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Advancements in cloud computing have enabled the proliferation of dis-
tributed applications, which require management and control of multiple
services. However, without an efficient mechanism for scaling services in
response to changing workload conditions, such as number of connected
users, application performance might suffer, leading to violations of Service
Level Agreements (SLA) and possible inefficient use of hardware resources.
Combining dynamic application requirements with the increased use of vir-
tualised computing resources creates a challenging resource management
context for application and cloud-infrastructure owners. In such complex
environments, business entities use SLAs as a means for specifying quanti-
tative and qualitative requirements of services.

There are several challenges in running distributed enterprise applica-
tions in cloud environments, ranging from the instantiation of service VMs
in the correct order using an adequate quantity of computing resources,
to adapting the number of running services in response to varying exter-
nal loads, such as number of users. The application owner is interested in
finding the optimum amount of computing and network resources to use
for ensuring that the performance requirements of all her/his applications
are met. She/he is also interested in appropriately scaling the distributed
services so that application performance guarantees are maintained even
under dynamic workload conditions. Similarly, the infrastructure providers
are interested in optimally provisioning the virtual resources onto the avail-
able physical infrastructure so that her/his operational costs are minimized,
while maximizing the performance of tenants’ applications.

Motivated by the complexities associated with the management and scal-
ing of distributed applications, while satisfying multiple objectives (related
to both consumers and providers of cloud resources), this thesis proposes
a cloud resource management platform able to dynamically provision and
coordinate the various lifecycle actions on both virtual and physical cloud
resources using semantically enriched SLAs. The system focuses on dynamic
sizing (scaling) of virtual infrastructures composed of virtual machines (VM)
bounded application services. We describe several algorithms for adapting
the number of VMs allocated to the distributed application in response to
changing workload conditions, based on SLA-defined performance guaran-
tees. We also present a framework for dynamic composition of scaling rules
for distributed service, which used benchmark-generated application moni-
toring traces. We show how these scaling rules can be combined and included
into semantic SLAs for controlling allocation of services. We also provide a
detailed description of the multi-objective infrastructure resource allocation
problem and various approaches to satisfying this problem. We present a
resource management system based on a genetic algorithm, which performs
allocation of virtual resources, while considering the optimization of multi-
ple criteria. We prove that our approach significantly outperforms reactive
VM-scaling algorithms as well as heuristic-based VM-allocation approaches.
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Chapter 1

Introduction

1.1 Background

Recent advancements[158] in cloud computing[108] have enabled the pro-
liferation of distributed applications[154], which require orchestration and
control of multiple services running on virtualised containers inside network-
connected computing environments. However, without an efficient mecha-
nism for scaling services in response to changing workload conditions, ap-
plication performance might suffer, leading to violations of Service Level
Agreements (SLA) and/or inefficient use of hardware resources. By combin-
ing dynamic application requirements with the increased use of virtualised
computing resources a highly challenging resource management situation is
created for owners of distributed application and network and computing
infrastructures.

The future network platform[59, 20] for enterprises emerges as an easy-
access distributed environment providing the necessary secure infrastruc-
ture, technologies, applications, and content to deliver end-to-end business
services optimised for mobility. We refer to this as the Business Web [136].
Applications developed for and using enterprise platforms are composed of
globally-distributed components delivered as services. Examples include
analytics[134], logistics[71], and collaborative business[40]. These services
function autonomously with globally-distributed users having different work-
load / connection characteristics. The volumes of stored and transmitted
information continue to grow to the order of exabytes[42]. This makes in-
telligent resource usage optimization and communications acceleration tech-
niques mandatory, including scaling, parallelisation, and load-balancing.

In such complex environments, business entities use SLAs[125] as a
means for specifying quantitative and qualitative requirements of services.
Given that SLAs have legal and financial implications, proper management
of SLAs is critical for modern and future application and infrastructure
service providers. Leading cloud service providers of infrastructure or appli-
cation services (e.g. Google[68], Amazon[8]) use SLA management for spec-
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1.2. MOTIVATION

ifying and maintaining the quality of service (QoS) and availability levels to
their customers. Dealing with exclusively-owned virtual machine (VM) in-
stances deployed on shared physical infrastructures presents a greater chal-
lenge for each lifecycle phase of resource management. This is caused by
(1) the multi-objective resource allocation optimization problem of having
to maintain SLAs for various customers while minimising resource utilisa-
tion targets, and (2) the differentiation in SLA-requirements from different
classes of VMs and users. Furthermore, the violation of SLAs results in
financial penalties for the cloud-infrastructure provider, adding a direct eco-
nomic dimension to the problem.

1.2 Motivation

SLAs are also important for maintaining the reputation of the infrastruc-
ture cloud provider as consumers compare SLA claims and experience when
selecting providers[155]. They can then plan the performance and risks
of applications more optimally by having knowledge of the infrastructure’s
availability and performance [124] [141]. For this reason providers will seek
ways of ensuring optimal SLA satisfaction, within the constraints of their
resource usage, energy consumption and budget constraints, in order to
maintain business. Having insight or prior knowledge of application work-
loads and data volumes that will be running on their infrastructure is hence
beneficial towards tuning their infrastructure for optimizing both of these
objectives. This reflects the goals of Cross Stratum Optimisation (CSO) [92],
such that an effective, automated SLA management architecture should be
considered important in this context. CSO refers to performing optimisa-
tions across multiple layers of the cloud management system (CMS), such
as orchestrating the horizontal scaling of services on the upper layers of the
CMS with the optimized allocation of virtual machines hosting the services
to physical infrastructure resources.

When prioritizing operational tasks and resources based on their com-
mitments, capacities and capabilities, providers then use the information in
an SLA. Providers aim to satisfy the Service Level Objectives (SLOs) of
consumers without disrupting their internal operation goals including min-
imisation of operational costs, power consumption and legal issues. Network
operators and Internet Service Providers have been using SLAs for assuring
client’s experience in remote access to services and inter-networking scenar-
ios for many years [124][142]. SLAs are being used generally in Cloud Com-
puting and Infrastructure as a Service (IaaS) for similar purposes [124][155].
The demand for rapid delivery of highly available, high performance, net-
worked applications and infrastructure services makes automation support
for SLA Management more critical.

However, the combination of CSO and SLAManagement is not a straight-
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forward and complimentary relationship, especially when delivering services
composed of resources with different owners and concurrent consumers.
First, existing and emerging application and infrastructure services are no
longer single, isolated, remote servers, virtual machines (VMs) or band-
width. Disruptions in one resource can have consequences for the over-
all composite service, such that state information needs to be controllably
shared. There are then dependencies across operational strata (application,
machine and network) and domains with autonomous administrators, lifecy-
cles and management controllers, which can lead to a break in the autonomy
property. Secondly, application topologies continue to become more complex
and heterogeneous as service-oriented design becomes the established enter-
prise architectural pattern for building distributed applications [26]. For
these reasons the interdependencies between application deployment, usage
and network capabilities need to be considered during service planning and
provisioning, making the coordination of SLA management more complex.

Using SLA management and data prediction for system reconfiguration
enables both minimising SLA violations caused by environment’s dynamics
(e.g. variable workload), and triggering infrastructure reconfiguration ac-
tions for optimising resource utilisation [19]. By analysing the large amounts
of monitoring information collected from distributed, cloud-deployed ser-
vices, it becomes possible to (1) observe patterns in service utilisation and
then (2) to use the gathered information for optimising the allocation of
network and computing infrastructure resources in a cloud. By composing
series of performance related patterns gathered over longer time periods, an
SLA management system can use this information for elastic deployment of
services, while also maintaining the SLA guarantees [82] associated with the
given services.

Given the business importance of SLAs in the context of a company’s
reputation, customer satisfaction, and operational objectives, we can con-
clude that SLAs must be taken as input by any cloud management platform
and in particular by those management platforms coordinating multiple dis-
tributed computing environments. SLAs are thus a critical input parameter
for distributed service orchestration platforms, considering their impact on
cloud resources reservation and provisioning. Each closed group of busi-
ness users, charged and handled as a single entity, sharing common access
to dedicated software instance ( including its data, configuration and user
management) is reffered as a cloud tenant [90].

Finding the proper resource allocation in Cloud Computing environ-
ments composed of multiple tenants with different SLA requirements im-
plies solving a multiple objective allocation problem. This is caused by
the conflicting requirements of the different cloud resource providers (in-
frastructure, platform and software [108]) and the cloud tenants. Usually,
the providers of the cloud resources have efficiency requirements regard-
ing minimising the total cost of ownership (TCO), as well as minimising the
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penalties caused by the SLA violations. The cloud tenants have performance
related SLA requirements, such as maintaining certain levels of application
performance metrics (e.g. transactions per second, average response time,
etc.). As the providers’ requirements translate to reducing the number of
infrastructure-resources, and the tenants’ requirements translate to increas-
ing the quantity of cloud-resources, this leads to the multi-objective problem
of satisfying tenants’ SLAs while ensuring the operational efficiency of the
cloud infrastructure provider.

1.3 Problem Statement and Research Question

We focus our analysis on the difficulties associated with SLA-aware control
and scaling of cloud systems hosting distributed applications composed of
inter-dependent services. We further break this problem into three sub-
problems, which can be defined by the following research questions:

1. "How do distributed application owners and infrastructure providers
benefit from using Service Level Agreements in Cloud Computing en-
vironments?"

2. "How to control the allocation of infrastructure resources in cloud en-
vironments while maximising both tenant’s Quality of Service and
provider’s Efficiency of Operations?"

3. "How to design a system for management (scaling) of SLA-constrained
distributed cloud services?"

The solutions to the previous three questions help answer the following
main research question: How to design a cloud-infrastructure management
system based on service level agreements for the SLA-compliant manage-
ment of both services and cloud-infrastructure resources?

In order to answer these questions, we considered multiple connected
problems from the perspective of both enterprise application owners and
cloud infrastructure providers. The efficient management of SLAs is of par-
ticular importance for Cloud Computing, where exclusively-owned Virtual
Machines (VMs) are allocated resources on hosts in a shared physical infras-
tructure.

The application owner is interested in finding the optimum amount of
computing network and storage resources for ensuring that the performance
requirements of all applications are met. After the initial allocation of virtual
computing resources, the application owner is also interested in appropri-
ately scaling distributed applications so that application performance guar-
antees are maintained even under dynamic user-generated workload condi-
tions.
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Similarly, infrastructure providers are interested in optimally allocating
the virtual resources on the physical computing and network infrastructure
so that their operational costs are minimised, while maximising the tenant’s
application performance. In this context, we show how predicting the in-
frastructure utilisation peaks and dynamically optimising the distribution
of virtual resources leads to improving the use of available cloud resources,
lowering the penalties caused by violating the tenant’s performance-SLAs
during live-migration of VMs.

At the cloud-platform level, the tenants are interested in obtaining a con-
stant application-level performance, independent of the number of external
users accessing their cloud-applications. This behaviour can be obtained if
the cloud-platform-manager ensures that the appropriate number of virtual
resources (e.g. VMs) are allocated to the distributed applications. Opti-
mally determining the number of necessary VMs for supporting given levels
of application-performance leads to three distinct sub-problems: (1) find-
ing the relation between the quantity of virtual resources (or size of the
virtual infrastructure) allocated to distributed cloud-applications and the
corresponding application-level performance metrics; (2) finding the optimal
VM-scaling policy; and (3) using prediction to optimally vary the number of
VMs allocated to cloud applications in order to minimise resource utilisation
while meeting the agreed SLA performance guarantees.

1.4 Contributions
Overall, the key contributions of this dissertation are:

• a semantic SLA-enabled specification language and architecture for
dynamically managing distributed software, together with the corre-
sponding computing, storage and network cloud infrastructure virtual
and physical resources [18] (described in Chapter 3)

• three SLA-based VM scaling algorithms that use reactive and analytic
mechanisms combined with data prediction method, as well as results
from applying Little’s Law to SLA defined objectives ([14, 12, 15]),
such as keeping the average execution time of end-to-end requests be-
low a given maximum value (described in Chapter 4)

• a method of sizing virtual infrastructures based of SLA-defined con-
straints and benchmark-gathered application profiling information [16],
and composing scaling rules for distributed services using prediction
mechanisms and correlation-derived relationships between SLA moni-
toring metrics [11] (Chapter 5)

• a framework for dynamically allocating VMs to physical hosts while
considering both SLA-constraints and multiple objectives optimisa-
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tions, which uses a bin-oriented genetic algorithm combined with data
forecasting (exponential smoothing) [19] (described in Chapter 6)

• implementation of the previously mentioned algorithms and methods
for SLA-aware management of cloud infrastructure and software re-
sources in the Service Middleware Layer (SML) component of the
GEYSERS FP7 EU research project ([17], [52], [132]) (described in
Chapter 7)

Proposed Solution

Figure 1.1: Architecture Overview

The proposed solution to the management problem identified in Sec-
tion 1.3 is to use two connected sub-systems: Cloud Infrastructure Manager
(CIM) and Virtual Infrastructure Manager (VIM), as shown in Figure 1.1.
The VIM part of the system deals with the management of virtual resources
(distributed applications), such as provisioning and scaling distributed ap-
plications belonging to the cloud tenants. The CIM subsystem deals with
cloud infrastructure management, specifically allocation of virtual resources
(VMs) to physical resources (e.g. computing and network) in the datacenter,
monitoring and infrastructure optimization (e.g. migration).
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SLA-based Virtual Infrastructure Manager

The largest part of this research is focused on the SLA-driven management of
cloud distributed applications, in particular on the aspects of scaling cloud
services under SLA constraints. We first described the SLA mechanisms
associated with describing distributed services and applications, which we
then used as input for different algorithms for scaling services and allocat-
ing them to cloud infrastructure resources. Finally these algorithms were
incorporated into a SLA-based cloud management platform.

The VIM is described in chapter 4, where we focus on using the service
management platform for testing different VM scaling algorithms. For this
purpose, we created a statistical model of the dEIS application, which we
then later used as a basis for comparing different SLA-based VM-scaling
algorithms. In section 7.2 (based on our paper [12]) we describe the per-
formance characterisation of the dEIS system and how the gathered data
can be used for creating a simulation model of dEIS using the CloudSim
cloud simulator. Having validated the use of the dEIS models in CloudSim,
we continued by extending this work with a reactive SLA-based VM-scaling
algorithm, which we described in section 4.4.1 (based on our article [14]).

The VIM leverages on the extended SLA description language presented
in chapter 3 for describing the components, resources and monitoring met-
rics of a distributed Enterprise Information System (dEIS)[19]. The dEIS
(described in section 7.1) was then used as a basis for further exploration
of different mechanisms used by the Cloud-Services Management Platform,
which takes SLAs as control inputs in order to scale the application-services.

The algorithms used by the VIM system are described in section 4.4
(based on our article [15]), together with a method of finding the optimal
number of VMs required for ensuring that given performance constraints are
met under varying workload conditions.

Also, parts of the algorithms, methods and frameworks developed during
this thesis were implemented, tested and validated in the context of the
European Research project GEYSERS [52], [17], [132].

Cloud Infrastructure Manager

The Cloud Infrastructure Manager (CIM) is responsible for controlling the
allocation of datacenter infrastructure resources to virtual resources. In
order to perform this task, the CIM first discovers and configures the physical
infrastructure, followed by the provisioning of the virtual resources.

In chapter 6 (based on our article Dynamic SLA Management with Fore-
casting using Multi-Objective Optimizations) we present a bin-oriented ge-
netic algorithm for allocating VMs to physical resources in a cloud environ-
ment, while taking into consideration multiple optimisation criteria (energy
efficiency, SLA violation minimisation, user performance maximisation) for
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both the cloud provider and its tenants. The requirements were described as
Service Level Agreements (SLAs) using the specification language that we
presented in chapter 3. We used the semantic SLA specification for both de-
scribing the topology of the distributed cloud applications, its requirements
in terms of infrastructure resources, and application-level performance mon-
itoring metrics.

The practical implementation of the CIM subsystem [17, 132], specifi-
cally the platform for allocation of virtual machines to physical infrastruc-
ture resources, have been developed and described in the context of GEY-
SERS EU research project [52].

1.5 Thesis Outline

In this section we present the outline of the thesis, focusing on the main
research contributions in the context of cloud computing. In chapter 1 we
gave a introduction into (1) the research question (optimizing allocation and
scalability of cloud resources and services using objectives defined in Service
Level Agreements), (2) connected problems addressed by this research (such
as multi-objective optimization of allocation of infrastructure resources, op-
timal capacity planning for cloud services, processing of large datasets com-
posed of service monitoring data) and (3) the problem statement (designing
a SLA-based cloud management system for controlling allocation and scaling
of enterprise distributed applications). Also, the summary of the contribu-
tions is presented, linked to the corresponding chapter of the thesis.

Chapter 2 describes the background and related research works organised
in four sections: 2.1 Cloud Computing, 2.3 Distributed Enterprise Applica-
tions, 2.2 Service Level Agreements, and 2.4 data processing mechanisms
needed for handling large datasets of service-generated monitoring informa-
tion.

Chapter 3 describes the semantic model used for representing SLAs, ser-
vices and cloud resources. We present the concepts of topology orchestration
as the basis of unattended provisioning of distributed service deployments.
We also describe the SLA model, which is the foundation for scaling and al-
location algorithms described later in the thesis. We introduce the concepts
of guaranteed states and actions as core SLA instruments for automated
management of cloud infrastructures. We then link these two concepts to
the SLA-defined application-level key-performance indicators (e.g. metrics),
which enable monitoring of the state of distributed services, as well as trig-
gering automated responses in case of performance degradation, beyond the
thresholds defined in the SLAs.

Chapter 4 describes the algorithms and methods used for scaling cloud
services under SLA-defined performance guarantees and dynamic workload
conditions, by using the semantic SLA models described in the previous
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chapter. We present the architecture of the SLA-based service scaling man-
ager (SSM) which is responsible for the horizontal scaling of distributed
services according to performance guarantees specified in SLAs. We present
next a multi-step prediction algorithm using auto-regression, which we used
in the scaling algorithms for predicting the state of distributed services and
the parameters of the scaling triggers.

Chapter 5 introduces several methods for sizing virtual infrastructures
and dynamically generating scaling rules for services, based on SLA-defined
performance constraints. We investigate how SLAs can be dynamically op-
timized for enhancing the rules controlling the scaling-out (increasing the
number of VMs allocated to distributed services) and scaling-in (reducing
the number of VMs allocated distributed services) services belonging to dis-
tributed applications, in particular Enterprise Information Systems (EIS).

Chapter 6 presents a multi-objective SLA-based virtual resource alloca-
tion algorithm (e.g. the efficient allocation of virtual machines to physical
hosts), which considers multiple criteria coming from both the infrastruc-
ture cloud provider and the customers using the IaaS services for running
distributed applications.

Chapter 7 contains the evaluation of the previously presented algorithms
and methods for service management, including descriptions of the dis-
tributed application, evaluation testbed, as well as the performed experi-
ments and simulations.

Finally, Chapter 8 presents the summary of the challenges addressed, as
well as the contributions of this research work and the outlook.
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Chapter 2

Background and Related Work

2.1 Cloud Computing
"Cloud computing" is a well established computing paradigm developed as
a result of the convergence of multiple virtualisation technologies, such as
computing, network, storage, platform and services. It is characterised by
rapid provision of scalable IT capabilities as a service (e.g. platform, soft-
ware) in an on-demand and self-service manner over the network using large
pools of infrastructure resources.

The term Cloud Computing has received over the time many definitions,
most of them revolving around the outsourcing of IT activities to external
third-parties business, which have large pools of available resources and
are able to meet the IT-related needs in an efficient manner. This view
on Cloud Computing can be found in the official definition given by the
National Institute of Standards and Technology [108]:

"Cloud computing is a model for enabling ubiquitous, conve-
nient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applica-
tions, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction."

In a similar manner, Forrester Research [131] presents the following defi-
nition, which emphasises the network-related delivery of IT services, as well
as its economical aspects:

Cloud computing is a standardised IT capability (services,
software, or infrastructure) delivered via Internet technologies
in a pay-per-use, self-service way

2.1.1 Taxonomy of Cloud Computing Models
Given the broad nature of the available cloud services, they can be classi-
fied according to certain fundamental models into three main categories, as
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Figure 2.1: Comparison of Cloud Computing Models

shown in Figure 2.1, namely: Infrastructure-as-a-Service (IaaS), Platform-
as-a-Service (PaaS), Software-as-a-Service (SaaS). The fourth category is
Business-Processes-as-a-Service (BPaaS) and defined according to Gartner
[62] as "the delivery of business process outsourcing (BPO) services that are
sourced from the cloud and constructed for multitenancy. Services are often
automated, and where human process actors are required, there is no overtly
dedicated labor pool per client, the pricing models are consumption-based
or subscription-based commercial terms."

The three core models of Cloud Computing (IaaS, PaaS and SaaS) refer
to different proportions of the managed technology-services offered by the
Cloud provider, and consumed by the Cloud users.

The most basic level as defined by IETF [86] and NIST [108] is the
Infrastrucuture-as-a-Service (IaaS), responsible for the virtualisation and
abstraction of the cloud-infrastructure physical resources, namely network-
ing, computing and storage. At this level, the cloud provider controls the
provisioning of infrastructure resources, by managing their configuration so
that each consumer (cloud tenant) is given its set of resources for exclusive
use. The cloud user can run arbitrary software, including applications and
operating systems inside virtual machines (VMs), however, with only limited
control of the underlying physical resources (e.g. network firewalls), while
being charged on a utility basis and by consumption. This level of abstrac-
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tion is achieved by delegating control of the infrastructure resources to a
hypervisor, such as KVM [5], Xen [28], VMware [153], Hype-V [110], which
will host VMs belonging to the cloud tenants. Examples of IaaS providers
are Amazon EC2[7], Google Compute Engine [67], Microsoft Azure Virtual
Machines [112], SAP Monsoon Infrastructure Service.

The Platform-as-a-Service (PaaS) is a segment of cloud computing ser-
vices, where customers are provided with a computing platform and a stack
of solutions/ tools (typically including operating system, execution environ-
ments for different programming language (e.g. JAVA virtual machines),
database, web servers, etc.) for further development of applications or ser-
vices, without the complexity of provisioning hosting capabilities or the cost
of managing and buying the underlying software and hardware. This reduces
the necessary capital expenditures and allows a gradual increase of the costs
with the size of the deployed infrastructure. An important aspect of the
PaaS model is the option of having the underlying computer and storage
resources scale automatically in order to match the application demands so
that the cloud user does not have to allocate resources manually. Examples
of PaaS cloud providers include Microsoft Azure [111], Google App Engine
[66], or SAP HANA Cloud Platform [135].

In the business model using Software-as-a-Service (SaaS), cloud users are
given access to application software and databases, which run on managed
infrastructure and platforms, eliminating the need to install, run and manage
on-premise software. Usually, the customer subscribes to usage contracts,
and she/he is billed based on some sort of pay-per-use policies (e.g. data
volume, number of transactions, etc.). The cloud applications are accessed
through thin clients, such as web or mobile application interfaces.

A characteristic of the provider-managed cloud applications is that of
their high scalability, ensuring that very large data volumes are handled
without any need for manual scaling of the underlying software or infras-
tructure resources. This is achieved by using multiple virtual machines to-
gether with load balancers, which transparently distribute the work over the
set of virtual machines at run-time in order to meet the changing workload
demands of the cloud users.

Beyond the three cloud models presented above (IaaS, PaaS and SaaS),
Forrester is predicting the rise of Business Process as a Service (BPaaS)[62]
as part of the Business Process Management discipline[51], which is a new
market beyond SaaS. It offers Human Resources [65] as a service, considering
not only applications or technology, but also includes services performed by
people. Above the SaaS level, it is common to find a wide range of service
offerings, the so-called Anything-as-a-Service or XaaS [100].
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2.1.2 Characteristics of Cloud-Computing Applications
Resource virtualisation is the main driver of Cloud Computing, and it refers
to the possibility of creating virtual (rather than actual) version of resources,
such as operating system, server, storage or network resources. Virtualisa-
tion considers several aspects:

• allows partitioning of physical resources into multiple logical or virtu-
alised resources

• isolates the virtualised resources from each other, providing (some
kind) logical independence from hardware

• encapsulates virtual resources, allowing saving the state of virtual re-
sources into persistent formats (e.g. files) and enabling it to be moved
to different cloud environments

Resource virtualisation enables the realisation of another critical concept
for Cloud Computing, that of multi-tenacy. Multi-Tenancy refers to a prin-
ciple in software architectures, where a single instance of the software runs
on a server, serving multiple client-organisations (tenants). It contrasts with
multi-instance architectures where separate software instances (or hardware
systems) operate on behalf of different client organisations.

The range of enabling technologies involved in the Cloud Computing
paradigm are shown in Figure 2.1 and they are: networking, storage, servers,
virtualisation, Operating System (OS), application runtime, database, mid-
dleware/platform, applications, data and processes. In the next subsection
we present a classification of Cloud Services based on the granularity of
managed services regarding the covered cloud technologies.

Characteristics of Cloud Computing paradigm include the following ele-
ments:

• Use of shared computing resources, such as physical infrastructure
(computing, storage, network), IT platform (databases, communica-
tion busses, distributed caches) and software. The provider’s comput-
ing resources are pooled to serve multiple consumers using a multi-
tenant model, with different physical and virtual resources dynami-
cally assigned according to consumer demand.

• (Exact) location of the cloud provider is usually not known by the
cloud consumer, however (s)he may be able to specify the location at
a higher level of abstraction.

