight controller aiming to enhance its statistics
collector by adding the control channel messages counters (FR-10).

In our approach evaluation, we simulated several administrator interactions by changing
parameter values in order to adjust rates of control traffic and packets processed per second —
generated in both directions — in addition to control the amount of rules installed on network
devices. We simulated variations for the idle timeout configuration for forwarding rules in-
stallation and the monitoring polling interval for monitoring requests in order to understand the

monitoring process impact as well. By analyzing interactive visualizations provided by our pro-
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totype, the administrator was able to adjust the proportion of control channel traffic and packets
generated per second on the network in addition to resource usage according to his needs. In
other words, the administrator was able to identify potential issues and change configurations

of SDN parameters using our interactive Web interface to achieve his specific goals.
6.2 Final Remarks and Future Work

In future investigations, we plan to perform more experiments with other SDN-related pa-
rameters and different controller implementations. We also plan to perform experiments with
other versions of the OpenFlow protocol, which have different control messages and data struc-
tures. Moreover, we intend to extend our configuration possibilities developed on the prototype,
such as thresholds to an algorithm that can perform automated reconfigurations on behalf of the
administrator. We also intend to identify how a forwarding rule installed by the Forwarding be-
havior affects TCAM in addition to compare the value monitored with the maximum available
on switches. Thus, we will be able to adapt our prototype to warn the administrator when the
current value is close to the maximum supported by switches specifications.

We also intend to improve some technical details of our prototype such as decoupling the
monitoring process from the interactive GUI in order to perform this activity independently of
visualizing the network. Moreover, we intend to store historical data from previous configura-
tions changes made by the administrator that may help on making future decisions. Further-
more, we also intend to create other visualizations such as logical topology view that should
present all network devices and their control channel connection to the controller. Regarding
our controller implementations, we also intend to improve all code developed to support report-
ing control channel statistics from Floodlight v0.90 to the current controller version. Finally,
after all modifications on the prototype and controller, we intend to provide both projects as

OpenSource applications available on GitHub'.

Thttps://github.com/
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Resumo. Software-Defined Networking é um paradigma de redes que permite
facilmente projetar, desenvolver e implantar inovagoes de rede, pois fornece
agilidade e flexibilidade na incorporacdo de novos servigos e tecnologias. As
redes baseadas nesse paradigma ganharam destaque a partir da especificacdo
do protocolo OpenFlow, que define uma simples interface de programacdo para
controlar dispositivos de encaminhamento a partir de um controlador. Ape-
sar da rdpida disseminagdo desse protocolo, os trabalhos relacionados sobre
OpenFlow ndo analisam em profundidade os reais impactos das mensagens de
controle e monitoramento gerado por esse protocolo. Desta forma, a principal
contribuigcdo deste artigo é uma andlise quantitativa do trdfego de controle e
monitoramento em redes OpenFlow. Os resultados revelam que variacoes do
tempo limite de ociosidade das regras de encaminhamento, da frequéncia de
monitoramento e da topologia da rede, impactam na taxa de transferéncia e na
quantidade de mensagens geradas no canal de controle.

1. Introducao

Software-Defined Networking (SDN) é um paradigma de redes baseado em trés aspec-
tos fundamentais: (i) os planos de controle e encaminhamento sdo claramente desaco-
plados, (ii) a l6gica da rede é abstraida de uma implementa¢do em hardware para uma
camada de software programdvel e (iii) € introduzido um elemento controlador de rede
que coordena as decisdes de encaminhamento dos demais dispositivos [Kim e Feamster
2013, Tootoonchian e Ganjali 2010]. A utilizagdo desses trés aspectos de forma integrada,
permite que inovagdes de redes possam ser mais facilmente projetadas, desenvolvidas e
implantadas, pois possibilita a agilidade e flexibilidade na incorporag@o de novos servigcos
e tecnologias, sem que os fabricantes precisem expor o funcionamento interno de seus
equipamentos [McKeown et al. 2008].

As redes baseadas no paradigma SDN ganharam consideravel destaque a partir da
especificagdo do protocolo OpenFlow, que define uma simples interface de programacgao
para controlar dispositivos de encaminhamento a partir de um controlador. Desta forma, a
l6gica da rede é concentrada no controlador que troca mensagens para o estabelecimento
de conexdes, monitoramento de estatisticas, manuten¢do e configuragdo do comporta-
mento dos dispositivos da rede [Bari ef al. 2013]. Sendo assim, o gerenciamento de rede
baseadas na especificacdo OpenFlow reduz, ou até mesmo elimina, problemas de geren-
ciamento de redes tradicionais intrinsecamente [Kim e Feamster 2013]. Por exemplo,
tarefas como a descoberta de rede sdo resolvidas simplesmente pelo fato de que os dispo-
sitivos precisam ser registrados no controlador para pertencerem a rede efetivamente.
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Devido a abordagem centralizada da 16gica da rede, utilizada pelo protocolo Open-
Flow, muito tem sido discutido na literatura especializada acerca do posicionamento e
propor¢ao de controladores em contraponto aos dispositivos de encaminhamento. Al-
ternativas para distribuir a 16gica da rede sobre os dispositivos de encaminhamento sio
desenvolvidas visando evitar um possivel gargalo de mensagens de controle no controla-
dor [Roy et al. 2014,Curtis et al. 2011, Yu et al. 2010]. Entretanto, ndo sdo analisados em
profundidade os reais impactos das mensagens de controle e monitoramento gerado pelo
protocolo OpenFlow. A especificacdo desse protocolo apenas define quais e como sao as
mensagens de controle (e.g. instalacdo de regras, coleta de estatisticas), mas nao espe-
cifica como essas mensagens devem ser utilizadas para controlar e monitorar a rede sem
comprometer seu desempenho. Assim, as informagdes referentes a frequéncia em que
podem ser realizados o controle e monitoramento de estatisticas dos dispositivos da rede
ndo sdo especificadas. Desta forma, se torna fundamental a realizacdo de uma anélise para
identificar quais mensagens de controle e monitoramento mais impactam na sobrecarga
do canal de controle em uma rede baseada em SDN e OpenFlow.

A principal contribui¢@o deste artigo € uma andlise quantitativa do trafego de con-
trole e monitoramento em redes OpenFlow. Essa andlise € extremamente importante, pois
fornece subsidios para mensurar o uso efetivo do canal de controle e, a partir disso, me-
lhor compreender e gerenciar o impacto real da utilizacdo do protocolo OpenFlow. Essa
compreensao € fundamental para o projeto e desenvolvimento de novos sistemas de ge-
renciamento de redes baseadas no paradigma SDN. Para a obtencdo dos resultados, foi
realizada uma experimentacdo considerando aspectos de instalacdo de regras, além da
obtenc¢do de estatisticas através do monitoramento do controlador Floodlight [Big Switch
Networks 2014]. O ambiente experimental foi emulado no Mininet [Lantz ef al. 2010],
simulando o trafego de streamming de video e requisi¢des de paginas Web em duas dife-
rentes topologias de rede, estrela e arvore. Os resultados apresentam como a frequéncia
de monitoramento, as variagdes das topologias e configuragdes do controlador impactam
na taxa de transferéncia e na quantidade de mensagens geradas no canal de controle.

O restante deste trabalho estd organizado da seguinte forma. A Secdo 2 apresenta
a fundamentacdo tedrica sobre SDN bem como sobre o protocolo OpenFlow. Na Secao
3 € descrito o cendrio de experimentacdo e a metodologia de avaliacdo seguida como
prova de conceito. Na Secdo 4 sdo discutidas e analisadas as informacOes abstraidas
da modelagem analitica e dos resultados da experimentacdo. Por fim, na Secdo 5 sdo
apresentadas as conclusdes e as perspectivas para trabalhos futuros.

2. Fundamentacao Tedrica

Nesta Secdo sdao abordados os elementos que definem os principais conceitos de SDN
e OpenFlow, assim como € apresentada uma breve discussdo da literatura em SDN. Na
Subsecdo 2.1 sdo descritos as principais entidades presentes em SDN e OpenFlow con-
siderando a versao 1.0 do protocolo. Posteriormente, na Subse¢do 2.2 sao abordados os
trabalhos relacionados sobre gerenciamento e, principalmente, distribui¢cdo do plano de
controle em SDN.

2.1. Software-Defined Networking e OpenFlow

SDN introduz uma perspectiva flexivel para programar e manter a operacionalidade da
rede. Em SDN, existe uma clara separacio entre os planos de controle e encaminha-
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mento. Além disso, a l6gica é abstraida dos dispositivos de encaminhamento para um
ou mais elementos controladores da rede [Kim e Feamster 2013, Tootoonchian e Ganjali
2010]. A arquitetura definida para SDN ¢ dividida em camadas de aplicacdo, controle
e encaminhamento. A comunicacdo entre as camadas acontece através de Application
Programming Interfaces (APIs) de comunicacio padrdo. Redes que seguem o paradigma
SDN proporcionam vantagens em termos de geréncia e controle da rede, principalmente,
pela visdo global da rede e pela flexibilidade e agilidade na incorporacdo de novos ser-
vicos. Outro aspecto que também contribui para a larga adoc@o desse paradigma € a
liberdade de implementagdo e experimentacdo de novos protocolos sem se ater a detalhes
de implementacgdes proprietdrias dos dispositivos. SDN foi largamente utilizado apds a
especificacdo do protocolo OpenFlow [McKeown et al. 2008] e, devido a flexibilidade e
interface simples de programacao, surgiram diversas solu¢des tanto na academia como na
industria.

O OpenFlow € um protocolo Open Source que utiliza uma tabela para armazena-
mento de regras de encaminhamento e uma interface padronizada para adicionar e remo-
ver essas regras [McKeown ef al. 2008]. Neste contexto, uma regra de encaminhamento é
um conjunto de matches e actions instalados em um switch para implementar um fluxo ou
parte dele, i.e. uma conexao légica, normalmente, bidirecional entre duas maquinas ter-
minais da rede. OpenFlow oferece programabilidade padronizada aos dispositivos de en-
caminhamento, permitindo desenvolver novos protocolos, e.g., protocolos de roteamento,
modulos de seguranga, esquemas de enderegcamento, alternativas ao protocolo IP, sem a
necessidade de ser exposto os funcionamentos internos dos equipamentos. Um switch
com suporte OpenFlow consiste basicamente em pelo menos trés partes: uma tabela de
fluxos, onde sao associadas actions para cada match; um canal seguro, por exemplo Se-
cure Socket Layer (SSL); e o protocolo OpenFlow para comunicacao entre controlador e
os switches.

O protocolo OpenFlow versao 1.0, abordado na andlise deste trabalho e ampla-
mente implementado pelos dispositivos com suporte a SDN, considera trés tipos de men-
sagens de controle: (i) do controlador para o switch, (ii) assincronas e (iii) simétricas.
As mensagens do controlador para o switch sdo utilizadas para gerenciar o estado dos
dispositivos de encaminhamento (e.g., ler informacdes de estatisticas das tabelas de en-
caminhamento). As mensagens assincronas sdo iniciadas pelos switches utilizadas para
informar ao controlador sobre as modificacdes na rede e no estado desses dispositivos
(e.g., chegada de novos fluxos na rede para o qual o switch ndo possui um match corres-
pondente). Por fim, as mensagens simétricas podem ser iniciadas tanto pelo controlador
como pelos switches e sdao enviadas sem solicitacdo (e.g., echo request e reply para certifi-
car que um dispositivo da rede estd ativo). O detalhamento das mensagens € apresentado
na Tabela 1.

Apesar de todas as mensagens impactarem no trafego gerado no canal de controle,
as mensagens de coleta de estatisticas Read-State e de instalacdo de regras de encaminha-
mento Packet-In/Out e Modify-State sao consideradas as mais relevantes, pois sao mais
frequentemente utilizadas pelo controlador e dispositivos de encaminhamento. Portanto,
a partir da andlise dessas mensagens, € possivel identificar o impacto e definir o nivel de
granularidade de um possivel monitoramento periédico da rede.
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Tipos Mensagens Descricao
Features Enviadas para obter conhecimento sobre as capacidades dos switches
Configuration | Especificas para pardmetros de configuragio dos switches
Modify-State Gerenciam o es.tado dos switches, comumente utiliza@as para adicionar,
. remover e modificar fluxos nas tabelas e alterar propriedades de portas
Controlador para o switch p -
Read-State U[l'llZadaS para coletar estatisticas sobre as tabelas, portas, fluxos e filas dos
switches
Send-Packet Utilizadas pelo controlador para enviar pacotes por uma porta especifica
Barrier Obtengdo de conhecimento se as dependéncias das mensagens foram
alcangadas ou para receber notificagdes sobre tarefas concluidas
Pucket-In Enviadfds ao controlador toda vez que o switch ndo .tenha regra instalada para
determinado pacote ou quando a regra for para enviar o pacote ao controlador
Assincrona Flow-Removed | Relativas a remocao de regras dos switches
Port-Status Obtengdo de status das portas dos switches
Hello Para inicio de conexao entre switch e controlador
4 . Echo Estabelecimento d.e conexao entre .switch e controladqr e podem ser utilizadas
Simétrica para obter conhecimento de laténcia, banda ou conectividade
Barrier Utilizadas para obter conhecim.ento se as dependéncias das mensagens foram
alcangadas ou para receber notificagdes sobre tarefas concluidas

Tabela 1. Mensagens de controle do protocolo OpenFlow versao 1.0

2.2. Trabalhos Relacionados

Existem pesquisas que investigam o problema de gargalos no canal de controle entre
o controlador e os dispositivos de encaminhamento. A solu¢do amplamente adotada é
descentralizar o controle para a rapida e 4gil reac@o a possiveis modificacdes no compor-
tamento da rede, sem que seja necessdrio recorrer a um dnico elemento controlador [To-
otoonchian e Ganjali 2010]. Entretanto, ainda existem discussdes sobre o gerenciamento
centralizado e distribuido do controle da rede, visto que, pode influenciar e comprometer
a disponibilidade do canal de controle [Levin et al. 2012]. Devido a esse fato, a andlise re-
alizada neste trabalho foi inspirada pela auséncia de informacao referente ao impacto das
mensagens de controle na configuragdo, manutencdo e monitoramento dos dispositivos de
encaminhamento.

A solugdo apresentada por DevoFlow visa manter os fluxos no plano de encami-
nhamento, ou seja, faz com que os switches encaminhem os pacotes com o minimo de
solicitagdes possiveis ao controlador [Curtis ef al. 2011]. Quando uma regra nao se en-
contra na tabela de regras de um switch, o comportamento padrao do OpenFlow € invocar
o controlador, encapsulando o pacote e o enviando para descoberta da regra apropriada.
DevoFlow evita esse processo através da delegacdo de controle aos switches na clona-
gem de regras, acionamento de actions locais e pela coleta de estatisticas. Para justificar
o proposito do trabalho, foram apresentadas estimativas de sobrecargas da utilizacdo do
OpenFlow. Entretanto, o trabalho apresenta somente estimativas médias o que pode variar
dependendo do tipo da rede.

Uma soluc@o semelhante ao DevoFlow é a apresentado por DIFANE, que visa
manter a logica de controle préxima ao plano de encaminhamento, de forma a atribuir o
controle aos switches proximos ao controlador, chamados de switches de autoridade [Yu
et al. 2010]. Quando uma regra ndo se encontra na tabela de regras de um switch o
comportamento € invocar um swifch de autoridade mais préximo. Ambos os trabalhos,
DevoFlow e DIFANE, apresentam informagdes relativas a sobrecargas geradas no contro-
lador, mas nao detalham sobre o impacto especifico das mensagens trafegadas no canal
de controle.

78



Anais do XIX Workshop de Geréncia e Operagao de Redes e Servigos— WGRS 2014

A solucdo de Heller et al. [Heller et al. 2012] investiga o posicionamento € pro-
por¢ao de controladores necessarios para atender ao plano de encaminhamento sem com-
prometer o desempenho da rede. Para estimar o consumo de banda utilizada no canal de
controle, foram estabelecidas as métricas de laténcia média e laténcia para o pior caso
para comunicacao entre controlador e dispositivos de encaminhamento. Entretanto, o cél-
culo realizado para essa estimativa é aproximado conforme a distancia dos nodos em um
grafo e nao proporcional ao uso ou ao tipo das mensagens trafegadas no canal de controle.
Nesse contexto, Bari et al. [Bari et al. 2013] propuseram uma ferramenta que adapta a
quantidade de controladores necessdrios para determinada demanda da rede. Para realizar
essa adaptacdo € calculado um valor aproximado do tempo minimo para instalacdo de
regras nos dispositivos de encaminhamento.

A andlise realizada neste trabalho visa fornecer subsidios sobre o impacto do tra-
fego de controle e monitoramento para futuros projetos de ferramentas de gerenciamento
no contexto de OpenFlow versdo 1.0. Portanto, a definicdo da quantidade de contro-
ladores necessarios, posicionamento em relacdo aos dispositivos de encaminhamento e
granularidade de monitoramento aceitdvel podem ser estimadas e melhor abordadas pelos
sistemas de gerenciamento. Assim, pretende-se estimar o trafego de controle para que ndo
comprometa o desempenho e a disponibilidade do canal de controle e, consequentemente,
o desempenho da rede.

3. Cenario e Metodologia de Avaliacao

Nesta Secdo é apresentado em detalhes o cendrio de experimentacdao e a metodologia
utilizada para a andlise quantitativa do trafego de controle e monitoramento em redes
OpenFlow versao 1.0. As caracteristicas sobre o cendrio e as duas topologias utilizadas
na experimentagdo (estrela e arvore) sdo apresentadas na Subsecdo 3.1. Em seguida, na
Subsecdo 3.2, a metodologia utilizada para obtencdo dos resultados da andlise € apresen-
tada, incluindo métricas, parametros e fatores utilizados na experimentacao.

3.1. Cenario

O cendrio de experimentagdo inclui uma rede emulada no Mininet [Lantz et al. 2010] com
Open vSwitches operando em modo kernel e um controlador Floodlight versdo 0.90 [Big
Switch Networks 2014] gerenciando a rede como um elemento externo. Tanto a rede
emulada como o controlador Floodlight se encontram na mesma mdquina fisica em que
foram realizadas as experimentacdes. As experimentagdes foram realizadas dessa forma
para que ndo haja uma laténcia adicional entre o controlador e os switches emulados no
Mininet. Cada experimento foi realizado em duas topologias: (i) uma em estrela com
um switch, seis maquinas, um servidor de arquivos e um servidor de stream e (ii) uma
em arvore com profundidade trés e largura dois, constituida por sete switches. Assim
como a topologia estrela, a topologia em arvore € constituida por seis maquinas, um
servidor de arquivos e um servidor de stream de video. O posicionamento dos servidores
estdo localizados nas extremidades da rede. Na Figura 1 pode-se observar as topologias
utilizadas para as experimentagdes.

Para a realizacdo da coleta das informagdes relativas ao trafego de controle e mo-
nitoramento, foram necessarias modificagcdes no médulo gerenciador de estatisticas exis-
tente no controlador Floodlight. Essas modifica¢cdes foram realizadas, pois esse controla-
dor ndo possui uma maneira padrao de adquirir as informagdes relativas a estatisticas de
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Figura 1. Topologias de rede

uso do canal de controle. Uma vez realizadas tais modificacdes, é possivel tanto coletar
informacdes a respeito do trafego de dados como a respeito do trafego de controle gerado
na rede. A partir disso, foram analisadas informacoes referentes a regras instaladas nos
dispositivos, bem como o monitoramento de estatisticas nos switches da rede.

3.2. Metodologia de Avaliacao

A andlise quantitativa do trafego de controle e monitoramento em redes OpenFlow versao
1.0 é realizada considerando as métricas: (i) taxa de transferéncia média das mensagens de
monitoramento para regras instaladas nos switches (Read-State), (ii) taxa de mensagens
do tipo Packet-In processadas por segundo pelo controlador e (iii) taxa de mensagens do
tipo Packet-Out/Modify-State processadas pela rede. Essas métricas foram escolhidas com
o intuito de avaliar a quantidade de mensagens enviadas em funcdo do tempo, tanto para
mensagens enviadas para o controlador como para os dispositivos da rede. Os pardmetros
de experimentacao sdo fixados para todos os experimentos realizados e estao dispostos na
Tabela 2. Utilizando sempre os mesmos parametros nos experimentos, € possivel elaborar
variagOes de cendrios e gerar resultados que sejam comparaveis.

Toda a experimentacdo foi realizada em uma tnica maquina com sistema opera-
cional Linux Ubuntu 12.10 64-bit com processador Intel® Core"" 2 Duo CPU E8400 @
3,00GHz x 2 e 2Gb de memoédria RAM. O ambiente experimental foi emulado no Mininet
versao 2.0.0. O software Apache versao 2.2.20 foi utilizado como servidor de arquivos. O
tamanho médio dos arquivos transferidos foi configurado em 54 KB (conforme defini¢ao
do tamanho médio de uma pédgina Web [3GPP2 2004]). O software VLC media player
2.0.8 Twoflower foi utilizado como servidor de stream de video utilizando os Codecs
Advanced Systems Format (ASF) e Windows Media Video (WMV) para uma duracio do
video fixada em 2 minutos [Cheng et al. 2007]. Em ambos servidores foram utilizados
o protocolo HTTP. A largura de banda de todos os enlaces da rede foi fixada em 100
Mb e as requisi¢des dos arquivos e videos foram baseadas em uma funcido exponencial
apresentada em mais detalhes na Tabela 2 (também com base em [3GPP2 2004]).

Ja os fatores a serem variados nos experimentos compreendem: (i) o intervalo de
tempo entre monitoramentos que varia em 1, 5 e 10 segundos, (ii) tempo de ociosidade
de regras de encaminhamento (tempo que uma regra fica instalada em um switch antes de
ser descartada por inatividade) em 1, 30 e 60 segundos e (iii) as respectivas topologias (a)
e (b) apresentadas na Subsecdo 3.1. Para os experimentos relativos a0 monitoramento de
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Parametros de configuracao Valores
Tamanho médio do arquivo 54 KB
Codec de video ASF/WMV
Duracao do video 2 minutos
Protocolo de transmissdo HTTP
Largura de banda 100 Mb
Tempo entre requisi¢des Fungéo exponencial p = 30 segundos, A = 0.033

Tabela 2. Parametros de configuracao dos servidores de arquivo e video

estatisticas (mensagens Read-State) o tempo de ociosidade da regra foi fixado 5 segundos.
Com isso, se pretende mostrar como variacdes do intervalo entre monitoramentos podem
influenciar a precisdo das informag¢des obtidas da rede e o impacto dessas mensagens irdo
gerar no canal de controle. Nos experimentos realizados para instalacdo de regras de en-
caminhamento (mensagens Packet-In/Out e Modify-State) o tempo entre monitoramentos
¢ fixado em 1 segundo para obter os resultados no menor tempo possivel.