• Rapid and elastic provisioning, where cloud users request resources
in a self-service manner, and then they are quickly served with the
requested service or services. Also, capabilities can be elastically pro-
visioned and released, in some cases automatically, to scale rapidly
outward and inward on-demand.
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• multi-tenancy: the cloud provider supports a large number of tenants
[90] using the shared infrastructure and services, enabling centralisa-
tion of the physical infrastructure in location with lower costs (energy,
real-estate, etc.) and increasing the efficiency of operations for cus-
tomer systems with low utilisation levels (e.g. 10-20

• Minimal management effort, implying that the cloud users are given an
easy and simple to use management interface for their cloud services
and resources, without the need of doing complicated configuration
operations

• Services are consumed in a standardised manner through the Internet
or Virtual Private Networks from the cloud provider. Capabilities are
available over the Internet and accessed through standard mechanisms
that promote the use of both heterogeneous thin or thick client plat-
forms. A broad and reliable network access is necessary, and the access
to cloud services might be direct or through secured virtual networks.

• Flexible financing models, such as pay-per-use, subscription, auction,
volume-based, and others. The underlying idea for pricing cloud ser-
vices is based on a subscription model rather than buying IT assets
such as licenses and/or hardware, which leads to a conversion of the
costs from fixed costs into variable costs.

• On-demand self-service: implying that the cloud services are requested,
provisioned and consumer in a dynamical manner, creating the impres-
sion that the cloud environment offers unlimited amount of resources.
This allows the cloud consumers to unilaterally initiate requests of
additional computing capabilities, as they require.

• Isolation of services: Cloud services are offered in a secure manner,
where different cloud tenants (business users) share the same physical
infrastructure, but do not affect the functionality and performance of
each other’s applications and cloud services.

• Rating, charging and billing: Cloud management systems automati-
cally control and optimise resource usage by leveraging metering capa-
bilities at some level of abstraction appropriate to the type of service.
Resource usage can be monitored, controlled, scaled, and reported.

• Standardisation of services: Cloud computing principles are based on
standardisation of cloud management services, allowing for decoupling
of the implementation of the Cloud services and their interfaces.

• Quality of service (QoS): Cloud Providers offer pre-defined and guaran-
teed levels of quality for the offered services. QoS levels are specified in
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Service Level Agreements, which allow the clients to choose the cloud
provider with the matching level of technical needs.

2.1.3 Cloud Computing Deployment Models
Depending on how the three main cloud computing models are implemented
and deployed in various organisations, we can distinguish four deployment
models according to NIST [108], namely private, public, hybrid and com-
munity.

Private Cloud

Resources inside a private cloud are operated solely by an organisation,
making this model the most secure of the four presented deployment models,
as resources such as servers, storage, and network are virtually available only
to one organisation. A private cloud can be deployed on-premise or operated
externally in the data center belonging to a cloud provider.

Public Cloud

In case of the public cloud deployment model, the infrastructure is provi-
sioned for the open use of the general public. It may be owned, managed,
and operated by a business, academic, or government organisation, or a
combination of them. In general, it allows multi-tenancy.

Hybrid Cloud

A hybrid cloud can include private cloud setups, and it may be comprised
of two or more cloud infrastructures that remain unique entities but are
bound together by standard or proprietary technologies, thus enabling data
and application portability (e.g., cloud bursting for load balancing between
clouds).

Community Cloud

In the case of a community cloud[102], several organisations with similar con-
cerns (e.g. mission, security, requirements, policy, compliance, etc.) share
a cloud infrastructure, which may be owned, managed, and operated by
one or more of the organizations in the community, a third party, or some
combination of them, and it may exist on- or off-premises.

2.1.4 Cloud Management Platforms
A cloud management platform must provide a wide range of capabilities to
support the needs of organizations using hybrid clouds infrastructures with
potential multiple infrastructure providers.
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Characteristics of Cloud Management Tools

We present in this section an overview of the requirements that a cloud
management solution must meet in order to support the Cloud Computing
specifications, with particular regards to offering of IaaS services. In order
to objectively compare cloud management framework a common basis for
requirements needs to be established. These prerequisites are extracted from
the specifications of the European large-scale research project GEYSERS
(Generalized Architecture for Dynamic Infrastructure Services) [52] and are
presented below.

Registry enabling management of physical resources. An important
requirement for a cloud management platform is to offer visibility of the
available hardware resources, like servers, network-attached storage, net-
work equipment, etc. and to support lifecycle operations on those resources.

Adaptors/ Connectors for various types of physical infrastructure re-
sources. Because the hardware in a cloud environment is typically heteroge-
neous, a management solution must have different types of connectors and
provide an abstracted management interface in order to perform orchestra-
tion of the different resources located in the datacenter.

Monitoring and feedback for infrastructure management actions. Mon-
itoring of physical, virtual and software cloud-resources must be supported
in order to facilitate management of infrastructure along with accounting
and load balancing.

Physical resource abstraction and representation as logical resources.
In order to allow on-demand allocation of virtual resources from possible
multiple providers, an abstraction of the actual hardware resources must be
performed.

On-demand provisioning of virtual resources. An essential characteristic
of a cloud management solution is the offering of on-demand provisioning of
infrastructure / platform / software resources through the use of APIs (e.g.
web interfaces, remote method invocation, etc.).

Support for multiple virtualisation technologies. The management solu-
tion must be able to connect to different types of hypervisors.

Scheduling of provisioning actions. In order to enforce isolation between
different provisioning actions, planning and scheduling of the requests must
be supported. Also, in order to support elastic scaling of virtual resources,
scheduling of provisioning actions must be supported, allowing dynamic in
or out-scaling of the virtual infrastructures.

Declarative approach to resource representation and management. In
order to support composition and requesting of new virtual infrastructures,
it is desirable to express the composition of the infrastructure using a declar-
ative approach, such as using different languages for resource representation
(e.g. DMTF’s OVF [49]).

Monitoring of single and aggregate virtual resources. In order to support
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accounting and high availability, monitoring of provisioned infrastructure re-
sources must be supported by the underlying cloud management framework.

Discovery of physical resources and their virtualisation capabilities. In
order to allow dynamic modifications of the underlying hardware landscape,
(automatic) registration of newly added hardware resources must be sup-
ported as well as de-registration of resources which have been removed/up-
graded.

Enablement of resource discovery selection based on registered capa-
bilities. Automatic resource discovery enables a better management of the
underlying hardware resources as well as support for dynamic landscape
reconfiguration (for example adding new network resources).

Registry for multiple infrastructure service providers (external resources)
In case of hybrid clouds, formed by integrating both on-premise and remote
(external) resources, the management framework should support this situa-
tion by allowing registration of multiple resource providers.

Resource matchmaking based on user-requests. By definition, cloud ser-
vices are elastic and dynamic. These properties are enabled by supporting
dynamic allocation of virtual resources. This is enabled by the manage-
ment framework by allowing a flexible way of defining requirements for the
provisioned resources, thus performing resource matchmaking against the
available datacenter resources.

Support for virtual infrastructure construction by composing multiple
virtual resources. In case of cloud providers offering more than one type of
infrastructure resources, for example compute / storage and network, it is
desirable to allow creation of a single virtual infrastructure containing all the
provisioned resources, instead of individually managing the created virtual
resources.

Management of the virtual infrastructure’s lifecycle. A cloud manage-
ment framework must support all the operations for the administration of
virtual infrastructure’s lifecycle, from provisioning, configuration and con-
trol, to secure decommissioning. This implies orchestrating more than one
operation on the underlying infrastructure resources.

Support for offering multiple virtual infrastructures in parallel (multi-
tenancy). In order to provide true cloud services, multiple parallel infras-
tructures must be supported for running on shared hardware infrastructures.
This implies the existence of isolation features in the underlying hypervisors
as well as planning and scheduling support in the cloud management frame-
work.

Comparison of virtual resource operational status against concrete met-
rics or quality constraints (response time, availability, mean CPU usage).
In order to ensure advanced Service Level Agreements (SLA) support, the
cloud management framework must first support defining such metrics and
it then must integrate automatic monitoring of virtual resources status in
order to ensure enforcing of agreed SLAs.
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Cloud Management Tools

We present a non-exhausting list of open-source cloud management frame-
works, which can be used for the implementation of an IaaS cloud provider.
Form the six presented management platforms, OpenNebula was selected
as the one to be used in the practical experiments described in this thesis.
It was selected at that time because of the stability, community support,
supported APIs (XML-RPC[146], portal-based self service, command-line),
interoperability with open source tools (libvirt[73], KVM[5]) as well as hav-
ing most of the characteristics presented in Section 2.1.4.

AbiCloud

Abicloud [3] is an open-source cloud-infrastructure manager for the creation
and integral management of Public and Private Clouds. The framework
facilitates the creation, deployment and management of cloud computing
infrastructures, allowing other users to create virtual data centers over the
cloud infrastructure by allowing them to provision, scale and control servers,
storage, networks, virtual network devices as well as applications. It is ex-
pected that in future versions it will support cloud federation and integration
with public cloud providers, as well as extending virtualisation support.

Eucalyptus

Eucalyptus [140] enables creation of hybrid and private cloud deployments
for enterprise data centers. Leveraging Linux and web service technologies,
Eucalyptus allows customers to create computing clouds "on premise", at
the same time supporting the popular AWS [7] cloud API, which allows
on-premise clouds to interact with public clouds.

OpenNebula

OpenNebula [117] is an open-source project aimed at building a cloud com-
puting tool for managing the complexity and heterogeneity of distributed
data center infrastructures. It provides a complete toolkit for building IaaS
private, public and hybrid clouds, by managing virtual machines, storage
and network resources throughout their lifecycle. Its features and APIs are
also extensible with the possibility of installing further add-ons. It supports
building private clouds or clusters running different virtualisation platforms
(KVM, Xen, VMware, Hyper-V). It supports external cloud resources by
supporting Amazon EC2 [7] API and it also provides federation of different
cloud instances in order to build a hierarchy of independent virtualisation
clusters, thus enabling higher levels of scalability. From an public cloud
perspective, it supports OGF OCCI [57] and Amazon EC2 interfaces, along
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with offering native Ruby, Java and XML-RPC [146] APIs for creating new
cloud interfaces

OpenQRM

OpenQRM[118] is an open-source data-center management platform, which
enables automatic deployment of virtual infrastructures composed of appli-
ances. It also supports multiple virtualisation technologies, such as KVM,
XEN, Citrix XenServer, VMWare, lxc and OpenVZ. Similarly, it provides an
API for integrating third-party tools as additional plug-ins. OpenQRM is
published under GPL license. It was originally written in Java but ported to
PHP. It also offers a self-service cloud portal with an integrated billing sys-
tem that enables end-users to request new managed servers and application
stacks on-demand.

OpenStack

OpenStack [58] is a collection of open source technology targeting massively
scalable cloud infrastructure. It is composed of multiple related subprojects,
such as (1) OpenStack Compute, which offers computing power through
virtual machine management, (2) OpenStack Storage, which enables provi-
sioning of redundant and scalable object storage pools, and (3) Open Stack
Networking, which enables provisioning and management of software defined
virtual networks. Closely related to the OpenStack Compute project is the
Image Service project, which enables its self-servicing capabilities (allowing
users to deploy the desired operating system and applications packaged as
VMs [37]). OpenStack can be used for deploying large-scale cloud deploy-
ments for private or public clouds.

Scalr

Scalr [138] is an open source software stack for scaling web-based application-
infrastructures. The framework provides a SOAP-based API for web clients,
consoles and applications for connecting to scalable virtual infrastructures
composed of multiple VM instances. VMs are created using a combina-
tion of the Amazon WS API and the Scalr API, by sending commands to
hypervisors and VM instances for configuration purposes. The collection of
virtual machine instances in a single domain is a Scalr Farm, which then can
be mapped to an Amazon EC2 environment for extended VM management.

2.1.5 Allocation Strategies for Cloud Resources

One of the key benefits of using cloud computing is the scalability, translated
into the ability to change the size of the virtual infrastructure (e.g. number
of VMs or application instances) for accommodating variable workload. In
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order to implement the scalability feature in a cloud management platform,
it is important to have a reliable and flexible mechanism for allocating virtual
resources (e.g. VMs) to physical resources (e.g. servers). In this subsection
we present a short overview of the state of the art approaches to resource
allocation in cloud environments.

Mazzucco and Dyachuk [105] propose an approach for allocating VMs to
servers by considering energy efficiency aspects by controlling the number
of running servers in the datacenter. However, they do not consider the
case when a server could host multiple VMs. They also use a forecasting
approach for estimating the arrival rate, similar to the one described in this
thesis, but only use the number of running servers as the means of saving
energy without considering consolidating VMs into fewer servers.

Xu and Fortes [156] describe a multi-objective resource allocation algo-
rithm using a group oriented genetic algorithm with a fuzzy averaged fitness
function, while we propose a cost based multi-objective evaluation function
using forecasted utilisation levels based on historical monitoring data. The
authors consider the initial allocation of virtual machines but not the costs
associated with the SLA violations, nor the possibility of oversubscribing
the resources based on forecasted utilisation data.

Zhang et al. [160] describe a runtime balancing system which uses statis-
tical forecasting to determine if a VM will experience high CPU or network
utilisation during either day or night period. Their proposed system uses
this information to place VMs on corresponding hosts, while our approach
uses a triple exponential estimation for forecasting of resource utilisation,
considering also the data seasonal trends.

Caron et al. [39] propose using a string matching algorithm for forecast-
ing resource utilisation demand in cloud environments by identifying the
VMs with similar characteristics. Our approach differs by the used forecast
algorithm, which considers data seasonal trends, and by using predefined
values for resource utilisation of unknown VMs.

Kim et al. [87] describe a master-agent task scheduler based on the
CometCloud management system, able to provision and size virtual infras-
tructures composed of VMs in hybrid infrastructure environments. Their
system is able to operate in an autonomous manner and to recover from
node failures. They do not address SLA guarantees, or how the network is
treated as a managed resource.

Lu et al. [98] take another perspective on the problem of SLA-based
planning by considering how to optimise decisions to outsource infrastruc-
ture demands to subcontractors. Their optimisation problem considers the
costs, profitability and SLA failure risks associated with outsourcing. While
we consider similar metrics for optimisation, our automation objective is not
concerned with planning and outsourcing, but with initial deployment and
ongoing adaptation of how infrastructure resources are used.
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2.2 Service Level Agreements

A Service Level Agreement (SLA) is a contract between a consumer and a
provider of a service regarding its usage and quality ([99] [124] [141] [143]).
SLAs are important for maintaining the provider’s reputation as consumers
compare SLA claims and experience when selecting providers [155]. The
cloud management system operated by the provider can then optimally ad-
minister the performance and risks of applications by having knowledge of
the infrastructure’s availability and performance [124][141]. For this reason
providers will seek ways of ensuring optimal SLA satisfaction, within the
constraints of their resource usage, energy consumption and budget, in or-
der to maintain business. Having insight or prior knowledge of application
workloads and data volumes that will be running on their infrastructure is
hence beneficial towards tuning their infrastructure for optimising both of
these objectives. This is aligned with the goals of Cross Stratum Optimisa-
tion (CSO) [92], that of considering both the (1) characteristics and state
of the network resources, and (2) the application-level SLA objectives for
scaling of cloud-distributed applications.

Providers aim to satisfy the Service Level Objectives (SLOs) of con-
sumers without disrupting their internal operation goals including minimi-
sation of operational costs, power consumption, burnout of equipment and
legal issues. Network operators and Internet Service Providers have been
using SLAs for assuring client’s experience in remote access to services and
inter-networking scenarios for many years [124][142]. SLAs are generally
used in Cloud Computing (e.g. at Infrastructure as a Service (IaaS) level)
for similar purposes [124][155][99]. The demand for rapid delivery of highly
available, high performance, networked applications and infrastructure ser-
vices makes automation support for SLA management a critical requirement.
A detailed presentation of the SLA’s structure is given later in this section.

However, the combination of CSO and SLAManagement is not a straight-
forward, complimentary relationship, especially when delivering services
composed of resources with different owners and concurrent consumers.
First, existing and emerging application and infrastructure services are no
longer single, isolated, remote servers, virtual machines (VMs) or band-
width. Disruptions in one resource can have consequences for the over-
all composite service, such that state information needs to be controllably
shared. There are then dependencies across operational strata (applica-
tion, machine and network) and domains with autonomous administrators,
life-cycles and management controllers, which can lead to a break in the au-
tonomy property. Second, application topologies continue to become more
complex and heterogeneous as service-oriented design becomes de facto (e.g.
common, but not officially established), due to the fact that such designs
became widely adopted as architectural enterprise pattern for building dis-
tributed applications. For these reasons the interdependencies between ap-
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plication deployment, usage and network capabilities need to be considered
during service planning and provisioning, making the coordination of SLA
management more complex.

The efficient management of Service Level Agreements (SLA) is of par-
ticular importance [124][48] for Cloud Computing, where exclusively-owned
Virtual Machines (VMs) are allocated resources on hosts in a shared phys-
ical infrastructure. However, a multi-objective optimization problem for
resource allocation arises, where the ability to deliver advertised levels of
performance and capacity availability need to be maximised, while minimis-
ing energy consumption and resource wastage.

Leading cloud service providers [52][155] (of infrastructure or application
services) use SLA management for specifying and maintaining the quality
of service (QoS) and availability levels to their customers. An important
phase of this process is allocation of resources including initial and runtime
placement optimization.

According to Marston et al. [103] SLAs play an important role also in
the enterprise environment especially for mitigating risks associated with
variability in availability of cloud resources. They often contain a model of
guarantees and penalties, which can be used by infrastructure management
systems for allocating and optimising the use of datacenter resources.

State of the Art in Modelling SLAs for Cloud Environments

We describe two language specifications for topology orchestration and man-
agement of distributed applications, the Unified Service Description Lan-
guage (USDL) and Topology and Orchestration Specification for Cloud Ap-
plications (TOSCA). Each of the two languages has its advantages and disad-
vantages, in the context of management of distributed applications in cloud
environments. We describe both and then we present a novel application
specification language from the enhanced combination of the two.

2.2.1 Unified Service Description Language (USDL)

The Unified Service Description Language (USDL)[126] is a domain-inde-
pendent service description semantic language aimed at expressing both
technical and business aspects related to services. USDL enables descrip-
tion of capabilities and non-functional characteristics of services, allowing
complex interactions to be captured. An extension of USDL, the USDL-
SLA [93] enables attaching guaranteed service states and actions in SLAs to
service descriptions.

The core concepts of USDL are represented in Figure 2.2, and are part
of the usdl# RDF (Resource Description Format) [88] namespace. The
USDL’s vocabulary is used for describing business, operational and technical
parameters of services, including information regarding pricing, legal, service
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Figure 2.2: USDL-Core Model

provider, interaction methods, and service level agreements. According to
the authors of USDL:

"The language supports the creation of structured descriptions
of services covering most relevant characteristics ranging from
technical aspects, to operational ones, socio-economic concerns,
or even legal issues."

The USDL-Core is the foundation module of USDL and covers four es-
sential aspects:

• Service descriptions
• Description of service offerings
• Business entities involved in the service delivery chain
• Interaction points allowing consumers to contract or trigger the bene-

fits of contracted services

We briefly describe each of the four mentioned aspects in relation to the
elements composing the USDL model.

The services are described by defining one or more usdl:Service elements,
for the purpose of describing the services in a way that it can serve as in-
terfaces between the provider and the consumer. The usdl:Service might
specify a usdl:ServiceModel, which captures common characteristics of simi-
lar services (e.g. enterprise resource planning services). The technical means
of accessing a Service is described by the usdl:Interface element, while the
actual steps in accessing and performing operations using the service are
defined by the usdl:InteractionPoint element.

A Business Entity will provide a usdl:ServiceOffering containing one or
more usdl:Services, which are offered to the public or specific customers, usu-
ally specifying a price and terms and conditions including service level agree-
ments. The participants in a service offering are defined using usdl:Partici-
pant elements, each having a specified usdl:Role.
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The following is an example of USDL description of a service offering.
<#Consumer> rdf:type <usdl#Role> , owl:NamedIndividual .
<#Provider> rdf:type <usdl#Role> , owl:NamedIndividual .

<#SAP> rdf:type <usdl#Participant> ,
owl:NamedIndividual ,
foaf:Organization ;
<usdl#hasRole> <#Provider> .
<#Florian_Antonescu> rdf:type <usdl#Participant> ,
owl:NamedIndividual ,
foaf:Person ;
<usdl#hasRole> <#Consumer> .
<#EIS_Load_Balancer_Service>
rdf:type <usdl#Service> ,
owl:NamedIndividual .
<#EIS_Storage_Service> rdf:type <usdl#Service> ,
owl:NamedIndividual .
<#EIS_Worker_Service> rdf:type <usdl#Service> ,
owl:NamedIndividual .
<#EIS_Service_Model> rdf:type <usdl#ServiceModel> ,
owl:NamedIndividual ;
<#has_service> <#EIS_Load_Balancer_Service> ,
<#EIS_Storage_Service> ,
<#EIS_Worker_Service> .
<#EIS_Service_Offering>
rdf:type <usdl#ServiceOffering> ,
owl:NamedIndividual ;
<usdl#hasServiceModel> <#EIS_Service_Model> ;
<usdl#hasParticipant> <#Florian_Antonescu> ,
<#SAP> .

The previous USDL code listing described a Service Offering for the EIS
composite service, between two participants: SAP and Florian Antonescu.
SAP is both a Participant and an Organisation with a Provider Role, while
Florian Antonescu is a Participant and a Person with a Consumer Role.
The EIS composite service has three sub-services: Load Balancer, Worker
and Storage.

One of the qualities of the semantic description languages such as USDL
is their extensibility. This allows enriching the original vocabulary with new
terms. Such is the case of USDL-SLA[93] language, developed for represent-
ing Service Level Agreements for service. We present next its structure and
usage.

Figure 2.3 depicts the main elements composing the USDL-SLA vocab-
ulary. The central entity is the Service Level Profile, which is the container
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Figure 2.3: USDL-SLA Model

for the descriptions of the service levels of a service. A Service Level Pro-
file contains one or more Service Levels, which specify single service level
objectives as they characterise offered, negotiated or agreed services. Ser-
vice levels are defined by the parties participating in service provisioning,
delivery and consumption and express assertions that are claimed or ex-
pected to hold during these activities. There are two types of service levels:
Guaranteed States and Guaranteed Actions.

A Guaranteed State is a particular service level that specifies a single
state that must be maintained within the lifetime of any service instance,
to which the respective service level profile applies. The Guaranteed State
is defined by a Service Level Expression. The other type of Service Level is
the Guaranteed Action, which specifies an action that must be performed, if
and only if during the lifetime of any service instance to which the respective
service level profile applies, a specific precondition (Service Level Expression)
is fulfilled. The example code listing given below shows how guaranteed
states and actions are represented.

The Service Level Expression specifies an expression that is evaluated
in the context of a service level state or action. For this purpose it may
reference a set of service level attributes (constants, metrics or variable ref-
erences) and define relationships between these attributes, e.g. Boolean or
arithmetic operands. Typically, it resolves to a Boolean value that indi-
cates whether a guaranteed state is met or whether the precondition to a
guaranteed action is fulfilled.

<#Average_Users_Per_Worker_Expression>
rdf:type <usdl-sla#ServiceLevelExpression> ,
owl:NamedIndividual ;
<#has_service> <#EIS_Worker_Service> .
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<#Average_Users_Per_Worker_Precondition>
rdf:type <usdl-sla#ServiceLevelExpression> ,
owl:NamedIndividual .

<#EIS_Average_Users_Per_Worker_Guaranteed_Action>
rdf:type <usdl-sla#GuaranteedAction> ,
owl:NamedIndividual ;
<usdl#hasPrecondition>
<#Average_Users_Per_Worker_Precondition> .

<#EIS_Average_Users_Per_Worker_Guaranteed_State>
rdf:type <usdl-sla#GuaranteedState> ,
owl:NamedIndividual ;
<usdl-sla#serviceLevelExpression>
<#Average_Users_Per_Worker_Expression> .

<#EIS_Worker_Service_Level_Profile>
rdf:type <usdl-sla#ServiceLevelProfile> ,
owl:NamedIndividual ;
<usdl-sla#hasServiceLevel>
<#EIS_Average_Users_Per_Worker_Guaranteed_Action> ,
<#EIS_Average_Users_Per_Worker_Guaranteed_State> .

<#EIS_Worker_Service>
<usdl-sla#hasServiceLevelProfile>
<#EIS_Worker_Service_Level_Profile> .

The example above contains an SLA represented in USDL-SLA, with a
Service Level Profile for the Worker service, composed of two service levels:
a guaranteed action and a guaranteed state. The Guaranteed State has a ser-
vice level expression, which defines the average number of users per Worker
service-instance. Similarly, the Guaranteed Action has a precondition ex-
pression, which is related to the guaranteed state. Finally, the service level
profile is attached to the Worker service using the hasServiceLevelProfile
property.

It is important to note that this example is not complete in this form,
as the details regarding the evaluation of the two service level expressions
are missing, and so is the information regarding the metrics used inside
the mentioned expressions. In sections 3.2 and 4.2 we describe a complete
semantic language for SLA representation, as well as SLA processing.
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2.2.2 Topology and Orchestration Specification for Cloud Applications
(TOSCA)

Topology and Orchestration Specification for Cloud Applications (TOSCA)
is one of the industrially-endorsed standardisation efforts in the area of ap-
plication cloud topology specification, defined by the Organization for the
Advancement of Structured Information Standards (OASIS) [123].

TOSCA is used for defining both the service components of distributed
applications (topology), as well as the service management interfaces (plans).
Service orchestration is realised by describing the interactions between the
services using workflows, called plans. TOSCA’s objective is to ensure the
semi-automatic creation and management of application layer services, while
guaranteeing applications’ portability across various cloud implementations.

The purpose of TOSCA is to enable the creation of declarative descrip-
tions of the components belonging to distributed applications, in terms of
services, infrastructure requirements, and interactions between services. It
effectively combines both declarative and imperative approaches. A declara-
tive model can be defined as describing the desired end-state, while providing
the means for adjusting the state until the desired end-state is achieved. This
is in contrast to the imperative approach, were the step-by-step instructions
are provided for reaching the desired end-state.