As técnicas de avaliacdo utilizadas neste trabalho s@o a modelagem analitica do
comportamento das mensagens de controle Read-State, Packet-In/Out e Modify-State e
experimentacdo para as mesmas mensagens. Para validar as experimentacdes realizadas
a modelagem analitica foi conduzida inicialmente como forma de identificar a frequéncia
e impactos das mensagens no canal de controle, a fim de, inferir o comportamento da
rede de acordo com as topologias e tamanho das mensagens. A experimentacdo foi rea-
lizada em duas topologias com o mesmo nimero de hosts, porém variando a disposi¢ao
e o ndmero de switches da rede. Além disso, o estudo foi conduzido em duas etapas: (i)
para as mensagens de Packet-In/Out e Modify-State foram variados os fatores de tempo
de ociosidade da regra e topologias e, (ii) para as mensagens de Read-State os fatores a
serem variados foram a frequéncia de monitoramento e as topologias. A realizacdo dessas
variagdes foram utilizadas, pois apresentam diferentes niveis de granularidade de moni-
toramento e expiracdo das regras instaladas nos switches. Os experimentos realizados
seguiram o design fatorial completo [Jain 2008], onde sdo realizadas todas as combina-
coes possiveis de fatores dentre os estabelecidos nas etapas (i) e (ii).

4. Analise dos Resultados

Esta secdo apresenta os detalhes sobre as experimentagdes realizadas para avaliar o com-
portamento do canal de controle para as mensagens de coleta de estatisticas (Read-State)
e de instalacdo de regras de encaminhamento (Packet-In/Out e Modify-State). Como ma-
neira de validacdo da experimentacdo foi realizada primeiramente uma modelagem anali-
tica sobre o comportamento esperado dos experimentos em relagdo a atividade da rede e
implementagdo do controlador. Posteriormente, os resultados obtidos por experimentacao
sdo apresentados e discutidos.

4.1. Modelagem Analitica

Em relag@o as mensagens do tipo Read-State, existem duas variagdes que correspondem
(i) as mensagens encaminhadas do controlador para o swifch, requisitando por estatisticas,
e (if) as mensagens do switch para o controlador, informando as estatisticas coletadas. As
mensagens enviadas do controlador para os switches sdo chamadas de Stats Request e as
enviadas dos switches de volta para o controlador sdo chamadas de Stats Reply. Com base
na andlise da especificacdo do protocolo OpenFlow € possivel estabelecer o tamanho das
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mensagens de Stats Request e Stats Reply baseado em caracteristicas dos switches (e.g.,
nimero de portas ou quantidade de tabelas) ou na quantidade de regras de encaminha-
mento instaladas nos mesmos.

Todas as mensagens do tipo Read-State possuem um mesmo cabecalho de tama-
nho fixo de 12 bytes e uma parte varidvel (corpo da mensagem) cujo tamanho depende
do tipo de estatistica requisitada ou dos dados coletados na resposta. Mensagens do tipo
Stats Request possuem tamanho previsivel correspondente ao tipo de estatistica requi-
sitada, isto €, mensagens dos tipos Individual-Flow-Request, Aggregate-Flow-Request,
Port-Request e Queue-Request incluem um corpo adicional correspondente a 44, 44, 8 e
8 bytes, respectivamente. Mensagens de Description-Request e Table-Request ndo reque-
rem mais informacdes para serem enviadas aos switches, portanto nao adicionam bytes ao
pacote.

Ja o tamanho do frame OpenFlow das mensagens Stats Reply varia tanto pelo tipo
de estatistica coletada e quanto pela quantidade de informagdes retornadas. Mensagens
de resposta de estatisticas por porta, por exemplo, incluem um corpo adicional de 104
bytes para cada porta de cada switch da rede. Assumindo que um switch ndo varia a
sua quantidade de portas ao longo do tempo (em switches virtuais isso seria possivel),
um switch de 24 portas gera sempre mensagens de Stats Reply para estatisticas de porta
de 2058 bytes. No entanto, para estatisticas individuais por regras de encaminhamento
(Individual-Flow-Stats), por exemplo, € significativamente mais complexo prever o ta-
manho das mensagens, uma vez que a quantidade de regras instaladas em cada switch
depende do trdfego gerado na rede e da 16gica de funcionamento do controlador.

Assumindo que cada fluxo de dados é uma conexdo 16gica, normalmente bidire-
cional e unicast, entre dois endpoints/hosts da rede que passa por um conjunto de dis-
positivos de encaminhamento (caminho do fluxo) e que pelo menos duas regras de en-
caminhamento precisam ser instaladas em cada swiftch para estabelecer o fluxo de dados
(regras de ida e de volta), a Equacdo 1, 2 e 3 representam genericamente a sobrecarga de
monitoramento (SM) gerada por mensagens de Stats Reply em relacdo a quantidade de
fluxos ativos em uma rede.

SM = SMr + SMy, (1)
SMF - Nswitches * (HOF + HSR) (2)
SMy =Y | > (Bodyrs*2) 3)

feF \ s€Path;

A sobrecarga de monitoramento S € dada por uma parte fixa SMp (Equagdo 2)
e uma parte variavel SMy (Equagdo 3). A parte fixa corresponde ao cabecalho padréo
do OpenFlow (Hpr) mais o cabecgalho especifico das mensagens Stats Reply (Hgg), to-
talizando 12 bytes. Esse valor € ainda multiplicado pela quantidade de switches na rede,
uma vez que cada dispositivo responderd individualmente sobre as suas estatisticas de
regras de encaminhamento (tendo ou nao regras instaladas). A parte varidvel depende da
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quantidade de fluxos ativos (conjunto F') e da quantidade de dispositivos no caminho que
esses fluxos percorrem ao longo da rede (conjunto Pathy). Sendo assim, para cada fluxo
f ativo na rede e para cada switch s no caminho de cada fluxo sdo somados os dados re-
ferentes as informacdes das regras de encaminhamento Individual-Flow-Stats (Body;rs)
para ida e volta. O tamanho de Body; s € de 88 bytes mais 8 bytes por action totalizando
96 bytes, considerando que os fluxos unicast terdo sempre apenas uma action associada.

Outro tipo de mensagem que aparece em quantidade significativa no canal de con-
trole de redes OpenFlow sdo as mensagens utilizadas para instalacdo de regras de en-
caminhamento: Packet-In, Packet-Out e Modify-State. A forma como essas mensagens
sdo utilizadas depende da implementacao das aplicagdes no controlador, mas basicamente
para imitar o comportamento de redes Ethernet, existem pelo menos trés implementagdes
possiveis [Klein e Jarschel 2013]. A primeira seria o que os autores Klein e Jarschel
chamam de Hub behavior, onde para cada Packet-In gerado por um switch é gerado um
Packet-Out que faz flood do pacote para todas as interfaces (o que € obviamente inefici-
ente). A segunda implementacdo € chamada Switch behavior, onde o controlador aprende
a localizacao dos hosts conforme recebe mensagens Packet-In, instala uma regra de enca-
minhamento com Modify-State e envia o pacote recebido seguindo essa regra para cada
Packet-In recebido de cada switch do caminho do fluxo. A terceira e mais otimizada
implementagdo € chamada Forwarding behavior. Nesta ultima, ao receber o primeiro
Packet-In para estabelecimento de um fluxo o controlador primeiramente instala as re-
gras com mensagens Modify-State nos demais switches do caminho, para depois instalar
a dltima regra no switch que gerou o Packet-In enviando o pacote com uma mensagem
Packet-Out. Obviamente, o controlador somente conseguird operar nesse modo depois de
conhecer a localizagdo dos hosts, o que deve acontecer depois que estes enviarem trafego
para a rede, até entdo o controlador terd que utilizar, por exemplo, uma implementacao
Hub behavior.

Mensagens do tipo Packet-In sdo enviadas pelos switches ao controlador sempre
que estes ndo encontram uma regra na tabela local para encaminhar um pacote recebido.
Essas mensagens sd@o compostas de um cabecalho padrao de 20 bytes mais o pacote in-
teiro recebido que € encapsulado na mensagem. Geralmente, os pacotes enviados nesse
tipo de mensagem serdo ARP ou TCP-SYN, por exemplo, que incrementardao em 42 ou
74 bytes, respectivamente no tamanho do Packet-In. A frequéncia com que novos flu-
xos aparecerdao na rede pode ser estimada estatisticamente através de modelos como os
apresentados na Tabela 2. Além disso, a geracdo de mensagens Packet-In € influenciada
pelo tempo de ociosidade das regras de encaminhamento, o que € uma configuracio feita
pelo controlador. Quanto mais longo o tempo de ociosidade das regras, menos mensagens
Packet-In devem ser enviadas ao controlador.

Mensagens dos tipos Packet-Out e Modify-State sao geralmente utilizadas em res-
posta do controlador as mensagens Packet-In enviadas pelos switches. Considerando a
implementagdo Forwarding behavior que € utilizada pelo controlador Floodlight, a Equa-
cdo 4 expressa a sobrecarga de instalacdo de fluxos (SF") gerada em uma rede OpenFlow.
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Nswitches * (Hor + Hpo + Moriginai) se host desconhecido

SF =
Y. (Hor+ Hus) | + (Hor + Hpo + Moyigina)  Se host conhecido

s€Pathy
4)

SF' é calculada diferentemente em duas situagdes. Primeiro, no caso da posi¢ao do
host destino do fluxo na rede seja desconhecido pelo controlador, este ird enviar apenas
mensagens de Packet-Out (Hor + Hpo + Moyigina) Para todas as portas de todos os
switches darede (Ngyitches) (1580 acontece assim que forem recebidas no controlador todas
as mensagens de Packet-In correspondentes), como um Hub behavior. Segundo, quando a
posicao do host é conhecida, o controlador envia mensagens Modify-State (Hor + Hys)
para cada swiftch s no caminho do fluxo Path; e envia apenas uma mensagem Packet-Out
(Hor + Hpo + Morigina) de volta ao switch que originou o primeiro Packet-In. Em
geral, esse procedimento ocorrerd uma vez para o estabelecimento do caminho de ida do
fluxo. No caminho de volta o host destino ja serd conhecido pelo controlador (j4 que ele
originou o primeiro pacote), sendo assim, serd necessario apenas mais uma execucao do
caso onde o host é conhecido.

Vale ressaltar que o custo das mensagens Packet-In ndo esta incluido no célculo
de SF' — assim como os custos das mensagens Stats Request ndo estavam em SM — uma
vez que representam trafego em sentidos diferentes no canal de controle. No entanto,
estimar os valores de sobrecarga de Packet-In para as duas situagdes € trivial. No caso da
posicao do host destino do fluxo na rede seja desconhecido pelo controlador, serdo geradas
uma mensagem Packet-In para cada switch e ja quando a posi¢ao do host € conhecida, é
enviada uma mensagem Packet-In apenas. Também € importante salientar que nao foram
considerados nos cdlculos apresentados a sobrecarga adicional de transporte. O canal de
controle OpenFlow possui diversas configuracdes possiveis de transferir dados, incluindo
TCP, UDP, SSL, o que ocasiona ainda mais sobrecarga tanto de trafego de rede quanto de
processamento por parte do controlador e dos demais dispositivos da rede.

4.2. Resultados Experimentais

Os resultados da experimentacao apresentam informagdes relevantes tanto para as mensa-
gens de instalag¢do de regras de encaminhamento (etapa (i), mensagens de Packet-In/Out e
Modify-State) como para as mensagens de monitoramento de estatiticas (etapa (ii), men-
sagens de Read-State). Para fins comparativos, a modelagem analitica foi utilizada como
baseline para a situacdo onde existe a maior sobrecarga de mensagens na rede, dado os
parametros da experimenta¢do em cada uma das duas topologias.

As Figuras 2(a) e 2(b) apresentam o comportamento das mensagens Packet-In/Out
e Modify-State para as topologias de estrela e drvore respectivamente. O comportamento
das mensagens Packet-In/Out e Modify-State apresentam grandes variagdes durante o pe-
riodo do experimento. Variacdo que acontece pelo fato dessas mensagens s6 ocorrem
na rede quando os fluxos sdo iniciados e os switches ndo possuem regras instaladas ou
quando as regras para um determinado fluxo expiram baseadas em um tempo limite de
ociosidade da regra instalada no switch. Devido a essas variagdes, com 90% de confianca
€ possivel afirmar que para ambas as topologias a taxa de transferéncia das mensagens
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do tipo Packet-In enviadas para serem processadas no controlador diminuiu significativa-
mente conforme aumenta o tempo limite de ociosidade da regra instalada expirar. Isso
indica que em redes onde as regras sao acionadas mais frequentemente, por exemplo com
intervalo de menos de 30 ou 60 segundos, ndo € necessdria a desinstalacdo imediata das
regras de encaminhamento quando o fluxo fica inativo por 1 segundo.

As mensagens de Packet-Out e Modify-State obedecem a mesma variacdo das
mensagens Packet-In, porém, sdo enviadas em direcdo dos dispositivos de encaminha-
mento ao invés do controlador. De acordo com a experimentacgao, € possivel afirmar com
90% de confianga para ambas as topologias a taxa de mensagens do tipo Packet-Out e
Modify-State ocorrem com mais frequéncia de acordo com o tempo limite de ociosidade
da regra instalada no switch. Isso indica que em ambientes onde as regras sdo acionadas
com frequéncia nao € necessdria a desinstalacdo da regra imediatamente, podendo causar
sobrecarga de mensagens de controle desnecessdrias no canal de controle.
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Figura 2. Taxa de transferéncia das mensagens Packet-It e Packet-Out/Modify-State de acordo com o
tempo limite de ociosidade das regras para as topologias de estrela e arvore

Uma vez compreendido o comportamento dos usudrios na rede e conhecendo a
topologia pode se estimar o caso onde existe a maior sobrecarga de mensagens Packet-In
para o controlador. A partir da modelagem analitica pode ser mensurado o impacto das
mensagens no canal de controle para o caso onde tempo limite de ociosidade das regras
seja quase que imediato (1 segundo). Nas Figuras 2(a) e 2(b) € possivel perceber que as ta-
xas de transferéncia para os resultados analiticos se mantém estdveis para todos os tempos
de ociosidade. Isso ocorre pois a modelagem ndo levou em consideragdo esses tempos,
estimando um caso onde as regras sempre expiram antes da préxima comunicacio entre
dois hosts. A partir desses resultados, € possivel afirmar que é necessario o conhecimento
a respeito do comportamento dos fluxos gerados na rede para ndo gerar pacotes desne-
cessarios ao controlador nem manter regras inativas instaladas desnecessariamente nos
dispositivos de encaminhamento.

A Figura 3 apresenta o comportamento da taxa de pacotes por segundo das mensa-
gens do tipo Packet-In/Out para as topologias de estrela e arvore. Foram calculadas tam-
bém as taxas de 0.17, 0.113, 0.005 e 0.33, 0.22 e 0.008 pacotes por segundo de mensagens
Packet-In processadas no controlador nas topologias de estrela e drvore respectivamente.
Para as mensagens de Packet-Out e Modify-State foram calculados 0.5, 0.3, 0.17 e 1.5,
0.728, 0.33 pacotes por segundo enviados em direcdo dos switches também para as topo-
logias de estrela e drvore. Valores que em primeiro momento nao demonstram relevancia,
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porém, devido aos 6 switches mais que a topologia em arvore apresenta, a taxa de paco-
tes por segundo processados pelo controlador aumenta em 51,5%, 51,4% e 62,5% para
as mensagens do tipo Packet-In nas trés variagdes do experimento. Para as mensagens
Packet-Out e Modify-State as varia¢des ficam em torno de 33.3%, 41.2% e 51,1% de au-
mento, devido a topologia com maior nimero de switches. Assim, pode-se afirmar que o
numero de switches impacta diretamente na sobrecarga de mensagens Packet-In enviadas
ao controlador, ainda que, a modelagem analitica ndo tenha como prever problemas como
pacotes fora de ordem e retransmissdes, os quais podem ocasionar em mais chegadas de
mensagens Packet-In no controlador.

1.6 T
Pkt-in (Estrela) £coood
o 1.4 - Pkt-in (Arvore) === |
° ’ Pkt-out+Mod-St (Estrela) =——3
5 Pkt-out+Mod-St (Arvore)
(7]
g 10 .
(%]
]
® 08 i
[%)]
(%2}
o
E 06 I -
o
8 o4 .
o
@
& o2l , H . . i
| -

1 30 60
Tempo limite de ociosidade das regra (segundos)

Figura 3. Taxa de pacotes processados por segundo de mensagens Packet-In, Packet-Out/Modify-
State de acordo com o tempo limite de ociosidade das regras para as topologias de estrela e arvore

A Figura 4(a) e 4(b) apresentam os resultados para a taxa de transferéncia de men-
sagens Stats-Reply para as topologias de estrela e drvore, respectivamente. Se tratando das
mensagens para monitoramento de estatisticas (Read-State), os resultados apresentaram
que para 95% de confianca existe pouca variabilidade na taxa de transferéncia média dos
pacotes de estatisticas coletados. As mensagens de request nao foram exibidas em grafi-
cos, pois sao fixas e podem ser facilmente calculadas de forma similar ao célculo de SMp
jé explicadas pela Equagdo 1. As mensagens de reply dependem do nimero de regras
instaladas nos switches da rede e essa variabilidade impacta no tamanho das mensagens
recebidas pelo controlador.

StaltS-RepIy (Experi;ﬂental) Stafs-RepIy (Experir‘nental) ERRXXR]
5000 - Stats-Reply (Analitico) Stats-Reply (Analitico)
20000

4000

15000

3000

10000

2000

5000

1000

Taxa de transferéncia (bits/s)
Taxa de transferéncia (bits/s)

R
s e
SIS

K

1 5 10 1 5 10
Frequéncia de monitoramento (segundos) Frequéncia de monitoramento (segundos)
(a) Topologia em estrela (b) Topologia em arvore

Figura 4. Taxa de transferéncia para mensagens de Stats-Reply de acordo com a frequéncia de
monitoramento para as topologias de estrela e arvore
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Além do numero de regras instaladas nos switches da rede, que impacta no ta-
manho das mensagens, o nimero de switches a serem consultados também influencia no
desempenho do controlador. Para a topologia em arvore por exemplo, o envio e rece-
bimento de mensagens de monitoramento € 6 vezes maior do que na topologia estrela,
pois o controlador precisa enviar uma mensagem de request e recebe uma reply de cada
switch da rede. Escalando para topologias maiores como de data centers por exemplo, o
impacto e frequéncia do monitoramento pode ser maior, comprometendo a comunicac¢ao
entre controlador e dispositivos de encaminhamento. A partir desse estudo pode se afir-
mar que a frequéncia do monitoramento pode afetar significativamente dependendo do
nimero de dispositivos de encaminhamento na rede. Além disso, deve-se avaliar a possi-
bilidade de realizar o monitoramento direcionado ao um conjunto menor de dispositivos
de mais interesse, evitando uma possivel coleta desnecesséria.

5. Conclusoes e Trabalhos Futuros

Neste trabalho foi discutido acerca da centralizacdo e distribuicdo da légica de controle
no contexto de SDN e OpenFlow. Partindo dessa discussdo, foram apresentadas solugdes
que resolvem problemas relacionados aos gargalos gerados pela centraliza¢do do controle
da rede proposta no contexto do protocolo OpenFlow. Porém, ndo sdo quantificados o
custo e nem a frequéncia em que tais gargalos podem ocorrer. Portanto, devido a auséncia
de um estudo quantitativo acerca das mensagens de controle utilizadas nesse contexto,
foi proposta uma anélise para as mensagens que aparecem mais frequentemente no canal
de controle em redes OpenFlow. A andlise foi constituida de (i) uma modelagem anali-
tica, para identificacdo do comportamento das mensagens (Packet-In/Out, Modify-State e
Read-State) trocadas entre controlador e switches na rede e; (if) a experimentacao em duas
topologias distintas, variando frequéncia de monitoramento e tempo limite de ociosidade
das regras instaladas nos dispositivos de encaminhamento.

Os resultados da andlise realizada mostram que as mensagens de instalagdo de
regras de encaminhamento Packet-In/Out e Modify-State possuem um comportamento
dependente da implementagdo das aplicagcdes realizadas no controlador, por exemplo, do
tempo limite de ociosidade das regras. J4 as mensagens de coleta de estatisticas (Read-
State) sdo influenciadas principalmente devido a quantidade de dispositivos monitorados
e pela frequéncia em que sdo monitorados. A modelagem analitica apresenta as equacoes
para estimar a sobrecarga gerada pela transmissdo das mensagens de controle assumindo
que a rede ndo possui atrasos nem retransmissdes. Fato que explica os resultados apresen-
tados, onde todos os valores calculados analiticamente sdo superiores aos experimentais.
Com base na andlise apresentada, espera-se contribuir para o projeto e desenvolvimento
de novos sistemas de gerenciamento de redes baseadas no paradigma SDN e OpenFlow.

Como trabalhos futuros pretende-se expandir os experimentos acerca das topolo-
gias abordadas, variando tanto o ndmero de switches da rede como o nimero de hosts.
Fatores como a frequéncia de monitoramento podem ser explorados em maior escala, a
fim de estabelecer uma relacio entre a sobrecarga gerada na rede e a precisdo dos dados
obtidos sobre os fluxos monitorados. Também pode ser expandida a andlise para outras
versdes do protocolo OpenFlow utilizando niveis de prioridades, além de instalacdo de
regras mais genéricas ou mais especificas. Por fim, além desses aspectos pretende-se rea-
lizar novos experimentos em uma rede com switches reais a fim de que se possa analisar o
limite de processamento das regras instaladas e monitoradas através do canal de controle.
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Abstract—Software-Defined Networking (SDN) is an emerg-
ing paradigm that arguably facilitates network innovation and
simplifies network management. However, in the context of
SDN, management activities, such as monitoring, visualization,
and configuration can be considerably different from traditional
networks. An SDN controller, for example, can be customized
by network administrators according to their needs. Such cus-
tomizations might pose an impact on resource consumption
and traffic forwarding performance, which is difficult to assess
without an SDN-devoted management system. In this paper, we
initially present an analysis of control traffic in SDN aiming to
better understand the impact of the communication between the
controller and forwarding devices. Afterwards, we propose an
interactive approach to SDN management through monitoring,
visualization, and configuration that includes the administrator
in the management loop. To show the feasibility of our approach
a prototype has been developed. The results obtained with this
prototype show that our approach can help the administrator
to better understand the impact of configuring SDN-related
parameters on the overall network performance.