TOSCA’s model is composed of four top-level entities: nodes, services,
relationships, and artefacts as described below. Figure 2.4 graphically de-
picts the logical relations between TOSCA model’s components.

Nodes represent components of an application or service and its prop-
erties. Example nodes include Infrastructure (compute, network, storage),
Platform (operating systems, virtual machines, database), etc. TOSCA
nodes include operations as management functions for the nodes, such as
deploy, start, stop, connect, etc. The nodes export their dependencies on
other nodes as requirements and capabilities.

Relationships represent the logical relations between nodes, e.g. "hosted
on", "connects to". They describe the valid source and target nodes that
they are designed to couple, and have their own properties and constraints.

Service templates group the nodes and relationships that make up a ser-
vice’s topology. This enables modelling of sub-topologies, by means of com-
position of applications from one or more service templates, and substitution
of abstract node types with service templates of the same type.

TOSCA is represented using an XML encoding, as shown below. A
TOSCA container would process the XML representation as runtime, lead-
ing the execution of its management plan and to the instantiation of the
distributed application.

As mentioned earlier, TOSCA relies on service management platforms for
interpreting the service templates and associated management plan and for
converting them into infrastructure operations. Such a cloud management
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Figure 2.4: Relation between TOSCA’s model’s entities

<ServiceTempate ...>
<Extensions/>?
<Import />*
<Types/>? (<TopologyTemplate/> |
<TopologyTemplateReference/>)?
<NodeTypes/>?
<RelationshipTypes/>?
<Plans/>?
</ServiceTemplate>

Example 1: Skeleton of a TOSCA XML serialisation format

platform is IBM SmartCloud Orchestrator [77], which is based on Open-
Stack and uses TOSCA as a management input. It also uses Open Service
for Lifecycle Collaboration (OSLC) [122] standard for creating, updating,
retrieving, and linking to lifecycle resources.

TOSCA plans and service topologies can be created with a variety of
tools, such as Vnomic’s Application Landscape Designer [149], which en-
ables provisioning of complex multi-tier enterprise application workloads
from scratch or based on existing deployments onto EC2[7], VMware[153],
OpenStack[29], or other cloud platforms.

Figure 2.5 presents the TOSCA description of the SugarCRM [2] cus-
tomer relationship management (CRM) application. The application is com-
posed of two main subsystems: the SugarCRM PHP application and the

31



2.2. SERVICE LEVEL AGREEMENTS

Figure 2.5: TOSCA description of SugarCMR application

MySQL [121] relational database. The elements presented in Fig. 2.5 corre-
spond to the components described in the CSAR (Cloud Service ARchive)
[137] TOSCA interoperability specification.

The TOSCA CSAR specification of SugarCRM describes the require-
ments for deploying and running the application. The topology specifies
that the SugarCRM application module depends on the PHP Module and it
is hosted on the Apache Web Server component, which requires an Operating
System and a Virtual Machine. Similarly, the MySQL database component
is hosted on the MySQL relational management database system, which
runs inside the Operating System, which is hosted inside a Virtual Machine.

Corresponding to the topology components are the TOSCA plans, which
specify how the various components are instantiated, deployed and started.
There are two parallel plans describing the instantiation of each VM, instal-
lation of the operating system and then for the SugarCRM PHP module
describing the installation of Apache Web Server, PHP and the deployment
of the SugarCRM application module. For the MySQL database compo-
nent, the plans describe the installation of the MySQL server application
and creating the SugarCRM database schema. Once the two parallel plans
have completed, the SugarCRM application can be started.
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2.3 Distributed Enterprise Applications
This section discusses relevant work in the areas of distributed cloud-based
applications and approaches to their management and topology orchestra-
tion.

We classify four models of distributed cloud-based applications found in
literature ([71] [94] [154]) and practice.

• Redundancy-based models replicate functionality in different locations
for the purpose of fault mitigation or load-balancing.

• Capability-based models arise when individual components and services
of a single application have different compute and storage requirements
that are not likely to be found in one location.

• Workflow-based models represent the necessity of scheduling individual
components and services following a predefined control-flow.

• Concurrency-based, where there is a performance gain in job decom-
position, parallel processing and result aggregation.

For each of these models there are a set of common challenges that start
with the initial specification of how application components should be dis-
tributed, interconnected, monitored, maintained and eventually terminated.
The challenges extend to the selection of distributed resources and the co-
ordination of operations performed on the runtime of the service. There are
currently no best practices established for these challenges nor evaluation
models for solutions.

Distributed applications have special requirements as they need to be dy-
namically instantiated, configured, monitored and scaled. Rapid provision-
ing must be considered, as well as reporting, metering, and audit. Service
level agreements are usually involved for guaranteeing system performance
and runtime behaviour and also for creating base audits.

Cloud-Distributed Enterprise Applications [154] are component-based,
distributed, scalable, and complex business applications, usually mission-
critical. Commonly, they are multi-user applications handling large datasets
in a parallel and/or distributed manner, and their purpose is to solve specific
business problems in a robust way. Often these applications are running in
managed computing environments, such as datacenters [33]. Enterprise Re-
source Planning (ERP)[94] applications are a type of distributed enterprise
applications, which provide an integrated view of core business processes,
using multiple database systems.

Topology Orchestration and Cloud Management

To our knowledge, there is currently one industrially-endorsed standardisa-
tion effort for specification of application topologies, known as the Topology
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and Orchestration Specification for Cloud Applications (TOSCA) [115]. We
hence use this as our starting point for exploring the anatomy of enterprise
applications and service topologies. TOSCA is a language used for defining
both the service components of distributed applications (topology), as well
as the service management interfaces (plans). Service orchestration is real-
ized by describing the interactions between services using called plans (or
workflows). In this thesis we extend the TOSCA concepts by adding SLA
metrics and scaling rules for both the services and the associated infrastruc-
ture (compute, storage, network) resources.

For the purpose of service specification, the Unified Service Descrip-
tion Language (USDL)[126], is a domain-independent service description
language aimed at expressing both technical and business aspects. USDL
enables description of capabilities and non-functional characteristics of ser-
vices, allowing complex interactions to be captured. An extension of USDL,
USDL-SLA [93], enables attaching guaranteed service states and actions in
SLAs to service descriptions. We extend the USDL capabilities with aspects
related to network service management and more general service monitoring.

Much of the initial problem identification and definition was carried
out during the Generalised Architecture for Infrastructure Services (GEY-
SERS) European research project[63], which aimed at delivering an archi-
tectural blueprint and platform for seamless and coordinated provisioning
of connection-oriented networking (primarily optical) and IT (application,
compute and storage) resources as infrastructure services.

Various cloud management platforms, including OpenNebula, Open-
Stack, CloudStack [29], are possible candidates for realising dynamic ap-
plication topologies. The mentioned platforms enable on-demand virtual
resource provisioning, support multiple virtualization technologies, facili-
tate monitoring of resource performance by exposing various metrics about
the managed infrastructure and rapid resource provisioning through service
catalogs that contain pre-configured virtual machines, along with their host-
ing requirements in terms of computing and storage. While these technical
capabilities are a baseline for enabling dynamic application topologies, the
related work 2.3 section shows that there is already progress beyond these
basic capabilities.

Topology and Orchestration Specification for Cloud Applications OASIS Stan-
dard

Topology and Orchestration Specification for Cloud Applications (TOSCA)
is one of the industrially-endorsed standardisation efforts in the area of ap-
plication cloud topology specification, defined by OASIS [123].

TOSCA is used for defining both the service components of distributed
applications (topology), as well as the service management interfaces (plans).
Service orchestration is realised by describing the interactions between the
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services using workflows, called plans. TOSCA’s objective is to ensure the
semi-automatic creation and management of application layer services, while
guaranteeing applications’ portability across various cloud implementations.

According to its designers[123],

"the TOSCA language introduces a grammar for describing
service templates by means of Topology Templates and plans.
The focus is on design time aspects, i.e. the description of ser-
vices to ensure their exchange. Runtime aspects are addressed
by providing a container for specifying models of plans which
support the management of instances of services. The language
provides an extension mechanism that can be used to extend the
definitions with additional vendor-specific or domain-specific in-
formation."

The purpose of TOSCA is to declaratively describe the components of
distributed applications, in terms of services, infrastructure requirements,
and interactions between services. It effectively combines both declarative
and imperative approaches. A declarative model can be defined as describing
the desired end-state, while providing the means for adjusting the state
until the desired end-state is achieved. This is in contrast to the imperative
approach, were the step-by-step instructions are provided for reaching the
desired end-state.

Related Work on Topology Management of Cloud-Distributed Applications

Liu et. al. [97] describe a data-centric approach to cloud orchestration
by modeling the resources as data structures, which are then queried and
updated using transactional semantics: views, constraints, actions, stored
procedures and transactions. We follow similar design principles, includ-
ing the declarative approach to orchestration description and separation of
logical and physical aspects. However, their novel data-centric approach
introduces a new computational model for cloud management, whereas we
seek to enhance the capabilities of existing management systems where pos-
sible.

Juve and Deelman [82] present a system for cloud infrastructure man-
agement with a similar approach to the one envisioned by us in Chapter
3. They only focus on the initial deployment of distributed applications
and not on dynamic scaling of virtual resources and response to adaptation
triggers. They also do not consider the impact and provisioning of network
resources.

Malawski et al. [101] consider how to optimally provision for multiple
a priori known workflow ensembles with varying deadline and budget con-
straints. However, they do not consider the network as a critical part of the
topology orchestration and focus only on the workflow model rather than
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the structural aspects of the application topology. They are also considering
a fixed pool of VMs, which does not change during the workflow runtime.
In contrast, we propose scaling the number of virtual machines (VMs) based
on the service load defined through SLA guaranteed actions, applicable to
all distribution models.

Service Level Agreement Models

In the context of SLAs, we identify three types of messages, exchanged
between the provider and the consumer of the cloud services: template,
objective and agreement. We provide the definition of each message type
below.

Service Level Agreement Template: is a statement or advertisement
from providers about their guaranteed service levels. Providers may deliver
one or more SLA templates representing varying service level classes. For
example, Amazon EC2 [7] offers various service levels depending on the type
of selected VM. Rackspace [45] offers two services levels: Managed (for rapid,
on-demand deployment and response) and Intensive (for highly-customized,
proactive response on dedicated servers).

Service Level Objective: is a message from a consumer defining the type
and level of service they require. For example, a cloud consumer sends a
message containing a service-level objective to a cloud provider declaring
the size and quality of Virtual Infrastructure (VI) required for her/his ap-
plication. As an example, Amazon EC2 users can select different sizes of
EC2 instances (small, large, xlarge), each representing a different SLO.

Service Level Agreement (SLA): is an agreement that the consumer is
prepared to accept. When the provider also accepts to enter the contract it
is represented as SLA*, which is equivalent to a signed SLA.

The SLA negotiation phase is described as follows. An SLA occurs when
a service consumer (agrees) accepts specific service parameters on entering
a contract with a service operator or provider. In composite IaaS the roles
of provider and consumer change up and down the service delivery stack.
An entity in the role consumer specifies Service Level Objectives, before or
after the availability and capability of services and service providers are
known. Providers declare their service capabilities and quality guarantees
in the form of an advertisement, known as a Service Level Agreement Tem-
plate. Such templates act as the baseline for contractual agreement with
customers, potentially in different classes. Service Level Objectives, Tem-
plates and Agreements (SLAs) have basic requirements for structure and
content and can hence be represented using the same information model
(we then use the general term "SLA"):

• Parties include individuals, organizations and roles involved in the
agreement. The roles are typically consumer/customer and provider/-
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operator, but can also include a third-party broker, an intermediate
actor in the SLA management process.

• Functional description of the service’s purpose and capabilities. In the
case of a technical service the functional description refers to the set of
operations, methods and parameters. For example, the Web-Services
Description Language (WSDL) [41] provides a standard specification
for SOAP-based [72] web services. In the case of a network or con-
nectivity service the functional description refers to path selection and
bandwidth provisioning.

• Costs to the consumer for receiving the service. The units for costs are
defined by relating financial costs (for hardware, maintenance) of the
provider to utility functions (e.g. energy, real-estate) of the resources
used for providing the service. For example costs can be defined per
requests, per volume of storage used, per user or on a fixed-term or
unlimited basis.

• Guarantee or Quality of Service (QoS) terms are the non-functional
properties of the service. These properties include availability, perfor-
mance, response time, reliability and security.

• Recovery terms define what types of consumer-visible incidents the ser-
vice can recover from using an event-action mapping. A recovery term
can also define compensation, stating what the consumer can rightfully
demand from the service provider in return, should the functional or
guarantee terms not be fulfilled.

SLA negotiations could describe the agreement of parameters such as
response time, throughput, network bandwidth, in the context of given con-
fidence values and prices. For example, the provider might offer a range of
possible average response times (e.g. from 100 to 500ms) for a correspond-
ing average arrival rate of requests (e.g. from 10 to 100 requests per sec.),
for several confidence percentages (e.g. 95%, 97%, 99% and 99.5%). Each
combination of SLA parameters corresponds to a price and it is the result of
the negotiation process that a concrete value will be selected for each SLA
parameter.

Figure 2.6 presents the structure of an SLA agreement, as it is defined by
the TeleManagement Forum (TMF) and The Open Group standardization
organizations in [143]. It is composed of three top-level elements: Provider,
Consumer, and Level. The meeting of each element is given below.

Provider element specifies the name of provider and service being deliv-
ered (e.g. Amazon EC2). Provider-Type contains the role or type of service
provider (e.g. infrastructure provider). Provider-Details specifies details in-
cluding name, contact information and other properties of the entity that
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Figure 2.6: TMF SLA Model

might be necessary for legal purposes - these details are included for com-
pleteness but are not assumed to have direct consequence on the technical
handling of SLAs.

The Consumer element specifies the name of the consumer (e.g. SAP) -
SLAs are bilateral. Consumer Type contains the role of the consumer (e.g.
Platform Operator). Consumer Details term holds contact details of the
consumer (similar to provider).

The Level element provides a descriptor for distinguishing different lev-
els of quality associated with a SLA or Template. It further contains the
following elements: Grade, Access Point and Function.

The Grade element holds the grade used to categorise the SLA or Tem-
plate. Examples include Gold, Silver, Bronze or Priority, Intermediate, Ba-
sic. This can however be defined for the environment in question. The
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Description element is a textual description of the grade categorisation for
the SLA or Template. The Cost element contains the cost associated with
the grade of service; it also specifies a Value-Per-Unit element with the
numeric value of the cost; and a Unit element with theunit of cost (e.g.
Currency per month, Currency per transaction, Currency per GB).

The Access Point element specifies a technical access point or URL to
a provider of the service at the given quality level. It also specifies a Pro-
tocol element with the communications protocol used for interacting with
the provider (e.g. HTTPS, XML-RPC); and an Address element holding a
unique reference to a logical or physical service access point for the service.

The Function element details the capabilities provided by the service at
a given quality level. It further contains the following elements: Type, Pur-
pose, Operation, Guarantee and Recovery. The Type element specifies the
nature of the function (e.g. connectivity creation, storage volume creation,
application’s service instance creation). The Purpose element describes the
purpose for the function (e.g. provisioning). The Operation element holds
the list of operations that can be involved to execute the function (e.g. cre-
ate, read, update, delete). Each operation further details its Operation-Type
(e.g. the data or item returned by the operation) and parameters (the set
of input data for the operation). The Guarantee element holds information
about the set of guarantees at a given service level (e.g. performance, relia-
bility, security), defined by the following terms: Metric-per-Guarantee (the
metric used to measure the guarantee, such as response time, mean time to
failure, mean time to recovery, cryptographic suite, etc.), Upper-Bound (the
upper value for the guarantee), Lower-Bound (the lower value for the guaran-
tee) and the Certainty (the degree of certainty the provider promises). The
Recovery element contains a specification of actions given specific classes
of incidents, detailed by their Event, the triggers that represent incidents
(e.g. timeout, illegal access) and thier Action (the type of action taken if an
incident or class of event occurs, such as restart, re-allocate, scale-out, etc.).

Related Work on Service Level Agreement Management Systems

There are multiple frameworks and tools, which allow management of dis-
tributed applications composed of several (interdependent) services. One
example is OpenNebula AppFlow [116], which allows definition and man-
agement of applications composed of services mapped to one or multiple
VMs, enabling automatic management of VMs’ elasticity.

Zhang and Song [159] propose an architecture for SLA Management tak-
ing into account the five phases of SLA management process. They also con-
sider different roles (service provider, service broker, SLA Manager, service
client) and implement this via two modules (offline and runtime). The of-
fline module handles SLA registrations and client queries, template storage.
The runtime module handles monitoring, logging and controlling (detects
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SLA violations, possible admission control). As their proposed architecture
is single-domain oriented, its implementation is monolithic and there are
no events utilized. In our proposed architecture feedback is incorporated
from more than one source (e.g. different providers and clients) taken into
consideration the distributed nature of the architecture.

Theilmann, Happe et al. [141] propose an architecture for hierarchical
SLA Management in service oriented environments by considering the en-
tire lifecycle of SLAs and services. Their architecture is also event-based
and utilizes two types of models: SLAs for the communication within and
among SLA Managers, as well with external providers and a model for de-
scribing creation of new service instances based on SLAs. Particular to
this architecture is its adaptation to software service environments and not
infrastructure services. Furthermore they assume exclusive control of the
available resources.

There are multiple research projects exploring the use of SLAs in the
context of cloud computing, especially in relation to networking services
(e.g. Network-as-a-Service). These projects build on the wealth of cloud
infrastructure management platforms, such as OpenNebula, OpenStack and
others. We will briefly present the following projects: GEYSERS (Gen-
eralized Architecture for Dynamic Infrastructure Services), Mobile Cloud
Networking (MCN), SLA@SOI and Optimis - for their pioneering role in
defining frameworks for convergent management of SLAs in complex cloud
computing environments.

SLA@SOI

The research project SLA@SOI [1] provides a major milestone for the further
evolution towards a service-oriented economy, where IT-based services can
be flexibly traded as economic goods, i.e. under well defined and depend-
able conditions and with clearly associated costs. Eventually, allowing the
creation of dynamic value networks that can be flexibly instantiated, thus
driving innovation and competitiveness. It provided a reference SLA man-
agement architecture for cloud environments. Also, the project contributed
to the evolution of OCCI (Open Cloud Computing Interface) [57] and USDL
(Universal Service Description Language) [126] cloud standards.

SLA@SOI provides 3 major benefits to the provisioning of services:

• Predictability and Dependability: The quality characteristics of ser-
vice can be predicted and enforced at run-time.

• Transparent SLA management: Service level agreements (SLAs) defin-
ing the exact conditions under which services are provided/consumed
can be transparently managed across the whole business and IT stack.

• Automation: The whole process of negotiating SLAs and provisioning,
delivery and monitoring of services will be automated allowing for
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highly dynamic and scalable service consumption.

GEYSERS

The main objective of the project GEYSERS ([52, 17, 21, 18]) (2010-2013)
was to define, develop and validate an end-to-end network architecture,
based on extending standard ones, in order to enable provisioning of vir-
tualised networks using optical networks for cloud computing operations.
The goal of the project was to create a new planning, provisioning and
(ultimately) a business framework for infrastructure providers and opera-
tors. To do so, GEYSERS has defined and implemented an architecture
[144], capable of provisioning Optical Network and IT resources for end-to-
end service delivery, while using semantic service descriptions and SLAs for
ensuring the automated provisioning and scaling of virtual infrastructures.
GEYSERS proposed a vision under an evolutionary approach that follows
a network-centric and bottom-up strategy.

This vision was based on partitioning the photonic network infrastruc-
ture for creating specific virtual infrastructures, composed by optical net-
work and IT resources at the edges. Each virtual infrastructure was to be
controlled by an enhanced Network Control Plane capable for the provision-
ing of Optical Network dynamic services coupled with IT resources.

The GEYSERS research effort created the Service Middleware Layer
(SML) [52] framework for exploring the use of SLAs for automated man-
agement of distributed VM-bounded services. The SML represents a con-
vergence layer for coordinating IT resources on behalf of various distributed
applications. We shortly describe the SML, including its consumption of
SLAs during the management of applications and cloud landscape.

The GEYSERS architecture [52] consists of three actors, each performing
a different functional role: provider, broker and operator.

The provider usually owns the virtualizable physical resources (e.g. net-
works and servers). A provider allows access to its resources by installing
the Lower Logical Infrastructure and Composition Layer (LICL) compo-
nent, which provides services such as discovery of the available hardware,
abstracting the access to the virtualisation controllers and mapping physical
resources to logical pools of infrastructure resources.

The broker component interfaces between multiple providers and op-
erators. This functionality is implemented by the Virtual Infrastructure
Provider (VIP), which is managing the Upper LICL component of GEY-
SERS. The VIP aggregates multiple resources belonging to different providers
into virtual resource pools.

The operator usually represents the application/user of the composed
virtual resources. An operator expresses the expectations and requirements
of distributed applications through SLAs. SLAs [18] may contain both (a)
consumer-specified service scaling rules and (b) composed application-wide
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monitoring conditions.
In a typical scenario, the Lower LICL discovers its physical resources and

informs the broker accordingly. The broker maintains a list of aggregated
resources per provider (e.g. total number of CPUs, memory, disks). When
asking for resources, the operator receives information about the maximum
resources available at each provider and the maximum available bandwidth
between the providers (the possibly virtualized optical networks). The op-
erator selects the corresponding provider(s), SLAs are agreed and the VIP
manages the selected resources such that the SLA is maintained with regards
to the agreed amount of virtual resources.

Mobile Cloud Networking

Mobile Cloud Networking (MCN)[106], 2012-2015, EU research project has
the goal to "define and evaluate Europe’s vision of mobile cloud computing,
by enabling European Telco industry to take and sustain leadership in mobile
cloud computing and thus a fundamental pillar of the Future Internet" [106].

The motivations of the Mobile Cloud Networking project are to:

• Extend the Concept of Cloud Computing beyond data centres towards
the Mobile End-User by using SLAs for managing both the infrastruc-
ture resources as well as the offered services

• Provide one atomic, on-demand, elastic, and pay-as-you-go service for
Mobile Network + Computing + Storage

For reaching these goals, MCN relies on a SLA management platform
for(1) rating, charging and billing (RCB) purposes, (2) for inter-provider
negotiation of NaaS and IaaS service offerings, and (3) for customer-to-
business SLA negotiations.

OPTIMIS

Project OPTIMIS (Optimized Infrastructure Services) [120] (2010-2013)
aimed at enabling organizations to automatically externalize services and
applications to trustworthy and auditable cloud providers in the hybrid
model[108]. Consequently, OPTIMIS supported and facilitated an ecosys-
tem of providers and consumers that will benefit from the optimal operation
of services and infrastructures, by covering the full lifecycle of services and
their interactions. OPTIMIS provided a SLA model for multi-round nego-
tiating and creation of agreements between providers, brokers and cloud-
customers.
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2.4 Data Analysis Mechanisms for SLA-Driven Management
of Cloud Resources

The SLA-based management of distributed services and applications is equiv-
alent to a multi-objective constrained problem, where various guarantees
such as service response time and availability per customer have to be man-
aged together with operational objectives such as cost, energy consumption
and utilization. This leads to the requirement of using complex mechanisms
for data analysis. In this section we present how the various models re-
quired for SLA management of cloud resources are calculated and which
data analysis mechanisms are used.

In a distributed, multi-provider, multi-customer, cloud environment there
are different categories and classes of infrastructure and application services
running in parallel and contending for the same physical resources. Un-
derstanding correlations between key performance indicators of dependent
services is hence important in effective SLA management for understanding
the relations between the distributed services and the impact on services’
performance guarantees. Identifying services with similar behaviours and
access patterns provides hints that they (the services) should share either
the same or different resources and configurations, depending on the oper-
ational circumstances. Discovering statistical correlation between services’
performance indicators (e.g. average execution time) helps better under-
standing the causes of performance bottlenecks (leading to SLA violations)
in cloud applications [30], and thus understanding SLA violation causes. By
using correlation information it also becomes possible to (1) refine service
monitoring, (2) perform SLA levels health checking (compare current mea-
sured values against the maximum/minimum ones defined in the SLAs), and
(3) improve scaling of cloud applications.

By applying estimation models on groups of performance indicators with
strong statistical correlations, it becomes possible to express critical SLA pa-
rameters as function of multiple measurable service indicators (as described
in Chapter 5), thus (1) describing analytical SLA dependencies and (2)
allowing automated service management based on expressed dependencies
between the distributed services.

As it is often the case that cloud applications exhibit predictable and
repeatable patterns (hourly, daily, monthly) in their resource utilisation lev-
els, caused by the execution of repeatable workloads (e.g. with hourly, daily,
weekly patterns), a Cloud Management System (CMS) can benefit from de-
tecting such repeatable patterns by combining this information with pre-
diction mechanisms in order to estimate the near-term utilisation level of
both software and physical resources, and then to optimise the allocation of
resources based on the SLAs.
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2.4.1 Data Prediction Mechanisms
We define the SLA Cloud Management Optimization (SLA-CMO) problem
[19] [147] [18] [16] as: improving the allocation of datacenter’s computing
resources by dynamically changing the number of VMs allocated to cloud
services, so that SLA-defined performance requirements are met under vari-
able workload conditions. It is therefore essential to predict as accurately
as possible this variable workload parameters (such as the number of users,
transaction rates, rate of arrival, etc.).