I. INTRODUCTION

Software-Defined Networking (SDN) is an emerging par-
adigm that enables network innovation based on four funda-
mental principles: (i) network control and forwarding planes
are clearly decoupled, (ii) forwarding decisions are flow-based
instead of destination-based, (ii7) the network forwarding logic
is abstracted from hardware to a programmable software layer,
and (iv) an element, called controller, is introduced to coordi-
nate network-wide forwarding decisions [1]. SDN is grabbing
the attention of both academia and industry, since it allows
the easy creation of new abstractions in networking, simpli-
fying management, and facilitating network innovation [2]. In
this sense, SDN reduces or even eliminates some traditional
network management problems, such as enabling network
configuration in a high-level language or providing support
for enhanced network diagnosis and troubleshooting [3].

Monitoring, visualization, and configuration are funda-
mental management activities to understand and control the
network behavior [4] [5] [6] [7] [8]. In the context of SDN,
these activities can be considerably different than in traditional
networks, thus deserving proper attention [9]. For example,
the behavior of an SDN controller can be customized by
network administrators according to their needs. However,
these controller customizations might impact in terms of
resource consumption and traffic forwarding performance. As
a consequence, such impact is difficult to assess because
traditional network management solutions were not designed
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to cope with the context of SDN. Therefore, an SDN-tailored
management system must be able to help the administrator
to understand and control how the SDN controller behavior
affects the network.

The state-of-the-art in SDN has addressed monitoring for
different purposes [10] [11] [12] [13] [14]. Most of these
investigations are focused on proposing anomaly detection
systems or mechanisms to establish a balance between control
channel overhead and accuracy of collected information. These
investigations tend to employ monitoring information to auto-
matically adapt the network to specific conditions. However,
to the best of our knowledge, no solution is available to
integrate monitoring information with interactive visualization
and configuration tools for SDN. We argue that with such a
solution the administrator could better understand and interact
with the network, significantly improving everyday tasks of
SDN management.

In this paper, we initially perform an analysis of the control
traffic in SDN to understand the overall impact in terms
of resource consumption and network performance resulted
from the communication between the controller and network
devices. Based on this analysis, we propose an interactive
approach to SDN management through monitoring, visualiza-
tion, and configuration. Our goal is to include the adminis-
trator in the management loop, where SDN-specific metrics
are monitored, processed, and displayed in interactive visu-
alizations. Thus, the administrator is able to make decisions
and configure/reconfigure SDN-related parameters according
his/her needs. Our main contribution is to integrate these three
activities allowing the administrator to easily understand and
control the network.

To emphasize the feasibility of our approach, we developed
a prototype that uses the OpenFlow protocol [15], currently
the most relevant SDN implementation. Our prototype is able
to: (i) perform monitoring with configurable polling intervals
specifically focused in metrics related to resource usage and
control channel load, (ii) present aggregated statistics in in-
teractive visualizations that emphasize these metrics, and (iii)
support the configuration of network parameters that affect
the analyzed metrics. To evaluate our approach, we use the
Floodlight controller [16] and a campus network scenario em-
ulated over Mininet [17]. Our results show that, by interacting
with visualizations, the administrator is able to adjust the
network, improve the controller configuration, and thus reduce
the resource consumption and control channel usage.



The remainder of this paper is organized as follows.
In Section II, we provide a brief description of the main
background concepts associated with our approach and related
work. In Section III, we present an analysis of control traffic in
OpenFlow-based SDN. In Section IV, we present our approach
in detail and our developed prototype. In Section V, we present
the evaluation of our proposed approach. Finally, in Section VI,
we conclude the paper with final remarks and perspective for
future work.

II. BACKGROUND AND RELATED WORK

This section provides a brief overview of the main back-
ground concepts required by our proposed approach to inter-
active SDN monitoring, visualization, and configuration.

A. Related Work

Currently, many investigations consider using monitoring
information obtained with the OpenFlow protocol for different
purposes. Zhang [10] proposed the use of monitoring messages
to develop algorithms for anomaly detection systems based on
methods for statistics information collection. Jose et al. [13]
used the same monitoring messages to propose mechanisms for
online measurement of large traffic aggregates, which can be
used for both anomaly detection and traffic engineering. Yu et
al. [11] proposed FlowSense, which is aimed to keep the lowest
control channel overhead and the highest information accuracy
as possible in OpenFlow monitoring. FlowSense, however,
uses only Asynchronous messages of the OpenFlow protocol
to collect statistics information (further detail on the message
types are presented in Section II-B). Although FlowSense
introduces zero cost in the monitoring process, the statistics
information may be inaccurate in the case where OpenFlow
messages received by the controller are too sparse.

Chowdhury et al. addressed SDN monitoring from a dif-
ferent perspective. The authors proposed a framework, called
Payless [12], able to deal with monitoring considering the
polling frequency and data granularity. This framework is able
to adjust the polling frequency to balance the control channel
overhead, imposed by monitoring messages, and accuracy of
monitored information. Payless relies on OpenTM [14] to
select only important switches to be monitored, also aiming
to reduce the overhead imposed in the control channel. The
authors employed a modularized architecture with an algorithm
to set the polling frequency for monitoring a set of selected
switches. Therefore, it is possible to extract just the relevant
information while keeping the control channel overhead low.

The aforementioned proposals are focused on the use of
monitoring information to automate tasks, such as reducing
control traffic overhead and protecting the network. No pre-
vious investigation aims to employ monitoring information
to help the administrator understanding the network behavior
nor interact with it. To the best of our knowledge, there are
no solutions that leverage OpenFlow monitoring messages
to create network visualizations and address the interactive
configuration of SDN-related parameters. Before presenting
how we approached such a problem, we review in the next sub-
sections key aspects of OpenFlow, focusing on its messages
and on the OpenFlow controller behavior. Reviewing this
aspects is important because they are central to our solution.
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B. OpenFlow Brief Background

To establish flow paths over a network, an OpenFlow
controller adds and removes forwarding rules in network
switches. An OpenFlow forwarding rule is composed of a
match of packet header fields, e.g., source and destination IP
addresses, and a set of actions to be performed, e.g., forward
or drop a packet. The OpenFlow specification also defines that
an OpenFlow switch is composed of (i) a flow table to store
forwarding rules, (ii) a secure communication channel with the
controller, and (iif) the OpenFlow protocol itself.

OpenFlow version 1.0, which is considered in this pa-
per, defines three message types: (i) Controller-to-switch, (ii)
Asynchronous, and (iii) Symmetric [18]. Controller-to-switch
messages are initiated by the controller and are used to manage
or inspect the state of OpenFlow switches. Asynchronous
messages are initiated by the switch and are used to send
notification of network events and changes to the controller.
Symmetric messages can be initiated by either the controller
or switches and are mainly used for network bootstrap, latency
measurement, and to keep alive the control channel. Each of
these message types is composed of multiple sub-types that
are used for specific network coordination actions.

Some of the main message sub-types defined by the
OpenFlow specification are: Modify-State and Flow-Removed
to install and remove rules on forwarding devices; Send-Packet
to send a packet to a specific switch port; and Packet-In, to
notify the controller when a switch receives a packet that does
not match with a forwarding rule entry in the switch flow
table. Another message sub-type that is used by monitoring
solutions to retrieve statistics from switches is Read-State. As
a result, the OpenFlow specification enables both the config-
uration of forwarding devices and monitoring traffic statistics.
Nevertheless, the OpenFlow specification does not state how
messages should be used to actually manage an OpenFlow-
based network. It is on the account of the administrator to
understand the OpenFlow specification and the controller’s
behavior, and then decide how OpenFlow can be employed
to accomplish everyday management tasks.

C. Controller Behavior

OpenFlow messages are used to coordinate forwarding
devices in different ways, depending on the controller behavior
implementation. Three well known controller behaviors that
affect the installation of forwarding rules and, consequently,
the network operation are: Hub, Switch, and Forwarding [19].
Throughout this paper, we adopted the Forwarding behavior
because it is the most sophisticated out of these three men-
tioned behaviors, presenting a lower control overhead.

An example of how the Forwarding behavior coordinates
rule installation between Source Host and the destination File
Server is depicted in Figure 1. First, when Source Host sends
a data packet to Switch A (1), this switch checks whether there
is a forwarding rule entry matching this packet’s header fields
in the flow table. If the header fields match with an entry, the
corresponding actions should be applied to this data packet,
e.g., forward or drop. However, if no match exists, by default,
Switch A generates a Packet-In message to the controller (2).
Upon receiving the Packet-In, the controller calculates the
flow path and sends a set of Modify-State messages to install
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forwarding rules in all switches in the path between source and
destination, except to Switch A (3). Afterwards, the controller
sends Send-Packet and Modify-State messages to Switch A that
originated the Packet-In (4). Finally, once all forwarding rules
are installed on switches, the data packet is sent through the
flow path (5) to the destination.

Flow path OpenFlow Controller

— — Packet-In
........ Send-Packet
— - - = Modify-State

|

§.

File Server

Switch A Switch B Switch C

Source Host

Fig. 1. OpenFlow controller Forwarding behavior example

A few extra points need to be clarified regarding the
Forwarding behavior. First, the example in Figure 1 assumes
that the location of the destination File Server is known by the
controller in advance. In practice, before every host originates
traffic, the controller will generally need to discover these
locations by flooding the network. Also, the controller does
not guarantee that rule installation messages, i.e., Modify-
State, arrive in switches properly ordered, since these messages
can be sent in parallel. Thus, if Modify-State messages do
not arrive in the switch before the data packet, extra Packet-
In messages will be generated and sent to the controller. In
addition, the controller behavior does not orchestrate how
Read-State messages are used by either the controller or
forwarding devices. As such, a monitoring solution is still
required alongside the OpenFlow controller to fill this gap and
help in managing OpenFlow-based networks.

III. CONTROL CHANNEL ANALYSIS

In this section, we provide an analysis of the control
channel traffic load of OpenFlow 1.0 messages, emphasizing
those messages that occur most frequently in our scenario of
study. In sub-section III-A, we present the motivation and the
methodology of analysis. In sub-section III-B, we detail the
scenario and the workload used in our case-study. Finally, in
sub-section III-C, we explain and discuss the analysis.

A. Motivation and Methodology of Analysis

OpenFlow-based SDN introduces a simple way to develop
and maintain communication networks because of its central-
ized logic of controlling forwarding devices. However, this
simplicity may allegedly impose high cost on the network
controller and create bottlenecks at the control channel [20].
Recent solutions, such as Devoflow [21] and DIFANE [22],
attempted to alleviate these bottlenecks by distributing the
control logic of OpenFlow. Nevertheless, to the best of our
knowledge, no other study has detailed in which situations
such bottlenecks appear and whether they can or cannot be
mitigated or even avoided by simple configuration, i.e., without
the need to develop a specific distributed controller. Therefore,
in our analysis, we initially quantify the load of OpenFlow 1.0
control messages that appear most frequently in our specific
scenario of study. Afterwards, we also point out configuration
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parameters that can influence this load and may be set to reduce
the chance of bottlenecks in the control channel.