Solving the SLA-CMO problem depends directly on having a reliable
source of monitoring information reflecting the state (e.g. number of allo-
cated VMs, system’s throughput, requests arrival rate, response time) of
the managed distributed systems. The management system will then take
corrective actions for ensuring that the SLA contracts guaranteeing the sys-
tem’s performance are not violated. However, the actions’ effects on the
underlying system might be delayed, creating a time window during which
the system might be in an undesirable state (e.g. under-performing). Such
SLA violations can be avoided [11] if the SLA management system can
timely predict the trend and variation of the critical monitoring system’s
parameters, allowing it to actuate (e.g. scale-out - increasing the number
of VMs allocated to a distributed service) at such a time moment that the
newly added virtual resources (e.g. VMs) become active just as the workload
would surpass the previous capacity of the cloud system.

The prediction problem can be defined as finding the next n values of
a dependent system’s parameter P , using p previous values of one or more
predictors as shown in Equation 2.1

(Pt+1, Pt+2, ..., Pt+n) = f(Xt, Xt−1, ..., Xt−p) (2.1)

where t is the current time moment, Xt is the value of the predicting
vector at time t, and f is a function.

The above definition is true for parameters whose values are depending
on other system parameters, for example, the average execution time of a
distributed application depends on the number of VM instances allocated
to the service, the workload’s arrival rate and the application’s average oc-
cupancy (as defined by Little’s law [96]).

Another class of parameters are the independent [139] ones, whose values
are not determined by other parameters. In an experiment the independent
variable it is changed or manipulated by the researcher, while the depen-
dent variable is the response that is measured. An independent variable is
the presumed cause, whereas the dependent variable is the presumed effect.
An example of such system parameter is the workload arrival rate, which
is determined only by factors external to the system. Such independent
parameters can also be predicted, by observing certain patterns in the dis-
tribution of data and then recognising when the data flow will start following
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a certain learned pattern. This can be formulated as a dependency of the
current and future values of the parameter on the previous own values, as
shown in Equation 2.2, where the mathematical terms are the same as the
ones from Equation 2.1.

(Pt+1, Pt+2, ..., Pt+n) = f(Pt, Pt−1, ..., Pt−p) (2.2)

Figure 2.7 shows a snapshot of such an independent parameter - the
request arrival rate of a transaction processing application.
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Figure 2.7: Requests Arrival Rate

When identifying repeatable patterns in temporal data series, it is impor-
tant to pay attention to the statistical parameters of the data series, such as
variance, mean, trend, etc. For example, a large variance in the data could
hide a repeating pattern, therefore filtering the data series by applying a
moving average or kernel smoothing [47] could expose the underlying trend
of the data. By analysing the trend of the temporal data series, two types of
variations could be observed: linear and non-linear. We shortly present in
the following sections the mathematical fundamentals for linear regression,
error calculation and non-linear regression.

2.4.2 Statistical Linear Models
A linear statistical model (or linear regression model) [128] represents the
mathematical relation between a dependent variable Y and one or more
predictor variables X, as shown in Equation 2.3, where lower case y is a
single value from the time series Y . (Please note that capital letters represent
the time series/vectors, while the lower-case letters represent single values
of those vectors.)

y = x0 + βx+ ε (2.3)

y is the dependent value, x0 is the intercept (free term), β is a transposed
vector of scalar coefficients, X is a vector of independent variables, and ε is
the error term [128].

45



2.4. DATA ANALYSIS MECHANISMS FOR SLA-DRIVEN
MANAGEMENT OF CLOUD RESOURCES

If Y is a scalar variable andX is also a scalar variable, then the regression
is called simple. If X is a vector of independent variables, the regression is
called multiple. If both X and Y are vectors then the statistical model is
called general linear model.

When the modelled variable is independent (e.g. rate of which requests
are arriving at a service) and it is represented as a time series, we are dealing
with autoregression, as shown in Equation 2.4.

yt = y0 + βyt−1 + ε (2.4)

yt and yt−1 are values of variable Y at time t and t − 1 respectively, y0
is the model’s intercept term (e.g. value ot Y at t = 0), ε is the error term,
and β is the regression coefficient [128].

By assuming that the model’s accuracy is acceptable over a time window
of length p, it is possible to predict the next n values of Y by applying
n times the formula in Equation 2.4, starting with Yt. A linear model’s
accuracy is defined in terms of errors. In Section 4.3 we show an example
of how auto-regression can be used for predicting the time series shown in
Figure 2.7.

2.4.3 Statistical Non-Linear Models

Non-linear regression is a form of regression in which the mathematical re-
lation describing the dependency between the predictors and the dependent
variable is a non-linear combination of parameters, for example exponen-
tial addition. Exponential smoothing is an example of non-linear modelling,
where a time series is smoothed by approximating its terms with computa-
tions of an exponential function.
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Figure 2.8: Sample Time Series with a Periodic Pattern

While non-linear models are more suitable to represent complex patterns
in time series, they also introduce additional complexity as their output usu-
ally depends on correctly identifying the underlying signal’s period, needed
by some prediction algorithms for decomposing the signal into its seasonal,

46



2.4. DATA ANALYSIS MECHANISMS FOR SLA-DRIVEN
MANAGEMENT OF CLOUD RESOURCES

trend and noise components. Also, some non-linear prediction algorithms,
such as Holt-Winters [74] require having a time series with a length of at
least two periods.

Let us present a simple example. Figure 2.8 shows a time series con-
taining a repetitive pattern (closely resembling the more complex patterns
usually found in business-critical enterprise applications), with some added
noise. The first period is coloured red. The data was generated by calculat-
ing the absolute value of function sinus multiplied with a constant factor,
as shown in Equation 2.5.

Y = 1 + 720
∣∣∣∣sin(x π

180)
∣∣∣∣+ ε, x ∈ (1...720) (2.5)
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Figure 2.9: Holt-Winters Prediction. Top: Signal’s Period:180. Bottom: Signal’s
Period: 145

There are multiple ways of extracting the period of a signal, for exam-
ple by using the autocorrelation function as in [11], or by calculating the
estimated spectral density of the time series using the periodogram [32] and
then converting the frequency with the largest spectral density into the sig-
nal’s period. Naturally, the period of Y is equal to 180 (e.g. seconds), as
the function sinus has a period of 2π and |sin(x)| has a period equal to π.

Figure 2.9 shows the prediction output for the time series given above,
by applying the Holt-Winters algorithm, first with the correct period of the
time series (180), and then with an approximative value for the period (145).
This shows the importance of correctly identifying the signal’s period before
attempting to predict it, which can be difficult in practice. The lower image
shows a bad prediction caused by the incorrect detection of the trend of
the time series, caused by the shorter value of the period - the signal being
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identified as having 6 periods instead of 5.
The non-linear prediction models are suited for forecasting time series

with seasonal variations, such as hourly, daily or monthly. The predictions
can then be used for optimising processes with longer time horizons [148],
such as the allocation of physical computing resources [19]. For the work
presented in Section 4.4 we will use a combination of linear models and
error estimation, as the time horizon of the prediction is usually short, in
the range of tens of seconds.

2.4.4 Errors in Statistical Models

The linear model calculates for each value xt of the independent variable
X a corresponding approximation value X̂t according to equation 2.4. The
difference between Xt and X̂t represents the regression error. By applying
the regression over a time series X, a series of error values called residuals
are produced. When the errors are calculated between the predicted values
and the actual values of the independent variable, the errors are then called
out of sample errors. Residuals are important for calculating the accuracy
of modelling, while the out of sample errors are important for calculating
the prediction’s accuracy.

We present two metrics for quantifying the regression errors: Root Mean
Standard Deviation (or Error) and Mean Absolute Percentage Error.

The Root Mean Standard Deviation (RMSD) is a scale-dependent mea-
sure (dependent on the variable’s maximum value) of estimation error, equal
to the square root of the mean square error, as shown in Equation 2.6.

RMSD =

√∑n
t=1(Ŷt − Yt)2

n
(2.6)

The Mean Absolute Percentage Error (MAPE) is calculated as the mean
of the error’s modulus, as shown in Equation 2.7

MAPE =
∑n
t=1 |Ŷt − Yt|

n
(2.7)

and it expresses accuracy as percentage. We will use MAPE error for
calculating the regression’s accuracy and for deciding whether the prediction
can be used for SLA-based scaling in Section 4.4.

Correlation and Autocorrelation Mechanisms

The correlation coefficient r is defined according to Equation 2.8, where
x and y are sample values, x̄ and ȳ are variables’ average value, n is the
number of monitoring samples in the considered time window, σx and σy are
the standard deviation of each variable. We used the correlation coefficient
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Figure 2.10: Correlogram. The axes X and Y represent the parameters whose
values are correlated. Each cell represents the value of the correlation between the

vectors on the X and Y axes.

for determining the relations between the different monitoring metrics of the
services found under SLA control.

r = 1
n− 1

n∑
i=1

(
x− x̄
σx

)(
y − ȳ
σy

)
(2.8)

When dealing with measurements from different monitoring metrics, a
correlation matrix can be calculated between each time series corresponding
to the service monitoring metrics. This then allows determining a set of
highly correlated metrics, which can be then used for calculating different
estimators for critical monitoring metrics. Figure 2.10 shows a graphical
representation of such a dependency matrix between time series correspond-
ing to the monitoring metrics of a distributed application, where the letters
represent monitored service’ metrics. The red squares indicate a high cor-
relation between the time series.

When dealing with data signals experiencing repeatable patterns, it is
advisable to calculate the autocorrelation of those signals (correlation value
of signal and itself), in order to test if indeed the signal has an observable
period. Figure 2.11 shows the partial autocorrelation function of a periodic
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Figure 2.11: Autocorrelation of a periodic data signal

signal, which is the correlation of the signal with its delayed self. The figure
expresses several local maxima, with the one corresponding to an index in
the data series of approximately 5000 on the X axis, being caused by the
signal’s period (equal to 5000 samples).

Related Work on Prediction Algorithms

Gandhi et al. [60] propose a hybrid solution for predicting the data center
resource demands using historical monitoring data. They are pro-actively
predicting the load, for handling the periodic changes that characterize most
cloud utilization patterns. They also propose using a reactive workload de-
mand prediction for capturing the differences from the seasonal workload
patterns. We also combine SLA-based control of distributed systems with
action scheduling based on previously determined relations between applica-
tion load and the number of active services, however we consider additional
algorithms for processing the monitoring information such as a genetic al-
gorithm and result from applying Little’s Law.

Anh et al. [50] analyse the performance of cloud applications, which
share resources with other running applications in the same physical host,
by looking at the correlations between application and system performance.
We use statistical correlation [47] between the time series corresponding
to the performance monitoring metrics of distributed services in order to
determine the set of predictors of critical SLA metrics, which can then be
used for controlling services scaling.

Visan et al. [148] describe a bio-inspired prediction algorithm based on
a Cascade-Correlation neural network, which uses a genetic algorithm for
initialising the network’s weights. The authors use their algorithm for per-
forming both one-step and multi-step predictions of a large-scale distributed
experiment, with good results. We use a group-oriented genetic algorithm
for performing the allocation of VMs to hosts and a moving window linear
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regression algorithm for estimating the next values of services’ state param-
eters.

Islam et al. [79] present an approach for predicting the aggregated per-
centage of CPU utilisation of VMs running a distributed web benchmark,
using both error correction neural networks (ECNN) and linear regression
(LR). Their results suggest that although using ECNN yields better pre-
diction results than, the need to retrain the neural network might be a
disadvantage compared to the use of LR. We focus our work on using LR
in the context of SLA-driven scaling of cloud services, showing how predic-
tion can be used for mitigating the disadvantages caused by the delay in
instantiating VMs.

Roy et al. [133] present a VM-allocation algorithm, which uses a second
order autoregressive moving average prediction method for optimising the
utility of the application over a prediction horizon. We also use the predic-
tion of the arrival rate of users for sizing the distributed system, however, we
directly use SLAs for solving the VM-scaling problem. We have proposed
an algorithm based of moving window linear regression with feedback loop
for improving prediction’s accuracy.

2.5 CloudSim Simulator

CloudSim [91] positions itself as a simulator for both cloud applications
and infrastructure. It accomplishes this by allowing modelling of hardware
(VMs and network topologies) and software cloud resources. Among the
modeled physical entities there are hosts, network links and datacenters,
while the modeled software entities are: virtual machines (VMs), brokers
and cloudlets (tasks). This is achieved by offering the mentioned entities
as Java classes that can be extended according to simulation requirements.
The simulator is implemented using discrete events communication, fired at
a specified minimum time interval. Cloud tasks (cloudlets) are created by
brokers, which send them to VMs for execution on the resources of the hosts
forming the datacenter. Upon completion of each cloudlet’s execution, its
parent broker is notified.

In CloudSim, a datacenter is composed of (1) a collection of hosts, (2)
storage devices, (3) a policy controlling the allocation of VMs to hosts,
and (4) resource utilization costs for comsumed computing time, memory,
storage and network bandwidth. Each host is defined by (1) its number
of processing elements and computational capacity measured in Millions
Instructions Per Second (MIPS), (2) RAM memory size, (3) storage size,
(4) network bandwidth and VM scheduling policy. As VM allocation poli-
cies it supports (1) time-shared, (2) space-shared, and (3) time-shared with
over-subscription. The datacenter network is given using a BRITE [107]
specification.
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VMs are described by their requirements in terms of (1) number of CPU
cores and MIPS rating, (2) memory size, (3) network bandwidth, (4) virtual
machine manager, and (5) cloudlet execution policy. There are four built-in
cloudlet execution policies: (1) time-shared, (2) space-shared, (3) dynamic-
workload, and (4) network space-shared. The CloudSim API allows for easy
development of new cloudlet execution policies.

CloudSim models cloud tasks as cloudlet entities [36], defined by (1)
their computing requirements given as number of processing elements, and
computing task length given in MIPS, (2) network bandwidth consumption
for input and output, (3) CPU utilization model, (4) memory utilization
model, and (5) network bandwidth utilization model. Cloudlets are repre-
senting tasks/jobs submitted for execution to the cloud.

Cloudlets are generated by Dacenter Brokers, which are simulator-level
representations of cloud services (distributed application services deployed
in the cloud environment). Each broker controls one or more VMs and it
implements a selection algorithm for choosing which VM will receive the
generated cloudlets. The broker also implements the algorithm for reacting
to the completion of various cloudlets it has generated.

For simulating a distributed application, one must create one or more
datacenter brokers and implement the algorithms for generating cloudlets,
as well as handling their completion. Also, at least one datacenter needs to
be defined, including its hosts and network. In Section 7.2.2 we present how
to model a distributed enterprise application using CloudSim.

Buyya et al. [36] presented an approach for simulating large scale cloud
environments by using CloudSim. While they described the steps required
for simulating a large number of hosts and network connections. However,
they did not focus on how to model applications using CloudSim. Our
work fills this gap by presenting a methodology for simulating a large-scale
distributed application. We also describe how to map datasets generated by
monitoring real services deployed in a distributed environment, to CloudSim
models.

Garg et al. [61] extend CloudSim with more advanced network simula-
tion capabilities. They model the datacenter network landscape by intro-
ducing switch and network packet simulation entities. The authors simulate
a network application using four VMs and compare the results to the simu-
lator, in a similar manner to our approach. We further extend CLoud Sim
to support simulation of SLA-based VM-scaling algorithms.

2.6 Little’s Law in Distributed Computing Environments

This section describes the theoretical foundation of Little’s Law [96], as we
used it for enhancing the VM-scaling algorithms presented in Section 4.4.

Little’s Law applies to users-processing systems, and it is a result from
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the queuing theory stating that the long term average number of users (L)
in a system is equal to the product of the rate (λ) at which users arrive, and
the average waiting time (W ) that a user spends in the system, as expressed
algebraically in Equation 2.9.

L = λW (2.9)

Another form of Little’s Law applies to the relation between the average
system’s throughput (Th), mean number of users in the system (L), and the
average execution time (W ), as expressed by Equation 2.10.

W = L

Th
(2.10)

It is important to note that Equation 2.9 uses the arrival rate, while
Equation 2.10 uses the system’s throughput. The two equations are equiva-
lent under conservation of flow conditions, when the average arrival rate (λ)
is equal to the average departure rate (or throughput Th). Also, all the jobs
entering the system must exit the system at a given point, so the system
must report also the exceptional cases when a job fails, as long as that job
was considered in the calculation of the arrival rate. Finally, the system
needs to be stable [96], by occasionally having L = 0 (empty system).

We use Equation 2.10 in Algorithm 4.3, which uses benchmark-generated
data describing the dependencies between the average arrival rate, the sys-
tem’s average throughput, the average number of concurrent requests exe-
cuted by the distributed system and the average execution time.

2.7 Genetic Algorithms
In the section we describe the general structure of a genetic algorithm.

A genetic algorithm (GA) is a type of evolutionary algorithm used for
solving search problems. They usually start from a initial solution, which
is iteratively improved until the increase in the quality of the solution is
no longer significant. This class of algorithms mimics the natural selection
process in which a population of individuals is evolving, improving their
features so that they better adapt to their natural environment.

In a genetic algorithm, a population of candidate solutions (called in-
dividuals) for an optimization (search) problem is evolved towards better
solutions, as measured by a fitness function. Each candidate solution has
a set of properties (its chromosomes) which can be mutated and altered
(e.g. recombined). Each chromosome is composed of genes, which are the
building blocks of the solution. In the classical problem of bin-packing, the
objects are the genes, and the backpack or the bin is the chromosome.

The evolution process starts from a population of randomly generated
individuals (or approximative solutions obtained using other heuristics), and
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it is an iterative process. The population corresponding to each iteration is
called a generation.

In each generation, the fitness of each individual is evaluated by calcu-
lating the value of the objective function corresponding to the optimization
problem being solved. The individuals with a high fitness are stochastically
selected from the current population, and each individual’s genome is modi-
fied (recombined and possibly randomly mutated) to form a new population.

The new generation of candidate solutions is then used in the next iter-
ation of the algorithm. Commonly, the algorithm terminates when either a
maximum number of generations has been produced, or a satisfactory fitness
level has been reached for the population.

A typical genetic algorithm requires:

• a genetic representation of the solution domain

• a fitness function to evaluate the solution domain

Once the genetic representation and the fitness function are defined, a
GA proceeds to initialize a population of solutions and then to improve
it through repetitive application of the mutation, crossover, inversion and
selection operators.

The two genetic operators involved in GAs are the mutation and the
crossover.

The mutation operates by randomly selecting a gene from one of the
chromosomes forming the population, and then changing its value. As it is
generally accepted that a mutation rate that is too high may lead to loss
of good solutions, it is common the case that elitism is used for protecting
the good solutions, by keeping unchanged a given percentage of the best
chromosomes in each generation.

The crossover operator takes two parent chromosomes from the current
generation and exchanges their genes, producing two new child chromo-
somes.

The quality of each solution is calculated by using a fitness function
which measures how close the chromosomes in the current generation are to
solving the problem.

The GA reaches termination when one or more of the following condi-
tions are met:

1. a given number of generation has been reached

2. the maximum value of the fitness in each generation has reached a
plateau such that successive iteration are no longer producing an in-
crease in the quality of the solution

3. the maximum computational budget (e.g. time) has been used
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Chapter 3

Topology Orchestration and Semantic
SLA Modeling for Distributed
Cloud-Based Applications

In order to solve the problem of SLA-driven scaling of ditributed applica-
tions, we first have to define the model that will be used for representing
the distributed applications and their performance constraints. For this
purpose, we describe in Section 3.1 a well-known model of topology or-
chestration, proposed by the Organization for the Advancement of Struc-
tured Information Standards (OASIS). After we have presented the lifecycle
phases associated with topology orchestration, we continue with extending
the USDL-SLA ontology (already presented in Section 2.2.1) in Section 3.2
with the needed terms for enabling automated processing of SLAs, thus facil-
itating the solution for unattended scaling of distributed applications using
SLA-defined constraints. We introduce the semantic relations for expressing
the connections between services, their monitoring metrics, and performance
invariants, which are the foundation of SLA expressions. We then use this
flexible ontology in Chapter 4 for describing the SLA-based Cloud Service
Management Platform.

3.1 Introduction to Topology Orchestration and SLA Mod-
eling for Cloud Environments

Cloud-distributed applications [154] are component-based, distributed, scal-
able, and complex business applications, usually mission-critical (e.g. the
applications are the key to the success of the enterprises running them).
Often these applications are running in managed computing environments,
such as datacenters [33]. Therefore, the automated manner in which these
distributed applications are managed, leads to the requirement of having a
machine-readable representation of their components, services, infrastruc-
ture-resource requirements, monitoring metrics and actionable (executable)
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management operations.
The dynamic management of distributed software and infrastructure

compute, storage and network resources is referred to as dynamic applica-
tion topology orchestration [10, 18], where the mapping of services to cloud
resources and configuration of distributed, interconnected, interdependent
application services and infrastructure resources are dynamically adjusted,
according to guarantees in Service Level Agreements (SLAs) and operational
constraints.

In the context of scalable distributed applications, automated manage-
ment of applications plays a crucial role, as the correct provisioning of the
virtual infrastructure resources (such as computing, network and storage)
depends on the correct identification of the application’s requirements. Sim-
ilarly, at runtime, the correct interpretation of the states of the distributed
applications depends on the identification of SLA guarantees and of the
monitoring metrics used in the definitions of the SLA’s expressions (e.g.
performance guarantees). Based on this information, scaling actions can
be performed, in which either the number of application instances is varied
(e.g. some instances are added, or removed), or the amount of infrastruc-
ture resources is changed (e.g. number of allocated virtual CPU cores, or
the amount of allocated RAM memory is changed).

The core concepts for application topology specification and orchestra-
tion of SLA management, namely, provisioning, monitoring and response
are presented next.

3.1.1 Application Topology and Infrastructure Requirements
An application topology AT is a structural specification of how distributed
services S are to be deployed and interconnected on any selected execution
environment.

We define the application topology as a tuple AT = (S, SS, Z, ZZ, P )
where:

• S is the set of distributed services that compose the application. Each
Si ∈ S has a unique name Si.uname and is associated with a set of
assets Si.assets = (a1, ..., an). An asset ai refers to software, images,
scripts or data necessary for the service to be executable. Each asset
ai declares a set of metrics ai.metrics = (m1, ..,mn) with which its
state can be observed. Each metric mi has a unique name and 1 probe
mi.probe that conforms to a standard protocol defined by the target
infrastructure or platform.

• SS is a set of service relationships (Si, Sj , l) where i 6= j, l is a label
from a predefined enumeration of relationship types, and (Si, Sj) ⊆ S.
Relationships are used to inform the orchestration of deployment and
service maintenance actions.
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The set of relationship types we define for l are as follows:

– Si disrupts Sj : Si and Sj should not be collocated, otherwise the
system cannot be stable.

– Si includes Sj : if Si is deployed or changed, then Sj is deployed
or changed.

– Si interacts Sj : Si requires a bi-directional connection to Sj and
proximity.

– Si mirrors Sj : changes in metrics at Sj can be observed at Si.
– Si needs Sj : Sj must be deployed before Si. Si requires knowl-

edge of changes in metrics and availability of Sj .
– Si observes Sj : Si requires connectivity to Sj for the purpose of

querying or polling
– Si substitutes Sj : if Sj is unreachable, Si can provide its function
and metrics.

• Z is the set of logical regions (each logical region contains a subset
of the resources found in a physical region) used for containment of
collocated services S. At deployment time each Zi ∈ Z is mapped to an
actual, physical region, which are compute and storage resource pools
at different datacenters or cloud providers. Each Zi is a data-structure
with a unique name Zi.uname, internally required network Zi.net,
storage Zi.str, memory Zi.mem and processor Zi.cpu capacities and
capabilities. At topology specification time a mapping Zi ← Si ⊆ S
is defined to assign a subset of services to each zone.

• ZZ is the set of inter-region relationships zz ∈ ZZ = (Zi, Zj , neti,j),
i 6= j and neti,j defines the initial bandwidth requirement for the
connectivity between zones Zi and Zj .

• P defines the set of rules or policies used to manipulate the state of
services in the application topology and behavior of the infrastructure
towards the services.

When the application topology has been specified, its infrastructure re-
quirements are specified per zone, without a priori selection or assignment
of physical regions and resource pools.

3.1.2 Dynamic Topology Orchestration Process

Dynamic topology orchestration is a 5-staged process, following the specifi-
cation of a valid application topology. An application topology is a specifica-
tion of the distributed application composed of the various interconnected
services, which are mapped to different cloud virtual resources (e.g. VMs).
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The orchestration process is a continuous process driven by the monitored
metrics, guaranteed triggers and guaranteed actions in the topology specifi-
cation. The process is terminated when the agreed lifetime of the application
expires or other guaranteed triggers are observed, as specified in the SLA.

1. Request Handling and Scheduling. This stage involves transforma-
tion of the application topology into multiple, service deployment requests.
There is a 1-to-n mapping between services and requests, meaning that a
service can execute multiple requests. Each request states the relevant ser-
vice, request type, explicit target, where it should be executed, operation to
be performed, set of parameters, schedule for the request to be executed and
set of post-deployment information that should be provided for subsequent
requests, according to its dependencies.

2. Infrastructure Preparation. This second stage determines what in-
frastructure resources are required, where they are located and how they
should be configured, given a set of scheduled requests. The first activity of
preparation focuses on the compute and storage end-points, as these need
to be activated before the properties for network paths can be configured.
Subsequently, reservation of inter-datacenter (region) network capacity is
done, completing the configuration of paths between relevant - the GEY-
SERS project[63] can be referenced for more details on path-computation.
The final activity in this stage is the activation of infrastructure probes
according to the infrastructure metrics specified in the topology.

3. Service Deployment. This stage is the installation of application-level
assets including images, binaries, scripts and application data on infras-
tructure resources in regions where their associated services are mapped.
Application-level monitoring probes (independent applications responsible
with monitoring the state of the distributed services) are then activated
according to the application metrics defined in the application topology
template.

4. Service Monitoring. This stage is a continuous collection of metrics
from the different infrastructure and application monitoring probes. Each
probe is associated with a service metric. The metric’s value is sent together
with the metric identifier and the unique service identifier to the monitoring
handler, where the value is recorded and a window of v values stored in
memory for noise rejection. For the specified window, the minimum, max-
imum and average values are calculated and made available for the use in
the evaluation of guaranteed triggers from SLAs’ expressions.

5. Response. This stage occurs when a guaranteed SLA trigger is raised
and a rule exists to resolve the difference between the guaranteed trigger and
the guaranteed SLA state. Both the trigger and guaranteed state are part
of the SLA model, which we are detailing in Section 3.2. The resolution in
the rule is an action that either returns to stage 1, creating a new request,
or the invocation of a specific operation on a target infrastructure resource
or service element.
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3.2 Enhanced Semantic Model for SLA Representation and
Cloud Topology Orchestration Modelling

A Service Level Agreement (SLA) [141] is a contract between a consumer
and a provider of a service regarding its usage and quality [17]. It defines
guarantees or Quality of Service (QoS) terms under which the services are
provided and the ways for checking those guarantees. The SLAs might also
contain guaranteed actions, which might be used for enforcing the validity
of the guaranteed terms. The content of SLAs is inevitably used for concrete
instantiation and configuration directives, which parametrize provisioning of
resources, deployment of software and tuning of settings to enable effective
operation of deployed services.

We use SLAs as the basis for specifying dynamic behaviour of application
and infrastructure services, by using an extension of the USDL-SLA [93]
vocabulary for describing the guaranteed states and actions (management
rules), as well as the conditions required for automatic execution of the
actions. The SLAs also contain enough information for determining the
context in which the conditions are evaluated.

Rules for managing the dynamic application topology are specified by
the owner/ architect of the topology. All rules have the following format:
IF NOT vf(gs, gt, (m1, ...,mn)) THEN ga

• vf ∈ VF is a boolean validation function from the set of known func-
tions VF, which causes the rule to fire when false. Standard binary
and arithmetic operators are used.

• gs ∈ GS is one guaranteed state from the set of states GS defined
in the SLA, which the infrastructure is responsible for maintaining.
It is the first input to the validation function vf. Some examples of
guaranteed states include availability, capability, efficiency, stability
and security. The vf uses this as a reference.

• gt ≺ ¬ gs is the guaranteed trigger for the rule and represents a state
that precedes invalidation of the guaranteed state gs, such that gs
should ideally never be invalid.

• m1, ...,mn ⊆ M is an array and subset of metrics M registered with
the infrastructure. That is, the infrastructure knows how to obtain and
evaluate these metrics. The array is the second input to the validation
function vf. There are three domains within which metrics are defined:

1. Application.statistic classifies metrics defined by the application
owner to measure statistics for number of users, response times
and request queue lengths.
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2. Application.service classifies metrics defined by the application
owner to asses the availability, location and number of application
services and instances.

3. Infrastructure.resources classifies metrics defined by the infras-
tructure administrator to assess the consumption and availability
of memory, storage, CPU and networking.

• ga ∈ GA is a guaranteed action from the set of known actions GA.
A ga is executed by the infrastructure management whenever a vf in
the associated rule fails. The following action templates are used for
defining guaranteed actions:

– start <service> with <parameters...>: used to initiate a specific
service in the application topology.

– stop <service> with-error-level <level>: used to terminate a ser-
vice with an indicator of why the termination should occur.

– update <service>.<metric> with <value>: used to configure a
service’s state by assigning a value to a defined metric.

– increase <target> by <number>: used for scaling-out to increase
performance and reduce response times.

– decrease <target> by <number>: used for scaling-in in order to
save energy and costs.

– redirect <service> from <region-x> to <region-y>: used for high-
availability scenarios with redundancy, where a service in region-x
is mirrored or can be substituted by one in region-y.

Note that the term service is used to describe components of the appli-
cation or capabilities of the infrastructure. For example, the computation
and network available to the application topology are referred to as the
”computation service” and ”network service” respectively.

Figure 3.1 depicts the model used for defining the SLAs. Coloured in
grey are the original terms of the USDL-SLA ontology, while with green
we highlighted the additional terms proposed by us. Although the USDL-
SLA specification is able to represent service types and service level profiles,
it does not provide a way of actually representing these SLAs (guaranteed
states and actions) into a machine readable format that can be used for
automated scaling management. Our enhanced model introduces the terms
required for linking the services to their monitoring metrics, therefore al-
lowing expressing the SLAs into a machine readable representation, such as
MVEL [34]. More concretely, the following terms were introduced for ex-
tending the USDL-SLA model: Service Level Expression, Monitoring Met-
ric, Matric Type Representation, Constant, Variable, as well as the semantic
relations connecting these terms to the original entities of the USDL-SLA
model.
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Figure 3.1: Extended USDL-SLA Ontology (own contributions are marked in
green)

The SLA model contains Service Type entities that are used for rep-
resenting the linked descriptions [126] of the services. Each Service Type
specifies one or more Monitoring Metrics that are used during runtime for
gathering state information about the actual service instances. The Service
Type also specifies a Service Level Profile that contains one or more Service
Levels. A Service Level can be either a Guaranteed State or Guaranteed
Action, which are used during runtime for checking the state of the services
and for performing actions on them, such as scale-up and scale-down. Each
Service Level has a Service Level Expression that is used as described below.

The Guaranteed State service level specifies a single Service Level Ex-
pression, which is used for checking a service state-invariant (gs). During
runtime, the expression is periodically evaluated for each service instance of
the specified Service Type and if the guaranteed state is violated, then a log
entry will be created, which can then be used for audit purposes.

The Guaranteed Action also has a Service Level Expression, which con-
tains the actual code representation of the guaranteed action, as well as
another expression, which is the condition (gt) describing the state in which
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the application must be in order to trigger the specified action.
The Service Level Expression has a Representation that uses one or more

Variables. Each variable contains the value of a specified Monitoring Met-
ric. The Monitoring Metric has a type, which can be application statistic,
service, or infrastructure. As multiple Service Types might refer to the same
monitoring metric, the variable must also specify which Service Type is used
for setting its value. Likewise, as the specified service might have instances
running in different regions, the variable must specify to which service it
refers. This is of particular importance for the service levels that have ex-
pressions evaluated in the context of one or more regions, such as requesting
network bandwidth for a connection between two remote data-centers.

The following is a simplified example of an SLA written in the enhanced
USDL-SLA language, with the full example being given in Annex 9.1

1 :workerSLAProfile
2 rdf:type usdl-sla:ServiceLevelProfile , owl:NamedIndividual ;
3 usdl-sla:hasServiceLevel :workerServiceScaleOutAction .
4

5 :workerServiceScaleOutAction rdf:type usdl-sla:GuaranteedAction ,
6 owl:NamedIndividual ;
7 :hasActionPrecondition :workerScaleOutCondition ;
8 usdl-sla:serviceLevelExpression
9 :workerServiceScaleOutActionExpression .

10

11 :workerServiceScaleOutActionExpression
12 rdf:type usdl-sla:ServiceLevelExpression , owl:NamedIndividual ;
13 :hasRepresentation
14 """var outcome = new java.util.HashMap();
15 outcome.put(\"rule-action\", \"service-scale-up\");
16 outcome.put(\"service-name\", \"WorkerService\");
17 return outcome;"""^^xsd:string .
18

19 :workerScaleOutCondition
20 rdf:type usdl-sla:ServiceLevelExpression ,
21 owl:NamedIndividual ;
22 :hasExpressionPreprocessor """
23 var currentWorkerServicesCapacity =
24 workerServiceRunningOrStartingCountVariable *
25 workerServiceCapacityConstant;
26 var averageNumberOfActiveSessionsAtLoadBalancerVariable =
27 average(numberOfActiveSessionsAtLoadBalancerVariable);
28 var workersAreApproachingTheSLALimit =
29 (averageNumberOfActiveSessionsAtLoadBalancerVariable >=
30 currentWorkerServicesCapacity);
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31 System.out.println(
32 \"Current user handling capacity of all Worker Services:
33 \" + currentWorkerServicesCapacity);
34 System.out.println(
35 \"Average number of active user sessions: \"
36 + averageNumberOfActiveSessionsAtLoadBalancerVariable);
37 if (workersAreApproachingTheSLALimit) {
38 System.out.println(\"Service Scale-UP triggered.\");
39 }""" ;
40 :hasRepresentation
41 "workersAreApproachingTheSLALimit == true" ;
42 usdl-sla:hasVariable
43 :numberOfActiveSessionsAtLoadBalancerVariable ;
44 :hasConstant
45 :workerServiceCapacityConstant ;
46 usdl-sla:hasVariable
47 :workerServiceRunningOrStartingCountVariable .
48

49 :numberOfActiveSessionsAtLoadBalancerVariable
50 rdf:type usdl-sla:Variable , owl:NamedIndividual ;
51 :refersToServiceType :LoadBalancerService ;
52 :refersToMetric :numberOfActiveSessionsMetric .
53

54 :numberOfActiveSessionsMetric
55 rdf:type :MonitoringMetric , owl:NamedIndividual ;
56 :hasMetricType :ServiceMetric .
57

58 :workerServiceCapacityConstant
59 rdf:type :Constant , owl:NamedIndividual ;
60 :hasRepresentation "5" .
61

62 :workerServiceRunningOrStartingCountVariable
63 rdf:type usdl-sla:Variable , owl:NamedIndividual ;
64 :refersToMetric :RunningOrStartingInstancesCountMetric ;
65 :refersToServiceType :WorkerService .

The previous example contains the definition of a SLA profile (:worker-
SLAProfile) for the EIS Worker service, containing one service-level, specif-
ically a guaranteed action (workerServiceScaleOutAction). The guaranteed
action has (1) a precondition (workerScaleOutCondition) defining the con-
dition required for the execution of the guaranteed action, and (2) a service
level expression (workerServiceScaleOutActionExpression) representing the
specification of the action to be executed, given using the hasRepresentation
property.

63



3.2. ENHANCED SEMANTIC MODEL FOR SLA REPRESENTATION
AND CLOUD TOPOLOGY ORCHESTRATION MODELLING

The service level expression workerScaleOutCondition specifies that in
its representation (in this case, using MVEL[34] language) references two
variables: numberOfActiveSessionsAtLoadBalancerVariable and workerSer-
viceRunningOrStartingCountVariable, which are defined on lines 49, respec-
tively, 62. Also, the service level expression contains a constant, the work-
erServiceCapacityConstant, defined in the line 58. Each of the two vari-
ables are defined in the context of a specified service (given using the prop-
erty:refersToServiceType), by measuring the value of a monitoring metric
specified by the :refersToMetric property. In the case of the numberOfAc-
tiveSessionsAtLoadBalancerVariable variable, its value is evaluated in the
context of the Load Balancer service and its monitoring metric :numberO-
fActiveSessionsMetric (defined in line 54).

The SLA profile (full example can be found in Annex 9.1) will next be
processed by the cloud management platform, in a fully automated manner,
as described in Section 4.2.
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SLA-Based Cloud Service
Management Platform

After describing the SLA specification language in the previous Chapter 3
we present in this chapter the SLA-based Cloud Service Management Plat-
form, which uses the semantic SLA model for controlling the instantiation
of services onto virtual machines, as well as the horizontal scaling of the vir-
tual machines according to the SLA-defined application-level performance
guarantees.

A typical scenario for deploying a distributed managed application on
the management platform described in this chapter involves several phases
as follows: (1) SLA modelling, (2) Application deployment, and (3) SLA
optimisation and control of the application. Their detailed description is
given below.

First, a semantic description of the distributed application is created
using the SLA model described in Chapter 3. This SLA description must
express all the services that are to be deployed on the cloud infrastructure,
the dependencies between them, their monitoring metrics and the associated
measuring probes, and the required infrastructure resources for deploying
the corresponding VMs hosting the distributed services. The description of
critical SLA metrics and their threshold values (e.g. end-to-end execution
time lower than 1 second) is important for the automated scaling process.
The SLAs must also specify guaranteed states for the distributed application
as well as SLA actions to be taken when these SLA states are violated.

In the second phase, previously prepared SLAs are given as input to the
SLA-based management platform, which will begin deploying the VMs ac-
cording to the SLA-constraints (e.g. VM sizes, service deployment order).
The system will optimize the allocation of VMs on the infrastructure re-
sources (hosts) by applying the genetic algorithm described in Chapter 6.
The algorithm determines several rounds of VM-allocations while trying to
optimise a set of criteria including maximisation of energy efficiency, minimi-
sation of SLA penalties caused by CPU and/or network over-subscription,
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minimisation of SLA penalties caused by migration of VMs, and finally
maximisation of provider’s revenues obtained from hosting the given set of
VMs.

The third phase of the deployment scenario involves optimising the SLAs
with regard to the automated scaling of VMs. For this purpose, we have
described in Chapter 5 two analytic approaches to composition and opti-
misation of SLAs based on concurrent benchmarks, using the DynSLAOp
system. The SLA-Based Service Scaling Manager (SLA-SSM) is responsible
for dynamically adjusting the number of VMs for each of the services of the
distributed applications belonging to each of the cloud tenants. It accom-
plishes this using invariant conditions formed with SLA-terms obtained from
the performance indicators of the services running in VMs. An example of
an invariant condition can be: "average distributed transaction execution
time is below one second". The threshold contained in the SLA invariant is
then used by the SLA-SSM for determining the conditions for performing
either a scale-out action [55] (creating one or more VMs), or a scale-in action
(terminating one or more VMs).

We present next the information model of the SLA Service Scaling Man-
ager, followed by the system’s architecture. We then describe two mecha-
nisms important for data processing in the context of service scaling, followed
by three SLA-based service scaling algorithms.

4.1 Information Model of the SLA-Based
Service Scaling Manager

The core capability for any SLA management system is access to timely
information about the managed services and related resources. For the pur-
pose of prediction, the information model must provide access to historical,
current and static facts about the managed system. Historical and cur-
rent facts about changing observations in the system are captured in the
monitoring logs, while the static information is seen in the more structural
description models. These description models are summarized below.

Distributed Applications specify a unique application name, under which
multiple services are grouped. In other words an application is a collection of
services in the managed system. The dEIS 7.1 is an example of a distributed
application, where the worker, load-balancer, storage and customer-facing
components are registered as services.

Services are a mapping of application components to infrastructure re-
sources (e.g. VMs). When SLA management decisions are made, the reg-
istry of services is used to determine the time for executing life cycle op-
erations. Each service is also associated with a set of metrics, which are
relevant to the component or resource and can be measured using a probe
attached to the component or resource.
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Regions are initially logical segments of the distributed application, to
which collections of related services are assigned. They are mapped to phys-
ical portions of the infrastructure that define the application’s distributed
runtime.

Virtual Machines are included in the information model as one class
of infrastructure resource. The CPU, memory and storage capacities, as
well as other OS-specific properties of each virtual machine is captured in
the information model. This is important for predictive analysis and SLA
management actions, as the constraints of virtual machine capabilities serve
to inform decisions and limit what operations are feasible in the next control
cycle.

Network Links represent infrastructure resources captured in the infor-
mation model, describing the bandwidth and latency characteristics of vir-
tual links between virtual machines.

SLAs capture the guarantees that the service provider has agreed with
the service consumer. These are guaranteed states and actions that are
performed if the right conditions are observed during a control loop.

Historical and current facts about the services are captured in the Moni-
toring Data and System Logs, where each record consists of a unique times-
tamp, service monitored and the set of metric values for the time period
of monitoring. This enables time-series analysis and the identification of
trends in different metrics over time. The gathered monitoring data can
be classified into application-level and infrastructure level data. Example of
application-level monitoring metrics are the various durations of service exe-
cutions (e.g. the time it takes for the service containing the business logic to
process a request). Example of infrastructure-level monitoring metrics are
duration of network transfer of data, virtual machine CPU level, physical
server CPU utilization.

4.2 Architecture of the SLA-Based Service Scaling Manager

This section describes a system architecture for enabling the 5-stage service-
deployment process described in Section 3.1.2. The architecture is designed
as a tool for application topology architects and administrators. It is a
loosely-coupled, message-based architecture, such that most components are
defined as types of Handlers, as shown in in Figure 4.1. The letter R shown
above the links connecting the components stands for Request and the arrow
reflects the direction of the request.

Once the application topology specification bas been completed, it is
submitted to the Request Handler (RH) via the Request Interface, trigger-
ing stage 1 of the orchestration process (described in 3.1.2). The states of
requests, services and SLA of active topologies are continuously monitored
via a corresponding Query Interface. The RH queries the Asset Handler
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Figure 4.1: Architecture of the SLA-Based Service Scaling Manager

(AsH) for a list of available, infrastructure resource pools of computing,
storage and memory resources according to the requirements of the topol-
ogy specification. The application architect or administrator is responsible
for initial selection of mappings between application regions in the topology
specification and suggested resource pools. Once this initialization mapping
is completed, the RH parses the topology specification into a set of deploy-
ment requests and passes these to the Scheduler Handler (SH). The SH
builds a schedule for requests and associated handler operations, allowing
subsequent or batches of application topologies to be submitted.

When a topology bas been scheduled for deployment, the Application
Handler(AH) is invoked to register the service templates and dependency
mappings in the topology, indicating that it is being activated. Initially
selected infrastructure resource pools are marked as ’reserved’ for the spe-
cific application topology in the AsH, moving to phase 2 of the management
process.

This then signals the Infrastructure Resource Handler (IRH) to estab-
lish and set up network links between the resources pools, which could be
at different, physical locations. The IRH has a signaling connection to In-
frastructure Virtualization Manager Clients (IVMCs) at each site offering
resource pools and connectivity. It is via these IVMCs that the IRH is able
to request isolated portions of infrastructure, per application topology to be
served. The network links are also registered with the AsH once provisioned.
An example of IVMC is the OpenNebula adapter described in Section 5.2.1,
which is used for controlling the state of the VMs hosting the application
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services.
Once this underlying virtual infrastructure of distributed resource pools

and network links bas been established for the application topology, the
service templates and SLA profiles from the topology specification are passed
to the Service Handler (SH), where the actual topology orchestration process
is enacted.

The AH processes the application instantiation request by first identify-
ing the application topology and software templates referred in the request,
as well as the resource pools indicated for hosting the services. For each
service template, the AH requests the Service Handler (SrvH) the instan-
tiation of the minimum number of instances in the mapped resource pools.
The SrvH assigns a unique identifier to the service instance and then passes
the request to the Orchestration Handler, which resolves the service de-
pendencies and populates the service context, waiting if necessary for the
services to be instantiated.

As the services begin operating, the individual instances begin sending
monitoring information, which is received and processed at the Monitoring
Handler.

After the successful notifications of the services’ instantiations have been
received, the AH retrieves the SLA profile for each service and then regis-
ters it at the SLA Handler(SlaH). The SlaH stores the SLA profile and then
passes it to the Rule Outcome Handler(ROH) for processing. The RE ex-
tracts the Service Levels from the SLA profile and for each level determines
its Expression.

For the SLA service levels of type Guaranteed Action, the expression is
wrapped by an if checking the action’s precondition expression, ensuring
that the management system will execute the SLA guaranteed action only
when the defined SLA expression is evaluated to true.

For theGuaranteed State SLA service level, the SLA expression is wrapped
in a if triggering the creation of a Rule Outcome of type SLA-log when
the expression evaluates to false. The generated code sequences are then
converted to MVEL [34] language, which can then be dynamically eval-
uated. For each expression contained in the SLA guaranteed-states and
SLA-triggers of the guaranteed-actions, its variables are identified, and their
values are populated with data from the Monitoring Handler. All identi-
fied variables are then added to a Context (dictionary) object that will be
passed to the MVEL framework for evaluation, together with the MVEL
sequence. The expression’s context and MVEL evaluation are wrapped in a
JAVA Runnable[81] and executed periodically.

At each SLA monitoring cycle, the RE produces Rule Outcome objects,
which are passed to the ROH for processing, based on the outcome’s type
(e.g. scale-out, scale-in, migrate, network-bandwidth-increase). Each rule
outcome is a dictionary (e.g. JAVA map [80]), which has a set of keys that
are used for describing the corresponding SLA action. In case of outcomes
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generated from Guaranteed Actions SLA levels, the handler actually triggers
the execution of the desired action by building a request for one of the
Infrastructure Virtualization Clients. In case of outcomes generated from a
Guaranteed State SLA level, the handler logs the SLA violation by archiving
it in the AH. We present in Section 4.4 multiple VM-scaling algorithms
running inside the Rule Enactor component.

4.3 Multi-Step Prediction using Linear Autoregression

This section describes a prediction algorithm used for analysing the moni-
toring data gathered by the MH, which is then used by the Rule Enactor
component for further enhancing the management of the applications’ scal-
ing.
Algorithm 4.1: Streaming Linear Prediction using Autoregression
1 model← NULL
2 previous.data← empty
3 previous.time← empty
4 win.len← p seconds
5 prediction.length← n seconds
6 while Data Stream is Open do
7 win.data← buffer(win.len)
8 win.time← time(win.data)
9 if model is NULL then
10 model← linear regression(win.data, win.time)
11 else
12 prediction.current← predict(model, win.time)
13 err.mape←MAPE(win.data, prediction.current)
14 if err.mape < ε then
15 t← current time
16 prediction.time← (t+ 1, ..., t+ prediction.length)
17 win.predicted← predict(model, prediction.time)
18 use win.predicted

19 else
20 model← NULL
21 previous.data← empty
22 previous.time← empty

23 append win.data to previous.data
24 append win.time to previous.time
25 model← linear regression(previous.data, previous.time)
26 model.accuracy ← accuracy(model)

We investigate autoregression for predicting multiple future values of
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an independent variable. As underlying example we will use the time series
shown in Figure 4.2 containing a window of data representing the arrival rate
of requests of an ERP system. Figure 4.2 describes the process of generating
a constantly increasing number of requests, followed by a slow decrease in
the number of requests. As we want to use the data for predicting the
future values, this means that it will be processed in a streaming fashion, as
it becomes available.
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Figure 4.2: Requests Arrival Rate

Two important properties of the prediction algorithm are the follow-
ing: (1) immunity to small variations (non-uniformity) in the data sampling
period, and (2) auto-alignment of the regression with the actual trend of
the signal. The first property ensures that the prediction produced by the
algorithm will always be sampled with the same period, allowing a determin-
istic use of the predicted data, independent of the actual sampling period
of the predicted signal. The second property ensures that the algorithm
will auto-adjust to changes in the signal’s trend (e.g. slope) by monitoring
the prediction error and adapting the length of the window of data used for
calculating the "learning" model. Next, we present the prediction algorithm.

The algorithm is evaluated repeatedly, and it uses the results from the
previous run. In the first iteration, a regression model is calculated (e.g.
using R’s lm function of the stats package [129]) using the current window
of data in line 10. Only after the model is calculated, can it actually be used
for prediction in line 12. In the following iterations, the linear model calcu-
lated in the previous iteration will be used for predicting the current data
window by applying the same regression model to the time moments corre-
sponding to he sampled data (win.time), producing the prediction.current
data vector in line 12. Next, the mean average percentage error (err.mape)
is calculated from the current data window (win.data) and the model’s pre-
diction (prediction.current). The err.mape is actually the out-of-sample
error measure of the regression model, as the error was calculated with data
coming from outside the time window known by the regression model. If the
error is lower than a predefined threshold ε (e.g. 1.5%) then (1) the model
is considered valid and it is used in line 17 for predicting the next n seconds
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Figure 4.3: Regression Errors. Top: Root Mean Standard Error. Bottom: Mean
Absolute Percentage Error

of signal’s values at times t + 1, ..., t + n, and (2) the current data window
and its sampling time moments is appended to the previous data window,
respectively to the previous sampling time window. If the error is larger
than the specified threshold, than the model is dropped, together with the
accumulated data, and the whole process of learning the model and using it
for prediction is repeated.

By calculating the signal’s prediction at times t+1, ..., t+n, the immunity
to variations in the signal’s sampling period is guaranteed, which allows the
subsequent components to use the produced data forecast at any arbitrary
time horizon smaller than n. Also, by accumulating the signal’s data samples
and calculating the regression model with an increasing length of the data
window this ensures that the regression model’s slope will be aligned with
the signal’s slope with an error of at most ε. As soon as the out-of-sample
(defined as the error between the data prediction calculated with in-sample
data, and the actual measured data, which has not yet been appended to the
considered data frame previous.data) MAPE error (defined in Equation
2.7, in Section 2.4.4) of the regression’s model exceeds ε, the model and
accumulated data will be dropped, and a new model will be calculated, thus
satisfying the second property of the prediction algorithm.

The linear regression model’s accuracy represented by the RMSE and
MAPE errors are displayed in Figure 4.3, when applying linear regression to
the data from Figure 4.2 (average arrival rates), with a regression window
win.len of 10 seconds. As expected the graphs show two peaks because of
the two changes in the underlying data’s trend at time 20 and 600.
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Figure 4.4 shows the evolution of both RMSE and MAPE errors for the
out-of-sample accuracy. As expected, there are two regions where the errors
have large values, in the beginning, around time moment 0, and around
time moment 600. This is because in the beginning of the time series the
data experienced a slight instability when transitioning from 0 to 60 requests
per minute. Also, at time moment 600 the trend of the data changed from
increasing to decreasing, leading to the an decrease of the accuracy of the
previous regression model valid only until the time moment 600.
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Figure 4.5: Forecast vs. Actual Data

For calculating the signal’s prediction of the next n seconds (equal to
40 in our example), first a data window prediction.time is created (line 16)
containing the time values between the current time t + 1 and t + n. The
regression model is then used in line 17 for calculating the data prediction
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win.prediction corresponding to time interval prediction.time.
The predicted data win.prediction is finally used in line 18. An example

of using the predicted data is given in Section 4.4, where the predicted arrival
rate of requests is used as input to a SLA-based VM-Scaling algorithm.