Our analysis is divided into two perspectives of resource
consumption: (i) control channel load related to installation
of rules on forwarding devices (Packet-In, Modify-State, and
Send-Packet) and request/reply messages for monitoring flow
statistics (Read-State); and (ii) resource usage in terms of
forwarding rules, active and idle, installed on network devices.
These four sub-types of messages have been selected because,
in our scenario of study, they represent the absolute majority
of control traffic (accounting for 97.78% of the number of
messages exchanged between the controller and forwarding
devices, and 99.70% of the overall control traffic). Further-
more, regarding resource usage, the amount of rules installed in
switches’ expensive and limited Ternary Content-Addressable
Memories (TCAM) needs to be carefully managed to avoid
network devices running out of resources [21].

The metrics we analyze for control traffic load are: (i) bit
rate and number of messages per second for monitoring, (if)
bit rate and number of messages for rule installation processed
on the controller, and (iii) bit rate and number of messages for
rule installation processed by network devices. The analyzed
metrics for resource usage on forwarding devices are: (i) the
total number of installed forwarding rules and (if) the amount
of those installed forwarding rules which are idle, i.e., counters
unchanged between two monitoring intervals.

B. Case-study: A Campus Network

To conduct our control channel analysis and also to eval-
uate our approach to SDN management (later discussed in
Section V), we have chosen to use campus network scenario
inspired in our own university premises. This type of network
infrastructure is well suitable to benefit from features of SDN
with OpenFlow, which has actually been originally conceived
for this type of scenario [15]. Our emulated campus network
consists in 11 OpenFlow switches connecting 230 hosts from
laboratories and administration offices forming the topology
shown in Figure 2. Each switch of the network is connected
through a dedicated channel to a remote controller. More
specifically, a centralized Floodlight v0.90 controller is set to
coordinate network-wide forwarding decisions.

Floodlight Controller

Web Server Video Server

Fig. 2. Campus network topology
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The general prevalent traffic profile of users is character-
ized by everyday Internet surfing and access to the university’s
virtual learning environment. We model user behavior to
generate emulated Internet traffic based on several previous
studies [23] [24] [25] [26] [27]. Table I summarizes the
main parameters used to emulate user traffic profile during
experimentation. In this experiment we generate only video
and Web traffic, in a proportion of 75% to 25% respectively.
Given the size of requests, i.e., video streams generate more
traffic than Web requests, we selected one user to place video
requests for every 6 Web users. We include in the campus
topology one Web Server and one Video Server to respond to
users’ requests, so that we are able to control precisely the size
of responses (in a real campus network these requests would
normally go through a gateway or proxy). We also assume that
all 230 hosts are active during the whole experiment time and
place a request in average every 30 seconds.

TABLE 1. CONFIGURATION PARAMETERS OF USER TRAFFIC PROFILE

Parameter Value
Web request size Lognormal Distribution (u = 11.75, ¢ = 1.37)
Mean: 324 KBytes, Std. Dev.: 762 KBytes
Exponential Distribution (A = 0.033)
Mean: 30 seconds
180 seconds
300 kbps

User reading time

Video watch time
Video bit rate

Traffic Mix Video: 75%, Web: 25%
User Mix 1 video user for every 6 Web users
Monitoring Polling frequency: 5 seconds

Controller behavior
Experiment duration

Floodlight’s default Forwarding Behavior implementation
30 min

The experimentation workload was emulated on Mininet
in one Dell PowerEdge R815 with 4 AMD Opteron Processor
6276 Eight-Core processors and 64GB of RAM server.

C. Experiments & Discussion

To understand the variations of control traffic, we choose to
vary only one factor present in any OpenFlow-based network,
which is the idle timeout of forwarding rules. This factor
indicates when an entry of the flow table of an OpenFlow
switch, i.e., a forwarding rule, can be removed due to a lack
of activity. The default idle timeout (in seconds) is configurable
in the Floodlight controller and is applied for every new
forwarding rule installed. Figures 3, 4, and 5 show how the
idle timeout configuration affects both the control channel load
and resource consumption. Moreover, to analyze Read-State
messages, we fixed the polling frequency in 5 seconds to
understand how the variation in size (not frequency) of these
messages impacts control traffic, specially related to the size of
Read-State (Reply) messages which contain per flow statistics.
All experiment samples were sized so to achieve a 95%
confidence and an error no higher than 2%. We suppressed
error bars from Figures 4 and 5 for the sake of visualization.

Figure 3 shows how the control traffic load (in Kbps)
varies as the idle timeout increases. The height of each bar
shows the total control traffic in both directions, i.e., from
the controller to the network (Send-Packet, Modify-State, and
Read-State (Request)) and form the network to the controller
(Packet-In and Read-State (Reply)). It is clear to notice that the
average traffic of Read-State requests remains constant, while
Read-State reply traffic increases significantly. This happens
because Read-State replies contain forwarding rule statistics,
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thus as the idle timeout increases so does the chance of a given
forwarding rule being installed at a switch in each monitoring
poll. However, Packet-In, Send-Packet, and Modify-State traffic
decreases in average as the idle timeout increases. This happens
because all these messages will appear mostly if users remain
inactive for a period longer than the configured idle timeout,
which is fairly unlikely to happen for long idle timeout values.

140

‘ Sen‘d-Pack‘et Iil -
Modify-State Rz o

120 - Read-State (Request) M A
m Packet-In Cz—2 —
g Read-State (Reply) =1 il
= 100 +~ .
o
©
S 8ot 8
°
2
15
g 60 [ .
5
s
£ 40 .
(s}
o

20 o

0 7@ | = ]
1 5 10 15 20 30 40 50 60 90 120
Rule idle timeout (seconds)
Fig. 3. Control channel load vs. idle timeout configuration

Figure 4 shows the number of packets processed per second
by both the controller and network devices. Similar to Figure 3,
this chart also shows in the total bar height an accumulated
value, i.e., the number of messages flowing in each direction.
Mainly, the results in Figure 4 show that when the rule
idle timeout configuration is set to low values, the average
of Packet-In generated to the controller direction and Send-
Packet/Modify-State messages sent to network devices both
increase. Most importantly, the administrator needs to watch
over this configuration to avoid bottlenecks at the controller.
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Fig. 4. Packets processed per second vs. idle timeout configuration
Figure 5 shows the total number of forwarding rules and
which of those are idle for a given idle timeout configuration.
A forwarding rule is idle when its counters do not change
between two monitoring polls. The results show that increasing
the idle timeout value causes a larger number of idle rules
installed in switches. This occurs because the user traffic
profile of most users generates sparse and short-lived requests
(e.g., Web requests). Considering our scenario, when the idle
timeout is set to 120 seconds, for example, the average rules
installed in the network is about 1042, being 77% of these rules
inactive. Given that the switches’ TCAM are an expensive
resource to be wasted and the number of rules that can be
stored in these memories is limited, it is important to control
this configuration closely to avoid running out of resources.
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In summary, this analysis shows how a single factor
configured at the controller can significantly affect the control
channel traffic and resource consumption of an OpenFlow-
based network. It is important to mention that we discovered
a hard limit to collect statistics with Read-State messages on
the controller implementation (in our experiment this limit was
682 rules). Thus, when a switch has more installed rules than
the controller supports, collected statistic can be inaccurate.

IV. AN APPROACH TO INTERACTIVE SDN MANAGEMENT

In this section, we present our interactive approach to
SDN management through monitoring, visualization, and con-
figuration. First, in Section IV-A we detail components and
how our approach lines up with the general SDN conceptual
architecture. Second, in Section IV-B we present our prototype
implementation and the extensions developed on the Floodlight
controller to support advanced control channel management.

A. Conceptual Architecture

Figure 6 shows the SDN architecture along with the
components added to enable management via monitoring, visu-
alization, and configuration. To introduce concepts didactically,
we organize the explanation in two steps. First, we detail the
SDN architecture. Second, we explain all components of our
approach and how the Administrator can interact with them.

Adminstrator

C GUI D

Network applications and services

5 SDN Interactive Manager
"2

L “=r Configuration Visualization
(&“‘ Manager Manager
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U - Chart
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Fig. 6. Conceptual Architecture

Forwarding
Plane
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Overall, SDN introduces an architecture with four planes:
management, application, control, and forwarding [28]. All
planes communicate with each other through interfaces. For
example, the management plane uses a set of Management In-
terfaces (MI) to exchange information and to control elements
in other planes. In addition, an interface called northbound API
establishes bidirectional communication between application
and control planes, while the southbound API does the same
for control and forwarding planes. Ideally, all these interfaces
should be standardized to allow easy replacement of devices
and technologies. In practice, the OpenFlow protocol is the
current de facto standard southbound API. All other interfaces
are undergoing discussion and development.

Conceptually, each of the four planes has a set of specific
functions that need to be fulfilled, as following explained:

e Management Plane: is responsible for managing
elements in other SDN planes (e.g., monitoring de-
vice status, allocating resources, and enforcing access
control policies).

e  Application Plane: contains one or more applications
that can serve several different purposes (e.g., firewall,
circuit establisher, and load balancer). Each of these
applications are granted with access to a set of re-
sources by one or more SDN controllers.

e  Control Plane: contains one or more controllers that
coordinate network devices. At least an SDN con-
troller needs to execute the requests coming from the
application plane. Commonly, these controllers also
include internal logic to handle network events and
make traffic forwarding decisions (e.g., the aforemen-
tioned hub, switch, and forwarding behaviors).

e Forwarding Plane: comprises a set of simple for-
warding elements with transmission capacity and traf-
fic processing resources. The notion of keeping for-
warding elements simple and making decisions at
higher software layers is central in SDN.

In this paper, we propose a solution called SDN Interactive
Manager that includes three main components: Monitoring
Manager, Visualization Manager, and Configuration Manager.
The SDN Interactive Manager sits in the management plane of
SDN alongside other existing or yet to be developed solutions.
Since our approach to SDN management comprises interactive
network management, we also depict in the architecture the
Administrator who interacts primarily with the Visualization
Manager and the Configuration Manager components through
a Graphical User Interface (GUI). Therefore, our solution
creates a loop of activities by integrating these components
with the Administrator interactions. Each of these components
performs independent tasks described as follows.

Monitoring Manager — This component is responsible for
retrieving updated information about the network and storing
it in a local Database. This is performed mainly through
a module called Infrastructure Synchronizer, which collects
information, such as traffic statistics, network topology, and
device data, by accessing an MI to one or more controllers
situated in the control plane. Currently, there is no standard
MI, though we envision that such interface could present at
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least the same functionality as the northbound API. Also, cus-
tomizations in this API could be added to support information
relevant to network management (e.g., control traffic counters
and resource usage data). Then, the Infrastructure Synchro-
nizer module stores both control and data traffic statistics,
maintaining a history of network changes and SDN-related
configurations performed by the Administrator.

Visualization Manager — This component comprises the
Statistics Processing and Chart Visualizations modules. With
information stored in the Database, the Statistics Processing
module is able to aggregate data per host, switch, controller, or
even the entire network to be used by the Chart Visualizations
module. Furthermore, the Statistics Processing module is also
able to identify which rules are active and which are idle on
forwarding devices. To build interactive visualizations that can
be analyzed by the Administrator, the Chart Visualizations
module uses a rich library of interface components (e.g.,
graphs, charts, and diagrams) that enables data updates in real
time. Then, based on these visualizations, the Administrator
can be aware of possible issues or bottlenecks and plan for
adjustments and improvements in the network configuration.