The predicted data obtained by running the algorithm is displayed along
the initial data in Figure 4.5. The very good accuracy of the prediction
algorithm can be observed, as the predicted data closely follows the input
data. Also, it can be noticed that the predicted data starts at around time
moment 70, after the data’s trend stabilizes itself.

4.4 SLA-Based Service Scaling Algorithms

In this section we describe three SLA-based algorithms for scaling services.
The first algorithm uses a "reactive" approach at monitoring the state of
the services, by performing either a scale-out or a scale-in operation if the
evaluation of the SLA-defined condition exceeds a critical threshold. The
second algorithm uses results form applying Little’s law. The third algo-
rithm extends the second one by using the prediction mechanism defined in
Sec. 4.3.

4.4.1 Reactive SLA-Based VM-Scaling Algorithm

The reactive service scaling Algorithm 4.2, operates by calculating the SLA
ratio sr as the factor by which the average mSLA over the moving time
window W of the SLA metric m is approaching its maximum threshold
maxSLA(m). If sr is above a given threshold SUP (e.g. 0.9) and sr is
increasing from the last check then a scale-out operation is flagged.

Similarly, if sr is below a threshold SDOWN (e.g. 0.6) and sr is de-
creasing, then a scale-in operation is flagged. Either scale-out or scale-in
operations will be executed only if the number of such operations ss is be-
low a given threshold ssMAX (e.g. 2) in the last WS seconds (e.g. 40 sec,
chosen as 1.5 times the time it takes for a VM to become fully operational),
for ensuring system stability by preventing (1) fast-succeeding transitory
scale-in and scale-out actions, and (2) oscillations in the number of VMs.

For the scale-in operation it is notable that the VM selected for shutdown
(with lowest utilization value) is not immediately terminated, but first its
broker is informed about the scale-in operation for preventing new load being
sent to the VM and then after a given time period T (e.g. 10 seconds), during
which tasks running in the VM will get a chance to complete, the VM is
finally terminated.
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Algorithm 4.2: SLA Service Scaling algorithm
Data: per tenant: SLA scaling thresholds, monitoring information
Result: per tenant: scale-out, scale-in VM operations

1 while not at end of simulation do
2 foreach tenant e do
3 calculate average value mSLA of SLA metric m over the

sliding time window W
mSLA ← average (m(t),m(t− 1), ...,m(t−W ));

4 calculate SLA ratio sr for metric m: sr ← mSLA
maxSLA(m) ;

5 evaluate scale-out condition:
up← (sr > sUP )AND(sr(t) > sr(t−WS));

6 evaluate scale-in condition:
down← (sr < SDOWN )AND(sr(t) < sr(t−WS));

7 calculate scaling speed ss as the number of scale-out or
scale-in operations in the last time window WS ;

8 if (up = true)AND (ss < ssMAX) then
9 create new VM;
10 else if

(down = true)AND (ss < ssMAX)AND(count(VM) > 1)
then

11 select vm for shutdown with lowest load;
12 inform VM ’s broker of imminent shutdown for preventing

sending to workload to VM ;
13 wait for T seconds before shutting-down the VM ;

14 schedule next scheduling check;

4.4.2 λ-Based VM-Scaling Algorithm

Algorithm 4.3 describes the steps taken for sizing the number of VMs based
on the current average arrival rate of requests, the current average system’s
throughput (Th), the maximum value for the average execution time de-
fined by SLA, and the benchmark-obtained value of the Th. This algorithm
improves the performance of Algorithm 4.2 by using a more precise way of
determining the optimal workload that a VM can handle, as described next.

The algorithm receives as input the SLA containing the maximum exe-
cution time (Wmax) across all the VM instances of the considered service.
As part of the initialisation sequence, the algorithm will first search in the
tuples (λ,W,L) displayed in Fig. 7.13 for the benchmark entry (e) with the
average execution time (e.W ) closest, but lower, than the SLA threshold
(Wmax). The maximum value for the throughput will be stored in Thmax,
and if no such value exists, then the program’s execution will be terminated
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Algorithm 4.3: λ-Based VM-Scaling Algorithm
Data: SLA and benchmark table containing (L,W, Th, λ) tuples
Result: per tenant: scale-out, scale-in VM operations

1 Wmax ←W defined in SLA and Thmax ← 0;
2 for e ∈ benchmark do
3 if e.W < Wmax AND e.Th > Thmax then
4 Thmax ← e.Th;

5 if Thmax = 0 then
6 terminate execution
7 repeat every N seconds
8 if λ > 0.8 vm Thmax then
9 vm∗ ←

⌈
λ

0.8Thmax

⌉
;

10 if vm∗ > vm+ vm+ then
11 out← vm∗ − vm− vm+;
12 else if λ < 0.3 vm Thmax AND time(last scaling) < cool-down

then
13 vm∗ ←

⌈
λ

0.8Thmax

⌉
;

14 if vm∗ < vm− vm− then
15 in← vm∗ − vm− vm−;

16 if Th > 0.8 vm Thmax then
17 vm∗ ←

⌈
Th

0.8Thmax

⌉
;

18 if vm∗ > vm+ vm+ + out then
19 out← vm∗ − vm− vm+ AND in← 0;

20 perform scaling

in line 6.
The scaling algorithm will be executed every N seconds. In line 8, the

average arrival rate (λ) during the last minute will be compared to 80% of
the maximum throughput (Thmax) multiplied with the current number of
VMs (vm). If λ > 0.8 vm Thmax then in line 9 the number of VMs (vm∗)
necessary for processing this workload will be calculated as the upper part
of the division of λ by 0.8Thmax. If vm∗ is greater than the current number
of VMs (vm) plus the current number of VMs being instantiated (vm+),
then the current scale-out scaling step (out) is calculated as the difference
between the planned number of VMs (vm∗) and the total number of VMs,
including the ones being instantiated (vm+ vm+).

Similarly, the conditions for scale-in are checked in line 12. If λ is lower
than 30% of the maximum throughput of all VMs then the optimal number
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of VMs (vm∗) is calculated in line 13 as upper part of the division of λ by
0.8Thmax. If vm∗ is lower than the current number of VMs (vm), minus the
number of VMs currently being decommissioned (vm−), than the VM scale-
in step is calculated as vm∗−vm−vm−. The scale-in operation is executed
only if there was no scale-out or scale-in in the last cool-down seconds (e.g.
30).

Finally, in line 16, the average throughput (Th) during the last minute
is compared to 80% of the maximum throughput across all VMs, and if it
is larger, then the planned number of VMs (vm∗) is calculated as the upper
part of the division of Th by 0.8Thmax. If vm∗ is larger than the current
number of VMs (vm), plus the number of VMs being instantiated (vm+)
and the planned scale-out, then the new scale-out step is vm∗− vm− vm+.
This prevents that the current processing capacity of all VMs is exceeded
by a rapidly increasing incoming workload.

Next, the VM manager will be informed (in line 20) about either scaling-
out or scaling-in the number of VMs. In case of dEIS, the scale-in operation
is coordinated with the LB service, so that no further workload is directed
at the VMs selected for decommission.

4.4.3 Predictive λ-Based VM-Scaling Algorithm

In case of "reactive" scaling, the monitoring algorithm detects the scale-out
or scale-in conditions and then it informs the VM manager for performing
the scaling. However, as the creation of new VMs is not performed instantly,
there will be a time window during which the system will be in a state in
which the SLA-defined conditions might be violated.

Given the delay in instantiating VMs, it is beneficial to predict the con-
ditions for scale-out and and to initiate the scale-out operation in advance
so that the VMs are already operational at the time they will be needed.

In order to test our assumptions, we modified Algorithm 4.3 to include
the prediction of the arrival rate, and to trigger scaling-out the VMs before
the actual workload reaches the scale-out condition. Algorithm 4.4 lists the
details of the predictive scaling algorithm. As multi-step prediction method
we used Algorithm 4.1.

We initialise the algorithm in lines 2 to 4 by first determining the value
for the maximum throughput (Thmax) (in line 1) given (1) the maximum
execution time (Wmax) defined in the SLA, and (2) the benchmark-obtained
value for the Th. Also, the regression model (RM) is set to null, and the
number of predicted VMs (Pred) is initialised with an empty set.

Next, the management loop starts, by repeating the following operations
every N seconds. Let t be the current time in seconds. In line 5, the values
for λ in the time window (t, t −M) are retrieved and stored in the vector
Λ. T is then set to the sampling time of the values in Λ.

If RM has already been calculated (is not NULL), then it will be used
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Algorithm 4.4: Predictive λ-Based VM-Scaling Algorithm
Data: SLA contract with the maximum execution time

1 RM ← NULL;
2 Pred← empty;
3 determine Thmax;
4 repeat every N seconds
5 Λ← {λ(i) | i < t−M};
6 T ← sampling(Λ);
7 if RM is not NULL then
8 MAPE = accuracy(RM,T,Λ);
9 if MAPE < εmax then
10 T ∗ ← (t+ 1, t+ 2, · · · , t+N +D);
11 Λ∗ ← predict(RM,T ∗);
12 Pred[T ∗]←

⌈
Λ

0.8Thmax

⌉
;

13 else
14 Pred← empty;
15 drop RM ;
16 end
17 end
18 RM ← regression(Λ, T );
19 if Pred[t+D] exists then
20 out← max(0, P red[t+D]− vm− vm+);
21 end
22 if out = 0 AND vm+ = 0 then
23 calculate scale-in step using another algorithm;
24 end
25 end

for predicting the arrival rates corresponding to the time moments in T , and
then the out-of-sample accuracy (MAPE) will be calculated using the actual
values from the vector Λ (composed of individual λ values). If MAPE is
below a threshold (εmax), then a prediction (Λ∗) of the next N +D seconds
will be calculated, where D is the time necessary for a VM to be instantiated
and to become operational. Next, in line 12 the number of VMs at time
(t + 1, t + 2, · · · , t + N + D) is calculated using the method described in
Section 4.4.2, Algorithm 4.3. If the prediction accuracy is higher than εmax,
then the predicted number of VMs is dropped, ensuring that no scaling
decision is taken based on unreliable information.

Next, in line 18, the regression model RM is calculated using Λ and
T , by applying the method described in Algorithm 4.1, where the current
values for Λ and T are appended to the previous ones, as long as their trend
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is maintained, as explained in Section 4.3.
Next, in line 19 a check is made for determining if a prediction exists

for time t + D. By looking at the necessary number of VMs D seconds in
advance, we ensure that any VM needed in the near future will actually be
ready at that time. If the prediction exists, then a scale-out step is calculated
as the difference between the predicted number of VMs (Pred[t+D]) at time
t+D and the total number of VMs (vm), including the ones currently being
instantiated (vm+).

If the algorithm determines that no scale-out is needed and there are no
VMs currently being instantiated, then in line 23 the scale-in step will be
calculated using the Algorithm 4.3.
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Chapter 5

Dynamic Composition and
Optimization of SLAs

In the previous Chapter 4 we have provided a solution to the research ques-
tion of scaling services according to performance constraints defined in SLAs.
In this chapter we are focusing on providing a solution to the question of
discovering the performance limits of distributed applications constrained
by the number of services/VMs, as well as dynamically composing SLA-
constrained scaling rules for distributed services.

After describing in Chapter 4 the architecture and algorithms of the
SLA-based service management platform, we present in this chapter the ar-
chitecture and control algorithms of a system for optimising and dynamically
generating SLA-bound scaling rules for controlling allocation of distributed
services. For this purpose we combine data analysis mechanisms with ap-
plication benchmarking using multiple VM configurations, as presented in
Section 5.1.

The research question that we will answer is: how can the operator’s
management system select the optimum amount of resources allocated to
its multi-tenant applications, so that distributed applications will offer the
agreed performance levels? For answering this question we implemented the
component presented in this chapter, the Dynamic SLA optimizer (Dyn-
SLAOp), which is able (1) to measure the performance increase of a dis-
tributed application using an increasing number of service instances, (2) to
determine the correlation between the performance indicators of the services
composing the distributed application and to use these correlations for cal-
culating a service scaling model and (3) to transform these scaling models
into SLA scaling rules.
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5.1 Dynamic Composition of SLA Scaling Rules Based on
Concurrent Benchmarks

We investigate how SLAs can be dynamically optimized for enhancing the
rules controlling the scaling-out (increasing the number of VMs allocated to
a distributed service) and scaling-in (reducing the number of VMs allocated
a distributed service) of services belonging to distributed applications, in
particular Enterprise Information Systems (EIS). We describe a mechanism
for discovering the dependencies between the service metrics contained in the
SLAs. First, we generate allocation profiles for the services of the distributed
application and we instantiate virtual machines accordingly. An allocation
profile maps each service of the distributed application to a given number
of VMs (e.g. load balancer service uses one VM, business logic service uses
four VMs, adn the storage service uses two VMs). Next, we perform a set
of benchmarks typical for the application domain, where we continuously
increase the number of concurrent incoming requests. Following that, we
apply linear regression on the obtained time series in order to learn the
dependencies between the different service metrics contained in the SLAs.
Finally, we convert the obtained linear models (LMs) into SLA scaling rules,
by adjusting the number of distributed service instances according to the
value obtained by evaluating the LMs.

We use analysis of time series to determine a Pareto set [127] of scaling
solutions that cannot be further improved with respect to all features/met-
rics. The solutions of the Pareto set can be used to create new SLA rules and
to schedule SLA actions on distributed applications. We apply a heuristic
algorithm for selecting a service scale-out pattern, which is ensuring that
the agreed application performance level is met (the details of the algorithm
are given in section 5.1.1), which is then used for controlling the number of
VMs allocated to the distributed services.

The evaluation of our models is presented in Chapter 7 and contains
SLA-driven service scaling experiments using a distributed application rep-
resentative for the enterprise information systems. We also present how
time series analysis can be used for determining dependencies between the
services composing the distributed application and how these dependencies
can be used for enhancing the SLA rules controlling the application scaling.

5.1.1 Dynamic SLA Optimizer (DynSLAOp) architecture

Intuitively, the new DynSLAOp component answers the following ques-
tion: How to dynamically decide how many distributed service instances are
needed in order to solve the problem of handling a larger workload within
the same amount of time it takes to handle a lower workload with a lower
number of service instances (e.g. so that the execution time should remain
constant)? Therefore, we need to identify the relevant regression parameters
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in the dependency between problem size, quality metrics and combination
of workers (VMs). We then describe the metrics as functions of the number
of workers and the workload.
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Figure 5.1: DynSLAOp System Architecture

The goal of DynSLAOp is to enable the service manager to dynamically
adjust the number of VMs to the shifting application loads, while maintain-
ing the contract with the user, i.e. the SLA. This is achieved by producing
SLAs containing scaling rules for the application services with a variable
number of instances, given (1) a semantic representation of the distributed
application, (2) the maximum scale-out factor (maximum number of VMs
that should be started during one scale-out operation) for each service and
(3) critical SLA performance indicators. An example of managed distributed
applications is described in Chapter 7, Section 7.1.
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The information flow through the DynSLAOp occurs in several stages,
and is represented in Figure 5.1. DynSLAOp takes as input to the Bench-
mark Manager an SLA with the service descriptions of a distributed appli-
cation and a critical SLA performance metric along with its critical thresh-
old. The benchmark manager communicates with the Distributed Land-
scape Generator for preparing a different number of virtual infrastructures
(or landscapes) composed of different numbers of VMs allocated to each
service (within the service cardinality described by the Application-SLA).
Each virtual infrastructure contains a monotonically increasing number of
VMs.

For each distributed service topology, corresponding VMs will be de-
ployed on the physical infrastructure by the Orchestration and Deployment
components of the SML, including the process of resolving the configuration
dependencies between the VM-hosted services (e.g. IP addresses).

Once the virtual infrastructure has been provisioned, the Application
Benchmark Trigger will be notified, which will (1) identify the VM hosting
the generator of application requests, followed by (2) triggering generation
of an increasing batch of concurrent user requests (creation of reports based
on database queries), until the requests’ average execution time, as reported
by SML’s monitoring component, will reach a given critical threshold.

The collected monitoring data is stored in the Benchmark Store. Once all
the virtual infrastructures have been benchmarked, the SLA Service Metric
Correlation Engine will begin calculating the correlation coefficients between
the time series corresponding to the monitoring metrics defined in the SLA
and the time series corresponding to the critical performance metric. The
metrics with the correlation coefficient above a given threshold (e.g. 0.85,
which according to [53] represents a "very strong" correlation) will be se-
lected as the set of predictors for the critical SLA performance metric. The
identified set of predictor metrics will then be given to the Multi-variate Re-
gression Model Builder, which will calculate a linear model for estimating
the critical SLA metrics, using the specified set of predictors.

Finally, the Multi-Step Scaling Model Builder will take the calculated
linear models and will combine them with the information about the number
of service instances in the corresponding virtual landscape for calculating a
linear model for estimating the number of services in each landscape based
on the linear estimation of the critical SLA metric (including the application
workload metric - e.g. number of concurrent user requests). The final step
consists in selecting a scaling path of virtual landscapes for the distributed
application, by applying a heuristic described in Section 5.1.2 and then
combining the linear models for the selected virtual landscapes for creating
the final scaling models for each service type defined in the application
description.

The following section describes the algorithms used by DynSLAOp com-
ponents.
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5.1.2 Dynamic Generation of SLA Scaling Rules

The generation of the SLA scaling rules is performed by three phases:

1. application benchmark data collection

2. benchmark data analysis (aggregation and monitoring metrics corre-
lation calculation)

3. building the service scale-out model (by analysing the application scal-
ing path and determining the service scaling model)

Application Benchmark Data Collection

The monitoring information is collected from probes running in each VM.
Each probe periodically records the value of a single SLA metric and sends
the gathered data at fixed intervals to the monitoring component in the
DynSLAOp. The system observes via the monitoring subsystem both the
values for the metrics related to the application load (e.g. the number of
requests), and the values indicating the system performance (e.g. query
execution time).

In order to properly stress the application performance, a benchmark
data profile is created containing a snapshot of the monitoring database
and the application topology. This includes all the measured values for the
SLA-defined service metrics. The actual application benchmark is packaged
within a VM and deployed along with the other VMs of the application.
The decision of having the benchmark running on a separate VM was taken
in order to ensure the independence of the DynSLAOp framework from the
benchmarked application. The DynSLAOp is only aware of the API used for
starting the benchmark and for checking its status for determining whether
the benchmark has completed.

Benchmark Data Analysis

The monitoring data for each service instance is aggregated (e.g. averaged)
into specified time intervals (e.g. 10 seconds). The data for the same service
type is further aggregated, by averaging it. This is done under the assump-
tion that the load is equally distributed between the instances of the same
service type.

Once the monitoring data has been aggregated, the correlation between
all the pairs of time series corresponding to the SLA service monitoring
metrics will be calculated, producing a matrix called correlation matrix.
Starting from the given critical SLA metric, a set is formed from the metrics
that are highly correlated (e.g. correlation coefficient higher than 0.7). This
is then repeated for each metric in the set.
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The set of metrics is then added to the benchmark profile, along with (1)
the maximum number of concurrent user requests determined by the bench-
mark and (2) the topology’s configuration in terms of VMs per application
service.

After the benchmark was run on all the configured application-topologies,
the system enters the last phase for determining the services scaling-out
model.

Building the Service Scale-Out Model

During this phase, the system will first construct an application "scaling
path" and then will calculate a linear model for estimating the number of ser-
vices required for achieving the selected maximum performance. The scaling
path is composed of a sequence of VM allocation profiles (e.g. the number
of VMs allocated to each service) able to handle an increasing number of
concurrent user requests, while maintaining the defined SLA contracts, as
presented in the algorithm below. A virtual landscape is composed of the
set of VMs required for running a distributed application with an arbitrary
number (n) of services, and it corresponds to an allocation profile.

For example, an application topology with one instance of the database
(DB) service and one instance of the service containing the business logic
(BL) can serve 90 concurrent requests with an average execution time of
500ms, while an application topology with two instances for each service
can serve 150 concurrent requests with the same average execution time.
The sequence of tuples (1 DB, 1 BL, 90), (2 DB, 2 BL, 150) is the scaling
path required for keeping the average execution time under 500ms for a
workload of up to 150 concurrent requests.

The optimal landscape is selected by calculating a utility cost function
for each landscape and choosing the landscape with the minimum cost value.
The algorithm might return multiple scaling paths of equal cost.

The maximum common set of predictor metrics is chosen from the se-
lected of benchmark profiles. For each scaling path, using the selected col-
lection of metrics, a larger data set is formed as follows. The aggregated
values of the monitoring metrics corresponding to the first landscape in the
scaling path are added to the data set. For the next scaling-landscape, the
monitoring time series corresponding to the selected aggregated monitor-
ing metrics is chosen such that the timestamps of the included samples are
higher than the time when the concurrent user requests reached the maxi-
mum value achieved for the previous landscape. This creates a single data
set with an increasing number of maximum supported concurrent user re-
quests. To this data set, the number of service instances in the landscape is
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added as a new time series.
Algorithm 5.1: Scaling Path Composer
1 ScalingPath = {Lmin} where Lmin is the landscape with the
minimal number of service instances of each type

2 SI is the minimum factor by which the user-requests should be
increased

3 VMDifference← 1
4 repeat
5 Sel = {} is the set of selected landscapes
6 Llast ← last landscape in ScalingPath
7 URmax ← maximum concurrent user requests(Llast)
8 for L ∈ Landscapes do
9 if VMDifference(L, Llast) < VMDifference AND

maximum concurrent user requests(L) > (URmax + SI) then
10 Sel← Sel

⋃
{L}

11 Landscapes← Landscapes− {L}
12 if IS EMPTY Sel then
13 VMDifference← VMDifference+ 1
14 else
15 select optimal landscape from Sel V MDifference← 1
16 until NOT empty Landscapes;

Next, the system computes for each service type a linear model [70] for
estimating the number of services in the scaling path.

Assuming that C is the critical value of the SLA target metric m∗ (e.g.
average execution time measured at the database service), mi, i ∈ (1..p) are
values of p SLA predictor metrics for m∗, vj are number of VMs associated
with service Sj , j ∈ (1..s) then

lmk(m1,m2, ..,mp, v1, v2, .., vs) =
α0 +

∑p
1 αimi +

∑s
1 βjvj , j 6= k (5.1)

Equation 5.1 defines the linear model lm for estimating the number of
service instances of type Sk. The actual SLA scaling rule for service Sk is
then written as in Equation 5.2

SLAoutk : if lmk > vk then scale-out(Sk)
SLAink : if lmk < vk then scale-in(Sk) (5.2)

Equation 5.2 defines two SLA rules per service type Sk, which continu-
ously monitor the estimated number of service instances lmk and perform
either a scale-out, or a scale-in if the required number of VMs for handling
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current application workload is either greater or lower than the actual num-
ber of VMs vk.

5.2 Analytic Optimization of SLAs for Scaling of Distributed
Services

In the previous section we have presented a framework for automatic gen-
eration of SLA-based service scaling rules. However, SLA management is a
multi-objective constraint problem, where various guarantees such as service
response time and availability per customer need to be managed together
with operational objectives such as cost, energy consumption and utilization,
which inevitably are reflected in customer pricing.

In a distributed, multi-provider, multi-customer, cloud environment there
are different categories and classes of infrastructure and application services
running in parallel and contending for the same physical resources. Corre-
lation of service dependencies is hence important in effective SLA manage-
ment for understanding the relations between the distributed services and
the impact on services’ performance guarantees.

Identifying services with similar behaviours and access patterns provides
hints that they should either share the same resources or they should use
different resources and configurations, depending on the operational cir-
cumstances (e.g. depending on the desired performance, such as obtaining
maximum performance under heavy load, the services should use different
physical resources). For example, services communicating often together
should be collocated (such as services containing the business logic of an
enterprise application), while the VMs hosting the database layer of a en-
terprise application should better use different physical resources because of
their high requirements in terms of CPU, memory, disk and network usage.

Discovering statistical correlation between service performance indica-
tors helps better understanding the causes of performance bottlenecks in
cloud applications [30], and thus understanding SLA violation causes. By
using correlation information it also becomes possible to (1) refine service
monitoring, (2) perform SLA levels health checking (e.g. examining if the
SLA condition has been violated), and (3) improve scaling of cloud appli-
cations. By applying estimation models on groups of performance indica-
tors with strong statistical correlations, it becomes possible to express crit-
ical SLA parameters as function of multiple measurable service indicators,
thus (1) describing analytical SLA dependencies and (2) allowing automated
management of services based on expressed dependencies between the dis-
tributed services.
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Figure 5.2: System Architecture

In order to solve the optimisation problem described above, we have
envisioned a system for analysing both SLAs and the runtime state of the
distributed services, and, based on this information, for optimising the re-
source allocation in the cloud environment. The architecture of the SLA
Management and Resource Allocation Optimisation is composed of four sub-
systems, as shown in Figure 5.2. The detailed presentation of each subsystem
is given in the following four sections. The subsystems have been designed
to separate four standard lifecycle parts of SLA management, processing,
scheduling, information management and execution, as well as the predic-
tive mechanisms that we introduce. The subsystems have clear interfaces
and interactions, such that these could be changed for different technologies
or methods. The subsystems are described in more detail below, focusing
on their SLA management relevance to support the dynamic, correlation-
enhanced approach.

Semantic SLA Processor

The first component in the SLA processor is the parser responsible for (1)
loading the SLA’s RDF[88] into statements that are understandable by the
compiler and for (2) registering the distributed application description to
the information model.

The compiler converts the SLA-actions and SLA-guarantees into exe-
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cutable Java code. Each action specified in SLAs are compiled into MVEL
expression language, such that an interpreter can execute the actions.

As actions are executed, the Service and Application Resolver maintains
a mapping between the higher-level application SLA-defined services and the
VMs created from the execution of SLA actions (e.g. service scaling). It
also maintains links between application services and the appropriate VM
instances, such that the correct monitoring information can be extracted at
runtime.

The next function of the semantic SLA processor is the Health Monitor,
which checks values of the monitored metrics against the conditions defined
in the SLA rules. This is done on a predefined control loop interval, which
includes the collection of metric values from various probes. In addition,
predictive states are also gathered from the Predictive Information Manager,
discussed in Section 5.2, such that the future health of the managed services
is also considered, according to the guarantees defined in the SLAs.

Finally, the Action Trigger executes the action associated with the vio-
lated SLA guarantee. The actual execution of the SLA-action will be per-
formed by the Execution Engine, as described in Section 16.

Predictive Information Manager
This subsystem (1) predicts time series corresponding to the SLA moni-
toring metrics, (2) detects time series periodicity, (3) determines runtime
on-demand metrics statistical correlations used for improving the existing
SLAs, and (4) schedules SLA actions.

The correlation coefficient r is defined according to Equation 5.3, where
x and y are sample values, x̄ and ȳ are variables’ average value, n is the
number of monitoring samples in the considered time window, σx and σy are
the standard deviation of each variable. We used the correlation coefficient
for determining the relations between the different monitoring metrics of the
services found under SLA control.

r = 1
n− 1

n∑
i=1

(
x− x̄
σx

)(
y − ȳ
σy

)
(5.3)

By starting from a set of SLA metrics specified by the application de-
signer, the system can identify pairs of service monitoring metrics with high
correlation (e.g. with r > 0.85), as described in the Algorithm 6. The sys-
tem can then compose chains of such correlated metrics, forming the base
for identifying inter-services dependencies. Such chains of monitoring met-
rics can then be further processed by fitting certain mathematical models
(e.g. linear models) onto them, which can then be converted into SLAs. The
resulting SLAs can be used for better monitoring of the cloud services and
for understanding the complex relations between the various service per-
formance indicators. Also, the models for estimating SLA service metrics
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can be used for predicting critical application parameters and for avoiding
those application states which would cause undesirable effects (e.g. poor
application response times).

Algorithm 6 was implemented for identifying SLA correlations.
Algorithm 5.2: Correlation Chain Detection
1 for ST ∈ Service Types do
2 for M ∈Metrics(ST ) do
3 for Srv ∈ Services(ST ) do
4 Aggregate M(t) time series using a given time window TW

5 Aggregate time series of all Services of type ST

6 for (X,Y ) ∈ {Metrics×Metrics} do
7 Calculate correlation(X,Y ) according to Eq. 5.3
8 Pairs = all (X,Y ) pairs with correlation(X,Y ) > C
9 Fit linear model LM over Pairs
10 Convert LM into SLA

The algorithm performs in lines (1)-(5) the aggregation of time series
for each SLA metric and service type ST . This is because all instances of a
given service type are assumed to perform identical functions and thus the
application load is equally distributed among the active service instances.
The time window TW over which the aggregation is performed is selected so
that it is meaningful from a business point of view (e.g. one service billing
period).

Lines (6)-(7) are concerned with calculating the statistical correlation
between all the aggregated SLA monitoring time series. In line (8) a set
of highly correlated SLA metrics is identified, given a certain correlation
threshold (e.g. 0.7). In line (9) the identified set Pairs is used for fitting a
linear model [47] to estimate a critical SLA parameter.

α0 +
‖M∈Pairs‖∑

i=1
αimi(t) < thrk (5.4)

In step (10), the linear model LM is converted into a SLA by adding a
constraint (e.g. smaller than a given value) on the estimated SLA metric,
as presented in Equation 5.4.
α0 is LM ’s intercept term, ‖M ∈ Pairs‖ is the number of SLA metrics in
the set Pairs, mi(t) is the measured value of SLA metric mi, αi is the
coefficient of mi in LM , and thrk is the user-selected maximum value for
the mK SLA metric.

The system has also an assisted mode of determining patterns in the time
series of monitoring metrics. For this, the user indicates to the system a set
of service monitoring metrics. The system then displays the auto-correlation
and periodigram plot for the selected data, also suggesting whether the data
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manifests periodicity, based on the auto-correlation information. The user
can then decide whether the indicated period is correct, in which case the
system would enable the use of prediction for SLA actions triggering.

The actual forecast is performed using the Holt-Winters algorithm [85],
which is performing a triple exponential smoothing of the data, in combi-
nation with the forecast package [75] from R data analytics engine [129].
Given that the cloud-deployed applications experience daily, weekly and sea-
sonal variance in their utilization levels, using a prediction algorithm (such
as the Holt-Winters) that incorporates both seasonality and trend in its
estimation improves the forecast accuracy over long periods.

Algorithm 5.3 describes the use of prediction inside the Predictive In-
formation Manager’s component. In line (1) the system identifies the SLA
metrics marked in the SLA as expressing periodicity. The period Ti of these
metrics is calculated in line (2) by applying statistical auto-correlation on
the accumulated aggregated monitoring time series. Steps (3)-(16) try to
apply the prediction on the suitable service levels SL (e.g. SLA service
guarantees and SLA action triggers).

In lines (4)-(8), the prediction of the periodic metrics in SL service level
is calculated. If SL contains non-periodic SLA metrics, then SL is not
further processed. In lines 10-16, the SL’s Boolean condition is evaluated
over a number n of moving windows of length w (defined in SLA). n is defined
as the number of time windows w fitting inside the smallest period of metrics
in SL. For noise rejection purposes, the Boolean expression contained in SL
is evaluated using the average value of mj over the given time window w.
If SL’s expression evaluates to true, then the SL’s action is scheduled for
execution at the beginning of the i-th time window. It is up to the scheduler
of the Execution Engine to filter multiple consecutive schedules of the same
SL action.

In case of SLA levels triggering service scaling-up, the scheduling infor-
mation can be used by the cloud resource allocator for reserving resources,
also taking into consideration other factors and policies, similar to the ones
presented in [19, 22]. However, exploring these scheduling aspects is beyond
the scope of this thesis.

Request Scheduler Engine

This subsystem has two functions. First, it maintains application regis-
tration information that includes the time frames when services in each
application should be available. For example, an application could be reg-
istered at time t0 but only required to be operational at time tn. Second,
each service belonging to an application needs to be allocated resources in
the managed infrastructure. The service allocator (1) determines required
infrastructure virtual resources (e.g. cpu, memory) for each service, based
on the sizing associated with each VM and (2) delays the VM instantiation
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Algorithm 5.3: SLA Prediction
1 identify the set of periodic SLA metrics mp

i ∈ {Mp} (as indicated by
application administrator in SLA)

2 system uses auto-correlation of mp
i (t) for identifying its period Ti

3 for SL ∈ ServiceLevels containing periodic metrics do
4 for mj ∈Metrics(SL) do
5 if mj ∈Mp then
6 update prediction(mj)
7 else
8 predictive evaluation of SL is not possible, continue to

next SL
9 t is current time
10 for i ∈ (1..n) do
11 evaluate SL with predicted data in interval the

[t+ (i− 1) ∗ w, t+ i ∗ w]
12 if expression(SL) = TRUE then
13 if SL triggers an action then
14 schedule action SL at time t+ (i− 1) ∗ w
15 else
16 inform user about potential future SLA violation

until all service dependencies are resolved.

SLA Execution Engine

This subsystem acts as an interface and adapter to the managed cloud in-
frastructure. It consists of virtualisation drivers for controlling the capacity
of virtual machines and the network available for services. This enables
monitoring probes to be directly attached to resources and service end-
points, such that metrics can be pulled from logs or periodically executed
scripts that query the virtual and host OS. The actions manager schedules,
performs and monitors the status of direct operations on resources.

5.2.1 Implementation of the OpenNebula Virtualisation Driver

The presented management system was implemented using Java and service
technologies such as OSGi [6] and CXF [23], which were selected because of
(1) their wide use in enterprise software environments and (2) of their sup-
port for interoperable, standard-based, loosely coupled service architectures.
We used multiple MySQL [121] databases for storing the monitoring state of
the distributed application and the logging information accompanying the
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SLA evaluation. All the data analytics operations were implemented in R
[129], as this gave us the flexibility of writing complex but modular data
processing workflows, which we could then access from Java/OSGi.

The SLAs were represented using USDL-SLA [93] and compiled at run-
time into directly-evaluable MVEL [34] code. Using USDL-SLA had the
advantage of representing both the distributed application service struc-
ture, related monitoring metrics and SLA conditions in an easily (machine)
readable format.
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Figure 5.3: OpenNebula Execution Adapter developed in the GEYSERS project

Figure 5.3 displays the virtualisation adapter used for executing scaling
actions using the OpenNebula cloud management system. The adapter im-
plements common operations such as querying the available infrastructure
resources, creating VMs, configuring VM parameters (e.g. IP address, appli-
cation parameters such as server IPs), checking VMs’ state, and terminating
VMs. The implementation of this adapter was performed by the author of
this thesis during the GEYSERS project.

Due to the asynchronous nature of executing the infrastructure opera-
tions, all commands are registered with an event processor, which is period-
ically checking for determining the status of the executed commands. When
the execution of a command is completed, the adapter generates a notifica-
tion message, which is then sent to the upper system using the north-bound
interface. The actual communication protocol used for communicating with
OpenNebula is XML-RPC[146].
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Chapter 6

Dynamic SLA-Driven Virtual
Resource Management with
Forecasting Using Multi-Objective
Optimizations

Having presented the architecture and algorithms of the service management
platform (in Chapter 4), which uses the enhanced SLA specification de-
scribed in Chapter 3, we will now show in this chapter how SLAs can be also
used as input for efficient management of virtual infrastructure resources,
in particular for the allocation of virtual machines to physical servers, while
trying to optimize multiple objectives related to energy efficiency, costs and
SLA penalties. Therefore, this chapter provides an answer to the research
question, formulated in Chapter 1, regarding the optimisation of resource
allocation in cloud environments. Specifically, we show in Section 6.1 how
to design an algorithm for solving the resource allocation problem (e.g. the
cost-efficient provisioning of virtual machines onto physical hosts), while
considering multiple objectives coming from both from the infrastructure
cloud provider and the customers using the IaaS services for running dis-
tributed applications. Next, in Section 6.2 we present the architecture of
a system capable of implementing the previously defined algorithms in or-
der to optimise the allocation of virtual machines in an infrastructure-cloud
environment.

Cloud providers [8, 68] (of infrastructure or platform services) use SLA
management for specifying the services’ availability levels and for maintain-
ing the quality of service (QoS) offered to their customers. An important
phase of this process is the allocation of resources, also including initial and
runtime placement optimization.

Dealing with exclusively-owned virtual machine (VM) instances deployed
on a shared physical infrastructure presents a greater challenge, given the
multi-objective optimisation problem (energy costs vs profits vs SLA penal-
ties) introduced earlier (allocating VMs to hosts), as well as the differentia-
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tion in demands from different classes of VMs and VM users. Furthermore,
the violation of SLAs results in cash penalties for the provider, adding a
direct economic dimension to the problem.

6.1 Resource-Allocation Planning and Utilisation Forecasting

A typical cloud environment consists of h ∈ H servers each with a given
amount of CPU cores ch, main memory mh, persistent storage sh (usually
network connected), and available network bandwidth bh. These servers will
be used for hosting one or more virtual machines, which will use a predefined
amount of server resources, as determined by the service level defined (e.g.
standard, gold, silver) in the SLA agreement.

6.1.1 System Model

The purpose of SLAs [83] [17] is to define the guaranteed configuration [8]
of the VMs in terms of CPU, memory and network bandwidth and to also
specify their hourly utilization tariff. They can also be used for defining the
penalties in case of SLA violation [8, 68]. As such, the duration of the SLA
violation during a month of utilization can be converted to a SLA penalty
given as a percentage of the monthly bill. The penalty will be returned to
the customer as a compensation for the suffered losses. This can be depicted
using formula 6.1.

PenaltySLA = ai
100B, up ∈ (U1

i , U
2
i ], ai ∈ [0, 100] (6.1)

i is the penalty level, as shown in Table 6.1, PenaltySLA is the penalty cost
calculated as a percentage ai of the monthly bill’s value B, when the uptime
(in percent) up is between the thresholds U1

i and U2
i . An example of such

penalty calculation can be that 10% of the monthly bill (B) will be returned
to the customer if the uptime is between 99% and 99.95%.

Penalty [%] Lower
availability
limit [%]

Higher
availability
limit [%]

10 99 99.95
25 95 99
50 80 95
100 0 80

Table 6.1: Example of SLA penalties model

The estimated costs of violating the CPU or network SLAs is given by the
time interval while the sum of estimated CPU/network utilization of each
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VM exceeds the available resources of the hosts. Formula 6.2 determines
the uptime value used in formula 6.1 for calculating the penalty value

up = 1
T

T/tm∑
i=1

ccpui cneti tm (6.2)

ccpui =
{

1 if ucpui < U cpui

0 otherwise

cneti =
{

1 if uneti < Uneti

0 otherwise

tm is the monitoring interval, T is the billing period (e.g. one month),
ucpui and uneti are the VM’s CPU and network utilization level at the ith
monitoring time slot, U cpui are the VM’s host CPU and network utilization
level (combined for all VMs running on the host) at the ith monitoring time
slot, ccpui and cneti are the SLA compliance indicators at the ith monitoring
time slot.

For a given server, it is possible to model its energy consumption as a
linear dependency of the CPU utilization [105]. In case of multi-core/CPU
servers the average CPU utilization of all cores can be used. As a conse-
quence of the fact that the idle power consumption is almost 60% of the one
at full load [105], keeping servers in idle state or at low utilization would
produce low revenues due to the fact that the server will consume almost as
much energy as running with high load, but will generate only low revenues,
if at all. Formula 6.3 describes the energy costs calculation, as described in
[105].

Pi = Pidle + (Pmax − Pidle)U cpui

Cenergy = CKWh · T
T/tm∑
i=1

Pi (6.3)

where Pi is the power consumption during ith monitoring time slot, Pidle
and Pmax are the host power consumption at idle and full load, CKWh is
the energy cost per KWh and Cenergy is the total energy cost during T time
interval.

In a cloud environment, usually the VMs experience low CPU utiliza-
tion, with 30% average [105] and usually having daily, weekly and monthly
seasonality [64]. This helps to predict the resource utilization and do a bet-
ter allocation by taking into account the quantity of resources that a VM
will use, in fact enabling using the virtual machine live migration as a load
balancing method [150].

The actual costs of VM migration can be expressed by formula 6.4 which
is the cost caused by blocking resources on the destination host during the
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live migration, due to the reservation of memory before the migration. We
ignored the VM downtime which is usually in terms of seconds.

CVMmigration = CVMuh · tmigration (6.4)

where CVMuh is the cost per hour of utilization of a VM and tmigration is
the estimation of time in hours needed for performing the migration. Mi-
gration time is estimated using a linear dependency [150, 76, 114] between
the amount of VM’s reserved memory and CPU utilization, as expressed
by formula 6.5. The formula could be extended with other factors, such as
the average network bandwidth utilization, as the calculation method would
remain the same: applying the superposition principle [119].

tmigration = TMem
idle +

(
TMem
f.load − TMem

idle

)
· ucpu (6.5)

TMem
idle = TMmin

idle +
(
TMmax
idle − TMmin

idle

)
· αMem

TMem
f.load = TMmin

f.load +
(
TMmax
f.load − T

Mmin
f.load

)
· αMem

αMem = Mem

Mmax −Mmin

where Mem is the amount of main memory reserved for the VM, ucpu is
the average CPU utilization of the VM at the migration time, TMem

idle and
TMem
f.load are the durations of the VM migration while it uses Mem amount

of memory and its CPU is idling, respective, at full load. The TMem
idle and

TMem
f.load values can be either calculated by linear interpolation, by considering

the time required for migrating a VM configured with the minimum, respec-
tive maximum amount of memory, at constant CPU utilization, either by
directly measuring the live-migration time of a VM with the specified char-
acteristics in terms of memory and average CPU utilization. The αMem is
the percentage thatMem represents of the considered memory range [Mmax

, Mmin].
We consider four objectives in our approach to allocating virtual re-

sources: (1) maximising total revenues, (2) minimising energy costs, (3)
minimising migration costs and also (4) minimising SLA penalty costs.
These different objectives are linked by a aggregate objective function which
evaluates the resource allocations using the function as described in Eq. 6.6.

Favg(obj) = wr

M∑
i=1

(
Ciuh · T i

)
− we

H∑
i=1

Cienergy − (6.6)

−wm
M

′∑
i=1

Cimigration − wp
M

′′∑
i=1

PenaltyiSLA

obj = [wr, we, wm, wp]
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obj is the evaluation objective composed of four weights: wr for revenues,
we for energy costs, wm for migration costs and wp for SLA penalty costs,
M is the total number of VMs, Ciuh is the per-hour utilization tariff of VM
i, T i is the utilization period of VM i during the given billing period T , and
M

′ is the number of migrated VMs, M ′′ is the number of VMs with SLA
violations, and PenaltyiSLA is the SLA penalty cost of VM i. The actual
composition of the objective vector obj is determined by the provider (e.g.
he/she can chose whether to focus on energy efficiency or on maximisation
of profits).

An example of a final objective could be maximization of the total profit,
in which case each objective would have an equal importance, represented
by giving each weight the value one (e.g. obj = [1, 1, 1, 1]). The variation in
the weights can be also used for offering different price plans to the client,
depending on the desired type of optimization. It might be the case that a
provider might want to offer a ’green’ service, with a strong emphasis on en-
ergy efficiency, in which case he will increase the corresponding weight of the
energy costs (e.g. obj = [.9, 1, .8, .7]). This, however, will affect the other ob-
jectives, for example, the costs with the SLA penalties, as the allocator might
select fewer physical servers for running the VMs in order to decrease the
energy costs. Another possibility would be to offer a performance-oriented
service, in which case, the weights corresponding to the migration costs and
SLA penalties would be increased (e.g. obj = [.9, .7, 1, 1]), which would
affect the produced allocations by using more servers and would raise the
energy costs.

An efficient planning algorithm will try to find a global optimum for the
allocation of VMs to hosts for a given billing period by maximizing the total
revenues. Our proposed algorithm attempts to achieve this by performing
a search of a local optimum with a time horizon of one billing period (e.g.
one month).

6.1.2 Group-Oriented Genetic Algorithm for Multi-Objective Allocation
of Virtual Machines

The problem of allocating VMs to physical hosts (while optimising the costs
of the allocation in terms of energy efficiency, provider revenues, migra-
tion costs and SLA penalties) can be seen as a bin-packing or knapsack
problem[104], which is known to be NP-hard, suggesting the need for a
heuristic solution. Genetic algorithms [27] are a class of heuristic solutions
that can make use of multi-objective evaluation functions for searching so-
lutions in multi-dimensional spaces. a general introduction to genetic algo-
rithms can be found in section 2.7.

Given the nature of the VM allocation problem, we selected a specialized
version of genetic algorithms oriented at groups [78]. The group oriented
genetic algorithm [54] operates on groups of objects, leveraging the fact that
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the VMs are naturally grouped by the servers on which they are deployed
and thus maintains the previously determined good properties of the groups.

The solution space of our VM allocation problem is multi-dimensional
due to the multiple objectives used for evaluating them, such as the costs of
SLA violation, energy consumption, VM migration and the total revenues.
As the problem of allocating VMs to physical hosts is an NP-hard combina-
tional optimization problem, it is not feasible to demonstrate the optimality
of a solution. The produced solutions are Pareto-optimal [89] regarding the
applied criteria. In our case, the criterion used for selecting a solution is the
value of the predicted total profits of the allocation, considering the costs of
the SLA violations, energy consumption and VM migrations.

Given that the average CPU utilization of a VM hosted in a data cen-
ter is usually around 30% [105] it is common to overcommit the CPUs of
the physical hosts with factors between 1.5 and 3 [105, 109]. For exam-
ple, OpenNebula [113] allows allocating virtual CPUs to a fraction of the
available physical CPUs, using support of Xen and KVM [38] hypervisors.
This, however, could lead to violating the SLAs (e.g. guaranteed maximum
values for service execution times) in case that the collocated VMs simulta-
neously experience high CPU utilization [109]. Given the fact that a server
uses almost 60% [105] of the total power consumption when running idle,
distributing VMs across a large number of servers results in poor server
utilization levels and would hence also diminish revenues due to the high
amount of energy used per VM. Our genetic algorithm allocator with load
forecasting mitigates these problems for VMs with an existing monitoring
history, by choosing the best current allocation that minimizes the costs of
the allocation at the next time step, given that domain-specific constraints
from the application are not breached.

Although it is possible to overcommit both CPU ([109, 152]) and memory
([152, 151]) in modern hypervisors, we are considering only oversubscription
of the CPU, as the oversubscription of memory is usually associated with
system instability [152].

Below, the basic structure of the genetic algorithm used is given.

The group oriented genetic algorithm [54] searches for solutions by gener-
ating populations of chromosomes composed of genes that belong to groups.
In our implementation, a chromosome encodes an allocation of VMs by rep-
resenting the groups as hosts and the genes as VMs packed onto a given
group. The initial population is created by applying a heuristic algorithm,
such as first-fit. Next, the population is sorted according to the multi-
objective fitness function. At each step the algorithm performs two group
oriented operations on the current population: crossover and mutation (de-
scribed later in this section). Top 10% chromosomes from the current pop-
ulation are passed into the next population as elitism seems to improve
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solution convergence [89].
Algorithm 6.1: VM Allocation Genetic Algorithm
Step 1: Generate the initial population

1. randomly allocate genes (VMs) to groups (servers) using the first-fit
heuristic[4]

2. ensure the chromosome is valid with regards to VM’s allocated
memory by reinserting the excluded genes in the groups using the
first-fit heuristic

Step 2: rank (evaluate the fitness of each chromosome) and sort the
population using the fitness function defined in equation 6.6. The
fitness function is evaluating how "good" each chromosome is at
solving the problem. The actual function depends on the problem to
be solved.
Step 3: copy E "elite" chromosomes (with highest fitness value) into
the new population
Step 4a: generate an offspring (new chromosome obtained from one or
more existing chromosomes) using crossover with a given probability

1. select two chromosomes from the population using fitness
proportionate selection

2. generate offspring using the group-crossover operator

3. ensure the chromosome is valid (e.g. all VMs are still present in the
allocation) with regards to VM’s allocated memory by reinserting the
excluded genes in the groups using the first-fit heuristic

Step 4b: or select the fittest of the parents
Step 5: mutate the offspring with a given probability
Step 6: rank and sort the population using the fitness function
defined in equation 6.6
Step 7: If the stopping criterion is reached, terminate the search and
return to the current population, else, go to Step 3.
The group oriented genetic algorithm [54] searches for solutions by gener-

ating populations of chromosomes composed of genes that belong to groups.
In our implementation, a chromosome encodes an allocation of VMs by rep-
resenting the groups as hosts and the genes as VMs packed onto a given
group. The initial population is created by applying a heuristic algorithm,
such as first-fit. Next, the population is sorted according to the multi-
objective fitness function. At each step the algorithm performs two group
oriented operations on the current population: crossover and mutation (de-
scribed later in this section). Top 10% chromosomes from the current pop-
ulation are passed into the next population as elitism seems to improve
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solution convergence [89].
We use two criteria for ending solution searching. First, we determine

when there are no more improvements, or they are below a certain thresh-
old, in the overall fitness value of a population. Second, we determine when
finding a solution is not possible (e.g. the profits generated by the new allo-
cation are lower than the initial allocation due to the costs of SLA violations,
VM migrations and energy consumption).

Each allocated group inside each chromosome needs to have another local
allocation applied for determining the allocation of physical CPU cores to
the VM cores. This is achieved by running a similar genetic algorithm to
Algorithm 6.1. The allocation is performed every time a group is changed
(e.g. a VM is added or removed from the host).

The evaluation of each chromosome is performed by calculating the pre-
dicted energy costs for the allocation (using a linear power model[105] - de-
fined in Eq. 6.3 - combined with forecasted CPU utilization data), revenues
generated by the allocation assuming one period of utilization, predicted
costs caused by CPU/network SLA violations (determined using forecasted
utilization data) and costs associated with VM migrations - which are the
values of the objective functions. These values will then be combined by the
aggregate objective function, as described in equation 6.6.

The next step consists of applying the roulette selection [27] for identi-
fying two possible candidates for producing the new chromosome. With a
given probability either the group-crossover operator is applied for produc-
ing a new offspring, or the fittest chromosome if selected. After this, with a
given probability, the mutation operator is applied to the offspring, before
adding it to the new population.

After the population has been created, it will be re-evaluated (Step 2
of Algorithm 6.1) and the process is repeated until the stop condition is
encountered.

The group-oriented crossover genetic operator functions by retaining the
qualities of the groups and selecting from each chromosome the correspond-
ing group with the highest fitness value (as defined in Eq. 6.6), thereby
preserving the good VM-allocations. After all groups have been processed it
is possible for some VMs to remain unallocated. For these ones, a ’healing’
process is applied by redistributing them according to first-fit-descending
heuristic.

The mutation operator is applied by randomly removing a VM from a
CPU- or network-oversubscribed host and re-allocating it according to the
first-fit heuristic. A key component of the planning system is the forecasting
module used by the allocator algorithm in evaluating the fitness of various
VM to host distributions based on the forecasted VM request rate, CPU
core and network utilization. Given the fact that both the VM request
and resource utilization distributions experience daily, weekly or monthly
patterns [64] we have selected the Holt-Winters algorithm [84] for performing
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triple exponential smoothing of the utilization data.
The Holt-Winters algorithm performs an exponential smoothing of the

data by assigning exponentially decreasing weights to the past data com-
prised of a period, considering also the data trend and seasonality. The
seasonality refers to repeating of a data pattern after a given number of
periods, called season. The trend refers to the tendency of data to either
increase or decrease in the long term. In our case, the monitoring data ob-
tained from the VM’s CPU and network utilization, as well as the number or
VM requests, experience seasonality with daily and monthly patterns [31].