Configuration Manager — This component allows the
Administrator to check and configure SDN-related parameters
on network controllers through the MI. The Floodlight Adapter
module permits setting up the polling interval for monitoring
network devices through a friendly GUI. Moreover, through
the same GUI, the Administrator can trigger the Floodlight
Adapter module to set the idle timeout to be configured
globally, per device, or per flow. All SDN-related parameter
configurations on the controller are performed using an exten-
sion of the northbound API implementation that is embedded
in MI between management and control planes.

B. Prototype Implementation

We designed our prototype as a modular application with
independent and integrated functionalities for SDN monitoring,
visualization, and configuration. We followed the Model-View-
Template (MVT) design pattern and we chose Python 2.7 with
Django 1.6 [29] as development framework. The Database to
store network devices information as well as traffic statistics
has been implemented as Django Models. Each of monitoring,
visualization, and configuration functionalities were developed
as Views and the GUI as Templates. Moreover, we also
integrated our prototype with Floodlight, which is a Java-based
SDN controller, supported by a community of developers and
engineers of Big Switch Networks [16]. As a consequence
of our unusual requirements, we had to implement a module
for the Floodlight controller to support advanced management
features, such as reporting control traffic statistics and dynam-
ically configuring the idle timeout of forwarding rules.

Regarding the Monitoring Manager component, our im-
plementation focused on periodically updating network in-
formation to the Database. For this purpose, we used the
RESTful API provided by the Floodlight controller. From
this API one is able to access information about the physical
topology, including links, switches, and hosts. Moreover, the
Monitoring Manager also gathers data traffic counters of every
rule installed on each switch of the topology. However, by
default, the Floodlight controller does not address control
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traffic counters. Therefore, we developed a module for Flood-
light controller, which we called Control Statistics Aggregator,
to gather these counters and extended the RESTful API to
report them. The Control Statistics Aggregator module watches
control channel connections to inspect and count OpenFlow
messages generated either by the controller or switches. This
module gathers all these control messages, keeps separated
counters (number of packets and packet lengths) by device,
message type, and sub-type.

The Visualization Manager component is implemented
as a Web based application relying mainly on the D3.js
library [30]. The major purpose of this component is to provide
an interactive way for the administrator to understand the
current network status and visualize the impact of his/her
configurations in real time. Thus, as the network is periodically
monitored by the Monitoring Manager component, visualiza-
tions are updated in the same pace. The integration between
these two components allows our prototype to display network
visualizations, such as: topology view with intuitive hints on
where resource bottlenecks might be occurring, charts of idle
and active rules installed on forwarding devices, amount of
OpenFlow messages flowing in control channels, and the traffic
rate these messages generate.

The implementation of the Configuration Manager aims
to provide an easy way for the Administrator to change the
network configurations through the same GUI where visualiza-
tions are displayed. For that purpose, we developed a module
as an extension of the Floodlight default RESTful API so
that configuration parameters can be sent from our prototype
to the controller. Our prototype currently supports only the
configuration of the forwarding rule idle timeout parameter, but
the implementation can be easily extended to support others.
Another parameter that can be set is the polling interval of
the Infrastructure Synchronizer module. This parameter affects
the frequency of reading information from counters of network
devices. The impact of these parameters on the control channel
load and resource consumption, as well as how visualizations
reflect their changes are presented in the next section.

V. EVALUATION

In this section, we describe the evaluation of our approach
using the developed prototype. Our goal is to measure control
channel load and resource usage considering the administrator
interactions over the experiment timespan. To understand the
impact of changing SDN-related parameters, we simulated
some administrator interactions to control the campus topol-
ogy, workload, and controller behavior presented in Section III.
In addition to varying the rule idle timeout configuration, we
also change the monitoring polling interval to understand the
impact of Read-State messages as well. Table II presents all
configurations changes simulated during the evaluation period.

TABLE II. SIMULATED ADMINISTRATOR INTERACTIONS
Parameter Value
Reconfiguration time (hour:minutes) 11:05 11:12 11:25 11:37 11:47 11:57
Rule idle timeout (seconds) 5 60 30 30 30 30
Monitoring interval (seconds) 5 5 5 40 30 15

Figure 7 depicts the user-friendly Web interface devel-
oped in order to provide the administrator with interactive
visualizations and to allow easy configuration of SDN-related
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Fig. 7. Web interface of the prototype developed

parameters. The visualization of the physical topology allows
to alternate between three different perspectives (from the
top-right corner): data traffic, control traffic, and resource
usage. Depending on the active perspective, different sizes
and colors of switches and hosts, as well as link widths and
colors, are used to represent different levels of resource usage,
control traffic, and data traffic. On the top-left corner of the
Web interface two configuration parameters can be adjusted:
polling interval for monitoring and idle timeout of forwarding
rules. Below the physical topology visualization, we placed
interactive charts showing online resource usage in terms
of installed rules (active and idle), traffic rates, and packet
processing rates. In the example of Figure 7, these charts
display results for the aggregated control traffic of the whole
network. However, by selecting a device the administrator is
also able to filter this information per switch or host.

Figures 8 to 10 present the interactive charts available from
the Web interface of our prototype in more detail. These charts
present the total and idle rules (Figure 8), control traffic rates
in kbps from the controller to switches (Figure 9(a)) and vice
versa (Figure 9(b)), and control packets processed per second
also in both ways (Figures 10(a) and 10(b)). These charts show
information for the whole network during the timespan of the
experiment (1 hour). Vertical dashed lines mark the moments
when the administrator changes a configuration (see Table II).

At the beginning of the experiment, the amount of installed
rules is approximately 200, while nearly zero are idle, as
shown in Figure 8. As mentioned before, a rule is considered
idle when its counters do not change between two monitoring
polls. This small number of idle rules is a consequence of
the low rule idle timeout value set to 5 seconds (default
Floodlight configuration). On the other hand, the controller is
processing a large number of Packet-In messages, as displayed
in Figure 10(b). To reduce the load on the controller, at
11:12, the administrator changes the rule idle timeout to 60
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seconds. After this change, it is possible to visualize a dramatic
decrease in control packets processed both by the controller
and network devices. However, this configuration also affects
immediately resource consumption, specially in terms of idle
rules (Figure 8) and control traffic rate towards the controller
(Figure 9(b)). With this rule idle timeout configuration nearly
77.7% of all forwarding rules remain idle and upload control
traffic increases almost threefold.

Close to 11:25, the administrator decreases the rule idle
timeout to 30 seconds as an attempt to bring down traffic
in the control channel and the amount of forwarding rules
installed. From Figures 8 and 9(b) it is possible to visualize
such configuration does indeed decrease these values over
time. Nevertheless, instead of observing a hard drop in traffic
rate and installed rules, this time we notice a gradual decrease.
This behavior can be explained because the new idle timeout
settings will only be applied to newly installed rules. Thus,
rules installed before the change will respect the previous
configuration. Also, packet processing rates tend to increase
again with this configuration, but nowhere near the values from
the beginning of the experiment.

900

Rules

800

700

~ /™M Total
600 -
500
400
300{ =
AN Lk ,«‘I|
20047 Wy H . H H
N H H : Yy Idle
100 H H H H ]

o : ' : ' ‘
11:05 11:10 11:15 11:20 11:25 11:30 11:35 11:40 11:45 11:50 11:55 12 PM Time

Fig. 8. Total and idle rules behavior during the experiment duration
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Fig. 10. Control channel packet rates over the experiment duration

After the first two changes, the amount of traffic in the
control channel towards the controller remains very high
(Figure 9(b)). Most of this traffic is due to Read-State reply
messages, which are loaded with counters for as many rules as
are installed in all switches. To decrease the amount of Read-
State messages, the administrator increases the monitoring
polling interval to 40 seconds at roughly 11:37. Immediately
after this change, we can visualize that the control traffic rate
generated by these messages is significantly reduced. However,
looking at Figure 8, we are also able to notice an unexpected
decrease in the amount of idle rules installed. This behavior is
actually a distortion or loss of precision in monitoring given the
way of identifying for idle rules. To be considered idle a rule
needs to be monitored twice without changing its counters,
which will rarely happen with too sparse monitoring polls.
Finally, the administrator decreases the polling interval to 30
seconds (at 11:47), which is still insufficient to capture idle
rules, and to 15 seconds (at 11:57), when the monitoring
process returns to identify idle rules.

VI. CONCLUSION AND FUTURE WORK

Although network monitoring, visualization, and configura-
tion are common management activities, in the context of SDN,
these activities can be considerably different from traditional
networks and deserve proper attention. The SDN controller
behavior, for example, can be customized by network admin-
istrators, which might affect resource consumption and traffic
forwarding performance. In this paper, we initially presented
an analysis of the control channel traffic in OpenFlow networks
to verify the impact of specific SDN-related parameters and
their influence in the overall network resource consumption.
Then, we have proposed an interactive approach that integrates
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SDN monitoring, visualization, and configuration activities,
allowing the administrator to interact with and better under-
stand the network. Moreover, we also developed a prototype
as a proof-of-concept and evaluated our approach to SDN
management simulating the administrator interactions.

By analyzing the control channel in OpenFlow-based SDN,
we showed how resource usage and control channel load are
affected by the configuration of SDN-related parameters (i.e.,
idle timeout of forwarding rules). Our developed prototype
included a monitoring component that retrieves statistics of
control channel traffic, a feature which most SDN manage-
ment approaches do not consider. Moreover, our approach
allowed the administrator to easily visualize the number of
packets processed by both controller and forwarding devices,
the control channel load also in both directions, and the
proportion of idle rules installed on forwarding devices. Based
on this information, administrators are able identify potential
issues and change configurations of SDN parameters using our
interactive Web interface to achieve their specific goals.

In future investigations, we plan to perform more ex-
periments with other SDN-related parameters and different
controller implementations. We also plan to perform experi-
ments with other versions of the OpenFlow protocol, which
have different control messages and data structures. Finally,
we intend to provide more configuration possibilities on the
prototype, such as thresholds to an algorithm that can perform
automated reconfigurations on behalf of the administrator.
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AppendixC PUBLISHED DEMO - IM 2015

In this 2-page paper it was published an demonstration of our developed prototype named
SDN Interactive Manager. Our prototype is a management approach through monitoring, visu-
alization, and configuration of OpenFlow-based SDN that we have already an accepted paper
on 14th IFIP/IEEE International Symposium on Integrated Network Management (IM - 2015).
We developed this prototype to considering using the monitoring information to present inter-
active visualizations an allow to the administrator configure/reconfigure the network through an
GUI. We used the same metrics of control channel load and resource consumption to show to

the overhead, imposed by control messages, to the administrator.

e Title -
SDN Interactive Manager: An OpenFlow-Based SDN Manager
e Symposium -
14th IFIP/IEEE International Symposium on Integrated Network Management (IM - 2015)
o Type -
Demo track (2-page paper)
e Qualis -
Bl
e URL -
<http://ieeexplore.ieee.org/xpl/articleDetails.jsp 7arnumber=XXXXX>
e Date -
May 11-15, 2015
e Held at -
Ottawa, Canada
¢ Digital Object Identifier (DOI) -
<http://dx.doi.org/XX . XXXX/IM.2015.X>


http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=XXXXX
http://dx.doi.org/XX.XXXX/IM.2015.X

92

SDN Interactive Manager: An OpenFlow-Based

SDN Manager

Pedro Heleno Isolani*, Juliano Araujo Wickboldt*, Cristiano Bonato Both,

Juergen Rochol*, and Lisandro Zambenedetti Granville*
*Federal University of Rio Grande do Sul, Porto Alegre, Brasil
TUniversity of Santa Cruz do Sul, Santa Cruz do Sul, Brasil

978-3-901882-76-0 @2015 IFIP

Email: {phisolani, jwickboldt, juergen, granville} @inf.ufrgs.br, cboth@unisc.br

I. RELATED WORK

Currently, many investigations addressed SDN manage-
ment considering using monitoring information for different
purposes. Zhang [1] used monitoring information to develop
algorithms for anomaly detection and traffic engineering. Jose
et al. [2] used the same monitoring information to propose
mechanisms for online measurement of large traffic aggregates.
Yu et al. [3] proposed FlowSense, which is aimed to keep the
lowest control channel overhead and the highest information
accuracy as possible in OpenFlow monitoring. Chowdhury et
al. addressed SDN monitoring from a different perspective.
The authors proposed Payless [4] framework that is able to
deal with monitoring considering the polling frequency and
data granularity. Payless relies on OpenTM [5] to select only
important switches to be monitored, also aiming to reduce the
overhead imposed in the control channel. Thus, this framework
allows to adjust the polling frequency parameter to balance the
control channel overhead, imposed by monitoring messages,
and accuracy of monitored information.

The aforementioned proposals are focused on the use of
monitoring information to automate tasks, such as reducing
control traffic overhead and protecting the network. No pre-
vious investigation aims to employ monitoring information
to help the administrator understanding the network behavior
nor interact with it. To the best of our knowledge, there are
no solutions that leverage OpenFlow monitoring messages
to create network visualizations and address the interactive
configuration of SDN-related parameters. Before presenting
how we approached such a problem, we present our motivation
and all objectives to archieve with our propototype, focusing
on didactly detach important central points of our solution.

II. MOTIVATION AND OBJECTIVES

In summary, SDN management activities are considerably
different from traditional networks, thus deserving proper
attention. The SDN controller customizations might impact in
terms of resource consumption and traffic forwarding perfor-
mance. As a consequence, such impact is difficult to asses
because traditional network management solutions were not
designed to cope in the context of SDN. Moreover, several
solutions deal with SDN monitoring, visualization, or con-
figuration for automated tasks (e.g., reduce control traffic or
network protection) and they not aim to help the administra-
tor to understand the network behavior and interact with it.
Therefore, our objectives in building our SDN management
prototype are the following:
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e  Perform SDN monitoring with configurable polling in-
tervals specifically focusing on inspect resource usage
and control channel load metrics.

e  Present monitoring information obtained in interactive
visualizations that emphasize these metrics.

e  Support the administrator interaction by configuring
and reconfiguring SDN-related parameters.

III. SDN INTERACTIVE MANAGER

In this section, we describe our prototype to manage SDN
through monitoring, visualization, and configuration. Our pro-
totype is an Web application named SDN Interactive Manager
that allows the administrator to understand and control the
network behavior through a Graphical User Interface (GUI).

Figure 1 shows the SDN architecture along with our
prototype. Overall, SDN introduces an architecture with four
planes: management, application, control, and forwarding. All
SDN planes communicate with each other through interfaces.
For example, the management plane uses a set of Management
Interfaces (MI) to exchange information and to control ele-
ments in other planes. In addition, an northbound API interface
establishes bidirectional communication between application
and control planes, while the southbound API does the same
for control and forwarding planes.
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Fig. 1. Conceptual Architecture



Our prototype includes three main components: Monitoring
Manager, Visualization Manager, and Configuration Manager.
The SDN Interactive Manager sits in the management plane of
SDN alongside other existing or yet to be developed solutions.
Since our approach to SDN management comprises interactive
network management, we also depict in the architecture the
Administrator who interacts primarily with the Visualization
Manager and the Configuration Manager components through
an GUI (shown in Figure 2). Therefore, our solution creates
a loop of activities by integrating these components with the
Administrator interactions. Each of these components performs
independent tasks described as follows.

SDN Interactive Manage:
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Fig. 2.

SDN Interactive Manager GUI

Monitoring Manager — Responsible for retrieving up-
dated information about the network and storing it in a local
Database. The Infrastructure Synchronizer module collects
information, such as traffic statistics, network topology, and
device data, by accessing an MI to one or more controllers
situated in the control plane. In this case, we used the RESTful
API provided by the Floodlight controller to access informa-
tion about the physical topology, including links, switches, and
hosts. Moreover, the Monitoring Manager also gathers data
traffic counters of every rule installed on each switch in the
network. However, by default, the Floodlight controller does
not address control traffic counters. Therefore, we developed
a module for Floodlight controller, which we called Control
Statistics Aggregator, to gather these counters and extended the
RESTful API to report them. The Control Statistics Aggregator
module monitors control channel connections to inspect and
count OpenFlow messages generated either by the controller
or switches.

Visualization Manager — Comprises the Statistics Pro-
cessing and Chart Visualizations modules. With information
stored in the Database, the Statistics Processing module is
able to aggregate data per host, switch, controller, or even
the entire network to be used by the Chart Visualizations
module. Furthermore, the Statistics Processing module is also
able to identify which rules are active and which are idle on
forwarding devices. To build interactive visualizations that can
be analyzed by the Administrator, the Chart Visualizations
module uses a rich library of interface components (e.g.,
charts and diagrams) that enables data updates in real time.
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This component is implemented as an interactive Web based
application relying mainly on the D3.js library. Thus, as the
network is periodically monitored by the Monitoring Manager
component, visualizations are updated in the same pace. The
integration between these two components allows our pro-
totype to display network visualizations, such as: topology
view with intuitive hints on where resource bottlenecks might
be occurring, charts of idle and active rules installed on
forwarding devices, amount of OpenFlow messages flowing in
control channels, and the traffic rate these messages generate.

Configuration Manager — Allows the Administrator to
check and configure SDN-related parameters on network
controllers through the MI. The Floodlight Adapter module
permits setting up the polling interval for monitoring network
devices through a friendly GUI. Moreover, the Administrator
can trigger the Floodlight Adapter module to set the idle
timeout to be configured on rule installation process. All
SDN-related parameter configurations on the controller are
performed using an extension of the northbound API imple-
mentation that is embedded in MI between management and
control planes. We developed Floodlight Adapter module to
support the configuration of the forwarding rule idle timeout
parameter, but the implementation can be easily extended
to support others. Another parameter that can be set is the
polling interval of the Infrastructure Synchronizer module.
This parameter affects the frequency of reading information
from counters of network devices and also impacts on the
control channel load generated in both directions.

Our prototype was designed following the Model-View-
Template (MVT) design pattern and we chose Python 2.7 with
Django 1.6 as development framework. The Database used to
store network devices information as well as traffic statistics
is PostgreSQL 9.3.5 and has been implemented as Django
Models. Each of monitoring, visualization, and configuration
functionalities were developed as Views and the GUI as
Templates. As a consequence of our unusual requirements, we
had to implement a module for the Floodlight controller to
support our advanced management features, such as reporting
control traffic statistics and dynamically configuring the idle
timeout of forwarding rules.
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AppendixD DEMO POSTER -IM 2015

In this poster is highlighted main aspects of our developed prototype to manage SDN
through monitoring, visualization and configuration activities. We focus on explain the mo-
tivation, objectives, the Floodlight controller modifications, our prototype — SDN Interactive
Manager — implementation, and then show our GUI interface. Our prototype is a manage-
ment approach through monitoring, visualization, and configuration of OpenFlow-based SDN
that we have already an accepted paper on 14th IFIP/IEEE International Symposium on Inte-
grated Network Management (IM - 2015). We developed this prototype to considering using
the monitoring information to present interactive visualizations an allow to the administrator
configure/reconfigure the network through an GUI. We used the same metrics of control chan-
nel load and resource consumption to show to the overhead, imposed by control messages, to

the administrator.
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Introduction

Currently, many investigations addressed SDN management
using monitoring information for different purposes. These
proposals are focused on the use of monitoring information
to automate tasks, such as reducing control traffic overhead
and protecting the network. No previous investigation aims
to employ monitoring information to help the administrator
understanding the network behavior nor interact with it.

Objectives

I. Perform SDN monitoring with configurable polling
intervals specifically focusing on inspecting resource
usage and control channel load metrics.

Il. Present monitoring information obtained in interactive
visualizations that emphasize these metrics.

lll. Support the administrator interaction by configuring
and reconfiguring SDN-related parameters.

Controller Modifications

C Upper Layers D
H ) Adminstrator
Floodlight v0.90
Cor}:lroller OpenFlow Services N ( : Gl s D
Behaviors Topology Controller
« ) 1 = I
5 Forwarding Manager/Routing| | Memory SDN Interactive Manager
= <
§ T - - @ Configuration Visualization
o I3 Configuration Adapter 5| |z Manager Manager
< [ )
|z Request Interpreter / Parameter Modifier S| [< n Chart
= 2 ‘ 2| 15 Floodlight Visualizations
d > Sl & Adapter —
< (] Control Statistics Aggregator %’ w| Statistics
S =l = Processing
2 ‘ Message Sub-Types Counters H Aggregator 2l = =
3 S|| 3| |
2 o i Monitoring
g OpenFlow Channel OpenfFlow Channel Sl o Manager
8 Handler Writer =
Ny e &
‘ Process OAFMessage —‘ Swy\tch Base ‘ s Infrastructure
— : = — W Synchronizer
i
C | Southbound APl | D === Database
[ other DN Solutions

SDN Interactive Manager: An
OpenFlow-Based SDN Manager

Federal University of Rio Grande do Sul
Institute of Informatics

§6 SDN Interactive Manager
©
g | Visualizations Template
g | 4{Topology View & Chart Visualizations ‘ Resources
< | Interactive
- GUI [ [ Controller
‘ D3js ‘ ‘ Visualizations Data ‘ Form
Ly
I
~ -
f j Forwarding Plane Handler § View
[Floodlight Controller
” Adapter Handler
= y Database Statistics Processing
< [ Inf Synchroni & Provider CRUP
= p I raestructure Synchronizer Operations
§ K
\V)
=
= T R PSR S [ ST [TV !
I
-§ ! Link ‘Swntch‘ ‘Controller‘ ‘Floodllght‘ ‘OFHeader‘ ‘ BaseModeI‘ }
= HConfiguration‘ ‘OFSwitchl.O‘ ‘OFPortCounterl.O‘ ‘ OFHeaderCounterl.0 ‘ |
| |
}‘OFTablel.O‘ ‘ OFTableCounterl.0 ‘ ‘OFMessageCounterl.O‘ ‘ OFAction1.0 ‘ }
= |
U

UF%GS

UNIVERSIDADE FEDERAL
DO RIO GRANDE DO SUL

In summary, SDN management activities are considerably
different from traditional networks, thus deserving
proper attention. The SDN controller customizations
might impact in terms of resource consumption and
traffic forwarding performance.

As a consequence, such impact is difficult to assess
because traditional network management solutions were
not designed to cope with SDN.

Moreover, several solutions deal with SDN monitoring,
visualization, or configuration for automated tasks (e.g.,
reduce control traffic or network protection) and they not
aim to help the administrator to understand the network
behavior and interact with it.

Prototype Implementation
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