6.2 Control System Architecture

The system functions in a control loop, as shown in Fig. 6.1. First, the
requests are prepared by the Landscape Manager and then are passed to
the Allocator module (1) for determining how the virtual machines should
be allocated on the physical infrastructure. The Allocator uses historical
data from the Monitoring module (2) and the system load forecast (3) for
producing an allocation of the VMs to hosts. The actual load forecast is
determined using historical monitoring data (4), using of specifically fitted
forecast parameters calculated (5) by the Forecast Parameters Optimizer
module. Next, the allocation is passed (6) to the Multi-Objective Evalua-
tor, which then uses both existing monitoring data (7) and the forecasted
resource utilization data (8) in order to calculate the costs involved in the
allocation. After selecting the allocation with the minimal cost, the Alloca-
tor returns it to the Landscape Manager which will then register the new
virtual resources with the SLA Manager (9) and will instruct the Infras-
tructure Manager (10) to actually provision the resources on the physical
resources. The control loop is closed by the returning of the monitoring data
to the Monitoring Handler (11), followed by informing the SLA Manager
about the resources’ state (12).

Three implementations of allocator algorithms were created in Java for
the planner system: First-Fit-Descending[157], Best-Fit-Descending and the
Genetic Group-oriented with Forecasting. The actual Holt-Winters forecast-
ing is delegated to an external implementation of R[129] statistical comput-
ing software. The forecasted series are kept in a memory cache, as the
prediction values are reused multiple times by the genetic allocator. The
forecast is run in a progressive manner, first after on hour from the VM
instantiation, then after 6h, 12h, 24h, 2d, 3d, 6d, 7d, 9d, 30d, after which
the forecast is recalculated every month.

Our system makes some assumptions about characteristics of the in-
coming load, such as the distribution of load according to hourly and daily
patterns, having one service instance per VM, and having a predictable trace
of CPU and network utilization. We assume that the VM network utiliza-
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Figure 6.1: System Control Loop

tion data refers only to inter-hosts traffic but not to the intra-host traffic
of the collocated VMs; and that the VM memory is always reserved all at
once, while the VM’s CPU cores are allocated to the physical CPU cores
using the affinity mechanism [95]. We assume that the monitoring samples
are collected every 5 minutes, in order to keep the generated data volume
to a manageable value of approximately 9000 monitoring samples per VM
for each month.

While the assumption of having just one type of service per VM seems
restricting, this might be needed in an environment with automatic scal-
ing in order to enable taking the decision on when the service should be
scaled, based on previously agreed SLAs. This, however, does not prevent
the existence of composite applications containing multiple services. An ex-
ample of such application, with which we experimented, is an Enterprise
Information System (EIS) composed of a load-balancer, a session handler,
multiple workers and a storage service. We describe in Section 4.2 how the
SLA-based System Landscape Orchestrator works to perform the dynamic
instantiation, configuration and scaling of the services. Even if there are
multiple service instances per VM, this does not change the nature of the
VM-to-Host allocation problem, as the resource metrics would remain the
same.

The penalty model used for calculating the costs of violating the CPU or
network SLAs was already presented in Table 6.1. The penalty in percent
refers to the amount of the current bill that will be paid to the customer in
the next moth if the SLA availability is between the lower and the upper
bounds. This implies that the target SLA availability is 99.95%.

For estimating the VM migration duration (Fig. 6.2) we used a lin-
ear model, validated against experimental data [76, 114], dependent on the
amount of reserved memory and on the average CPU load of the VM. Fig-
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Figure 6.2: Migration time vs. memory and CPU load

ure 6.2 represents the linear dependency between the VM migration time
and the amount of reserved memory for when the CPU utilization is near
0% (idle) and almost at 100% (full load). The actual migration time is
determined by interpolating the time for the average CPU load using the
values for the migration at idle and full CPU utilization. Also, we model
the live-migration impact of the VM by increasing the load of the VM’s
CPU with 10% over a monitoring period, and also increasing the network
bandwidth utilization with the value amount required for transferring the
VM’s reserved memory.
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Chapter 7

Evaluation

We evaluated the work described in this thesis by performing multiple ex-
periments with VM-scaling algorithms on several distributed testbeds, as
well as several simulations based on analytic models derived from datasets
gathered while monitoring a real-world distributed enterprise application.

The current evaluation focuses on assessing the benefits of using SLAs in
cloud environments in management of both physical and virtual computing-
infrastructures. The validation of presented methods and algorithms was
performed by using a distributed enterprise application (dEIS), which we
describe in Section 7.1. In Section 7.2 we present the architecture of the
application under test, the performance profiling of the system, as well as
the statistical analysis of the relation between the system’s response time,
average occupancy and the rate by which the external requests arrive at the
system’s input.

Having presented in Chapter 6 the application under test (dEIS), its
performance characteristics, as well as the environment used for running
the validation experiments, we continue in Section 7.3 with the first round
of simulations meant to validate the use of SLA-based infrastructure man-
agement, as described in Chapter 3.

In Section 7.4 we describe the experimental physical testbeds, which were
used for running both the static VM-provisioning and dynamic VM-scaling
experiments.

In Section 7.5 we present the validation of the multi-objective virtual
resource allocation algorithm introduced in Chapter 6. We describe a sim-
ulation of allocating VMs according to a periodic variable-workload based
on common utilization patterns found in enterprise environments.

We split the evaluation and validation of the algorithms and methods
presented in Chapter 5 into two parts, as follows. In Section 7.6 we present
the experiments with VM provisioning and benchmarking onto the physical
testbed for validating the concepts related to the dynamic composition of
SLAs described in Section 5.1.

We continue the evaluation in Section 7.7 with a series of four experi-
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ments, designed to validate the use of analytic mechanisms for SLA optimi-
sation presented in Chapter 5.2 The first experiment was used for showing
how analysis of correlations can help detect performance bottlenecks and in-
correct SLA service scaling formulas. The second experiment validated the
conclusion of the first experiment related to scaling policy, while the third ex-
periment (1) validated the improved scaling policy based on the conclusions
of the first two experiments and (2) confirmed the detected correlations.
The fourth experiment validated the use of prediction in combination with
auto-correlation.

Section 7.8 is dedicated to validating the VM scaling algorithms pre-
sented in Chapter 4, by using simulations of VM-scaling based on the mon-
itoring traces of the dEIS application. In Section 7.8.1 we validate the
simulation model described in Section 7.2.2, by comparing the measured
performance metrics of the dEIS application running in the physical tested
with the simulator’s output. Having validated the simulation model of dEIS
application, we conduct in Section 7.8.2 three simulations for validating the
implementation of the reactive SLA-based scaling algorithm, which we de-
scribed in Section 4.4.1. Finally, Section 7.8.3 presents the evaluation of
the two VM-scaling algorithms described in Sections 4.4.2 and 4.4.3. We
also compare the efficiency of the three previously presented VM-scaling al-
gorithms. The last subsections deal with the large-scale simulations of the
SLA-based VM-scaling algorithms based on an enterprise use case, conclud-
ing the validation of the work described in this thesis.

7.1 System Under Test: Distributed Enterprise Information
System

For evaluating the presented approaches to SLA-driven orchestration for
dynamic application topologies, we use a distributed Enterprise Information
System (dEIS) with variable workload (number of users), payload sizes and
classes of workloads.

A typical dEIS consists of the following tiers, each contributing to the
SLA management problem: consumer, load balancer, business logic and
storage layer. Figure 7.1 provides an overview of the overall dEIS topology
and services. We shortly present the structure of the dEIS system used.

The four distributed services are interconnected by a Registry and Mes-
saging architecture. The dEIS has the purpose of integrating benchmarks for
processor and networking infrastructures. Is a distributed OSGi application
with a distributed service registry for 4 service classes, where each service
class has its own set of relevant, monitored metrics and control operations.

The customer facing layer implements the logic for generating the graph-
ical user interface and allowing dEIS users to interact with the system. The
Consumer (CS) VM is instantiated per client of the dEIS. It represents a
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Figure 7.1: EIS Services Topology

remote thin-client deployed with proximity to the dEIS core, such that large
payloads or transactions do not originate beyond the controlled network.
The monitored metrics are the number of users and the response-time for
requests. The number of Consumer instances is gradually increased and
decreased using a Load Generator.

The business logic or worker (WK) contains components that implement
the data queries, analysis algorithms, transaction execution and arithmetic
processing of the enterprise application. Different types of queries, algo-
rithms and arithmetic workloads place different demands on the available
processing resources. They also impact on the end-to-end latency of user
requests, such that scaling the amount of CPU and memory available to
these services has a significant impact on the observed QoE and SLA com-
pliance. There are various data-intensive benchmarks used, such as by the
Transaction Processing Performance Council (TPC) [46], for creating differ-
ent transaction or analytics workloads, each requiring processing of volumes
of data representative of how these applications are used in everyday in
business contexts.

The storage (ST) layer provides the interface to database resources, as
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well as mechanisms for creating, reading, updating and deleting data. Given
that the dEIS also maintains logs together with the growing application
data, intelligent data management techniques such as compression are often
required to avoid exceeding quotas and actual capacity. As input/output
storage latency will have an impact on the end-to-end response time, such
that parallelisation and redundancy are used to increase performance and
availability.

The load balancer (LB) redirects incoming requests to appropriate work-
ers based on algorithms, rules, and their state information. This depends
on their current activities, resource consumption and priority of the request.
Load balancers can also make decisions about starting and stopping work-
ers in order to free physical processing, memory and storage resources for
other activities. This enables a more efficient resource management of the
underlying resources.

CS LB WK ST

Create Session

Submit Request
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Create new session

Schedule Request

Submit Request
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Send Results

Close Session

Send ACK
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Return Session

Schedule Result Processing
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Figure 7.2: EIS Services Interactions

Fig. 7.2 presents the interactions between various dEIS services when
executing a CS-initiated request. This also shows the breakdown of opera-
tions executed at each service, which serves as the foundation for building
a simulation model of dEIS.

As each component, layer and service in the dEIS is distributed and
autonomous, there is a need for a registration and messaging architecture
that coordinates interactions between the distributed components and ser-
vices. This also enables more comprehensive and consistent monitoring as
each source, target and interaction can be discriminated and logged as an
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individual record. The dEIS implementation used in our analysis and devel-
opment uses the Apache Zookeeper [24] registry and synchronization service
for the above-described functions.

The four dEIS application services were packaged into VMs, which were
then deployed on a geographically distributed test-bed, described in Sec-
tion 7.4. The dEIS was developed as a collection of OSGi bundles, which
communicate using Distributed OSGi [25] mechanisms. Various monitoring
probes were developed for each service type in order to ensure that services’
state is observable from the central management system. The bundles for
each service were packaged inside an OSGi container and were set for auto-
matic start-up. The OSGi container was packaged inside an Ubuntu virtual
machine, and a script was added to the VM for starting the OSGi container
at boot time. The VMs were configured using a boot script for passing
configuration information to the running services. The VMs were controlled
using multiple OpenNebula [56] virtualisation controllers, chosen because of
ability to abstract the underlying hypervisor and hardware resources.

7.2 Performance Analysis and Modelling of the Distributed
Enterprise Information System

In order to simulate the dEIS application, we first recorded key performance
indicators of dEIS services under constant workload. We then used these
monitoring traces to create the dEIS’s simulation model composed of a large
number of single requests’ execution measurements. For any given request
we measured the round-trip times for the service calls displayed in Fig. 7.2,
as well as durations of the service-local calls.

For building the application performance profile we took the following
approach. We instantiated one VM for each (Consumer) CS, (Load Bal-
ancer) LB, (Worker) WK and (Storage) ST service. We initialized the con-
current load with 1 (active request at a time) and the benchmark time dura-
tion with 10 minutes. Every 10 milliseconds the number of active requests ar
executed by the system was compared to the target load, and if ar was below
load, then a number of load− ar requests from CS would be generated. For
each service request, the following parameters were recorded: round trip du-
rations, service-local operation durations and VM-level performance metrics
(CPU, memory, network, disk). By recording all these parameters for each
distributed request, a performance benchmark profile was generated under
the constant workload load. This whole process was then repeated for a
load equal to the previous load plus 1, e.g. loadcurrent = loadprevious + 1.

After running the benchmark described above, the dEIS performance
profiles for constant concurrent load between 1 and max.load concurrent
requests will be known and the performance profile will be generated with
all service call round-trip times and service-local operation durations. This
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profile will then be used during the simulation, as described later in this
chapter.

In order to build the application’s performance profile the following as-
sumptions were made: (1) load balancing is applied at the LB service and
(2) CS requests are independently executed by the dEIS services. This al-
lows us to extend the performance profile recorded with one VM per dEIS
service to any number of VMs, as the performance of individual services
will be influenced only by the level of concurrent workload and not by the
number of running VMs.

7.2.1 dEIS Performance Profiling

We analyze performance profiles generated for each dEIS service while the
system was sequentially executing requests for 10 minutes, at a fixed con-
current workload (defined as the number of requests being processed by the
system as any given time). The physical setup consisted of three servers
with Intel(R) Core(TM)2 Duo CPU E8400 CPUs, 4GB of memory and 1
Gbps network interface. Figure 7.3 shows the placement of the VMs on the
servers. CS and LB VMs were co-located on Server 1, while WK and ST
were each located on Server 2, respectively Server 3. The fourth server was
used for running validation experiments, by using two additional VMs, one
VM for the WK service and one VM for the ST service.

In Fig. 7.4 we show the performance profile of the dEIS CS service
(thin client). Four application metrics were recorded for the CS service:
(1) round-trip time for creating a LB session and receiving a confirmation

Figure 7.3: dEIS Topology (allocation of VMs to servers)
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Figure 7.4: dEIS Consumer Service Performance Indicators

acknowledgement, (2) round-trip time for sending a request to the WK ser-
vice, (3) the time during which the response was queued before being se-
lected for processing, and (4) time for validating the response. For the VM
performance there were also four metrics gathered: (5) VM CPU utiliza-
tion percentage, (6) memory usage, (7) network bytes read, and (8) network
bytes written. The network bytes read correspond to the messages received
from LB (session creation confirmation, around 4KB) and WK (processing
result, 10-30KB), and have a large variance. The CPU utilization has low
values and is almost constant at around 20%, as expected for a thin client
application.

In Fig. 7.5 we present the performance profile of the dEIS LB service.
The application metrics recorded are: (1) session creation time, and (2)
number of concurrent sessions. The LB VM metrics are the same as the
ones gathered for CS. CPU utilization is also low at around 20%, justifying
co-location of CS and LB VMs. Both network read and written bytes have a
median of around 2KB and are caused by exchanging small sized monitoring
and session creation/ confirmation messages.

In Fig. 7.6 we present the application performance profile of the dEIS
WK service. We gather the following monitoring information: (1) request
scheduling duration - time a CS-request is queued until it is selected for pro-

113



7.2. PERFORMANCE ANALYSIS AND MODELLING OF THE
DISTRIBUTED ENTERPRISE INFORMATION SYSTEM

cessing, (2) round-trip duration of sending the WK-request to ST service,
(3) ST-response queuing, (4) processing of ST-response, and (5) round-trip
time for sending the response back to CS service and receiving the acknowl-
edgment.

In Fig. 7.7 we display the WK’s VM performance metrics. CPU utiliza-
tion has high values because of the additional computing time required for
processing the result from ST. Also, the size of the response sent to CS has
a large variance (5-30KB), explaining the variance of the result processing
time. Also, this rather large result size variance will influence the variance
of the simulation results.

In Fig. 7.8 we present the ST’s application performance metrics. The
recorded metrics are: (1) time a WK-request is queued until it is selected for
processing, (2) time it takes to obtain a database connection for processing
the data queries, (3) database query execution time, (4) SQL result set
processing time, (5) size of the result in bytes, and (6) round-trip time for
sending the result back to WK.

In Fig. 7.9 we show the VM performance metrics associated with the
ST service. Both CPU and memory utilization are high due to the large
amounts of processing required for retrieving and processing the data from
the database.

Finally, in Fig. 7.10 we present how the various durations and round-trip
times stack up to compose the complete end-to-end time of each chain of
requests (CS-WK-ST) and responses (ST-WK-CS). This plot represents the
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Figure 7.6: dEIS Worker Service - Application Performance Indicators

foundation of the simulation model. During the simulation, vertical "slices"
(service-local durations and round-trip times) will be used for simulating
CloudSim cloudlets. The probes displayed in the Fig. 7.10 are described in
Table 7.1. Figure 7.10 should be interpreted as a plot of ene-to-end execution
times on the CS, WK and ST services. For each request on the X axis, there
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Figure 7.9: dEIS Storage Service - VM Performance Indicators (Network, CPU,
Memory)

are multiple components (corresponding to the metrics given in Table 7.1)
which add up to the final value of the measured end-to-end request.
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Table 7.1: dEIS Monitoring Metrics (in milliseconds)

A lb-create-session-roundtrip B cs-to-wk-send-request-roundtrip

C wk-req-scheduling D wk-to-st-submit-request-roundtrip

E st-get-datasource F st-exec-schduling

G st-request-execution-time H st-result-processing

I st-wk-send-response-roundtrip J wk-response-processing-scheduling

K wk-req-execution-time L wk-to-cs-response

M cs-schedule-respose-processing N cs-process-response

7.2.2 Modelling and Simulation

The performance-profiling traces previously gathered can be represented
as shown in Equation 7.1. Profileload is a matrix with all measurable
time values of applications’ operations under concurrent load. RT (Si, Sj)
is the round-trip time of a remote service call on service Sj from service
Si. Di(Opk) is the time of performing service-local operation k on service
Si and (cpu|mem|net)CS|LB|WK|ST is the utilization level of CPU, memory
and network on the VMs corresponding to CS, LB, WK and ST services.
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Each line of the Profileload matrix corresponds to a single chain of requests
from CS, to WK, to ST, and then back to CS.

Profileload =
〈
RT (Si, Sj), Di(Opk),
(cpu|mem|net)CS|LB|WK|ST

〉
(7.1)

By combining performance profiles for concurrent workload between 1
and max.load end-to-end requests, we form the dEIS performance model
Profile as dictionary with key load and corresponding values Profileload.

In order to convert the created performance profile to CloudSim entities
we transform the durations expressed in milliseconds to their equivalent
MIPS rating. We also map the VM resource consumption for CPU, memory
and network to CloudSim characteristics of the created cloudlets - CPU and
memory utilization models and network input and output payloads. The
conversion of milliseconds to MIPS is done according to Equation 7.2.

instr = ms

1000.0 · CPUMIPS (7.2)

instr is the length in instructions of an operation with a duration of ms
milliseconds when executed on CPU with a MIPS rating of CPUMIPS . This
equation is valid only when there is only one task being executed on the
CPU. If there are multiple tasks in execution on the same CPU, the tasks’
length value in number of CPU instructions need to be reduced by the CPU
concurrency level (number of tasks simultaneously being executed on the
CPU) in order to keep the same execution deadline.

As our performance profile contains durations of operations measured
under constant workload, we apply Equation 7.3 in order to convert each
operation’s duration in milliseconds to MIPS.

instr∗ = instr

clnew + concurrencyVM
· (1− CPUOS) (7.3)

instr∗ is the task’s length in MIPS considering VM concurrent load, instr
is the value calculated by Equation 7.2, clnew is the number of cloudlets
newly submitted to the VM for execution, concurrencyVM is the number
of cloudlets (see Section 2.5 for a definition of the term cloudlet) already
executed by the VM, and CPUOS is the average CPU utilization caused
by independent OS-level kernel tasks. This calculation is performed in each
CloudSim Datacenter Broker corresponding to CS, LB, WK and ST services
for each batch of cloudlets submitted for execution.

For running the simulation in CloudSim, a Datacenter Broker is created
for each dEIS service and also at least one VM per dEIS service is added to
CloudSim.

A simulation scenario is given as a list of pairs of simulation time and the
corresponding expected number of concurrent CS-requests at that time. The
list is then linearly-interpolated for determining the expected concurrency
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Figure 7.11: CS Service Execution Time vs. Concurrency. a) Density Plot. b)

ECDF Plot

for each simulation time slot. For each simulation time step, the current
number of running CS-requests cl is compared to the simulation plan values
clsim, and if cl < clsim, then (clsim − cl) CS-cloudlets are created.

Based on the expected concurrency level defined in the simulation sce-
nario, one request trace is selected from the performance profile with the
corresponding concurrency level. Next, from the performance trace, the op-
eration duration, CPU, memory and network utilization are identified for
each service-local operation and remote service calls, as shown in Fig. 7.2.
These identified parameters are then used for creating CloudSim cloudlets.
The chain of cloudlets is then submitted for execution, starting with the
CS create-session operation. Subsequently, each cloudlet’s completion will
trigger the creation of a cloudlet for the next dEIS operation. Finally, when
the last operation in the end-to-end request, the request execution time will
be recorded.

7.2.3 Little’s Law-Based Application Performance Benchmarking

In order to build a performance profile of the dEIS application we will use
the results of applying Little’s Law [96] to stable instances of the dEIS
system. According to Little’s Law, a stable system starts with load equal
to 0 and finishes in a state with load also equal to 0. Intuitively, as long as
the arrival rate (λ) of dEIS requests remains below the maximum processing
capacity of the system, we expect the average execution time (W ) to increase
linearly. After a certain value of λ will be exceeded, W will begin increasing
exponentially due to accumulation of jobs in the system, leading to a drop
in the value of system’s throughput (Th).

Mainly, we want to identify the dependency between the average execu-
tion time and the system’s throughput at constant concurrency (occupancy).
For this we run 50 batches of benchmark tests, where the overall system’s
concurrency is kept constant for 10 minutes at a value λ ∈ (1...50), before
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dropping back to 0. This ensures that we will get an accurate picture on
(1) the distribution of execution times at all the dEIS services, and (2) the
average achievable throughput corresponding to λ.

Figure 7.11 plots (on a logarithmic X scale) the execution time (W ) in
seconds against the concurrency (L) measured at the CS service. Figure
7.11a shows the density distribution function of the execution time, while
Figure 7.11b shows its empiric cumulative distribution function (ECDF). It
is easy to notice on the ECDF plot that for concurrency values above 30
all the execution times (W ) are above 10 seconds. Above this concurrency
level (L), any small increase in L will produce a very large increase in W .
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Figure 7.12: ECDF Plot of Service Execution Time vs. Concurrency. a) WK

service. b) ST service.

Figure 7.12a further explains the rapid increase in the mean of the sys-
tem’s execution time after concurrency level 30, by plotting the ECDF dis-
tribution ofW for each of the L levels, for the WK service. Similarly, Figure
7.12b shows the EDCF plot per concurrency level of W for the ST service.
The plots also suggest that a management system should not allow the dEIS
system to slide into a region with concurrency level (L) above 20, as the ex-
ecution time will increase very fast with only slight increases in L. This
corresponds to the dense green ECDF curves on the WK plot, respectively
to the dense blue ECDF curves on the ST plot.

After executing the benchmark described in this section, we produce a
lookup table for the WK and ST dEIS services, linking the average system’s
occupancy (L), average execution time (W ), the average arrival rate λ,
and the average throughput (Th). Later, in Section 4.4 we will present an
algorithm using this lookup table as input for ensuring that the dEIS system
is properly scaled so that it can handle the volume of workload directed at
it.

The first ten out of fifty entries from the lookup table are shown in
Table 7.2, with the rest being shown in Annex 9.2. The entries in the table
approximately obey Little’s Law, which is due to how the average values
of the W , λ, Th, and L metrics were calculated, especially the system’s
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WK ST
L W λ Th L W λ Th

0.85 106.25 118.0 133.40 0.64 44.1 118.0 133.37
1.49 135.89 236.0 263.61 1.47 59.5 236.0 260.45
1.97 236.68 333.3 366.39 1.91 78.5 333.3 363.10
2.47 296.38 355.5 392.94 2.23 99.7 355.5 395.65
3.01 461.58 315.7 362.82 2.77 129.5 315.7 381.52
3.60 532.35 358.8 406.07 2.95 152.4 358.8 418.43
4.39 615.45 377.8 419.50 3.05 175.7 433.7 433.72
5.11 619.07 414.8 462.41 3.12 201.7 476.1 476.12
5.83 666.97 435.4 483.38 3.30 229.4 435.4 497.15
6.63 733.06 442.2 491.27 3.55 262.0 442.2 510.37

Table 7.2: Dependency between average concurrency (L), average execution time
in milliseconds (W ), average arrival rate (λ), and average throughput (Th) for

WK and ST services

occupancy, defined as the number of requests being in execution as a given
time. In the actual VM deployment, the metrics were averaged over a sliding
time window of one minute. This, combined with the fact that the arrival
rate was not constant due to the constraint of having the CS-occupancy
(almost) constant, produced slight variations in the averaged values, which
are not influencing the SLA-based scaling algorithms as only the values for
W and Th are used as inputs.

However, it is worth observing that indeed, the execution time increases
with the increase in system’s occupancy. Figure 7.13a shows the relation
between W and L for CS, WK and LB dEIS services, on a logarithmic scale
for W . This points to the fact that W starts increasing fast after L equal to
15 measured at CS service. This rapid increase of W is explained by Figure
7.13b, which shows that the service’s throughput starts dropping after a
certain value of the service’s occupancy (L). The change in Th’s trend
happens around L = 15 for CS and WK services, and around L = 8 for ST
service. This delay between the occupancy’s levels at ST and WK services is
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due to the fact that a job is processed twice [12] by the WK service, but only
once by the ST service, causing the occupancy at the ST service be lower
than the occupancy at the WK service. This difference is not noticeable
between CS and WK service because of the smaller processing time in the
second computing round [12] at CS service.

7.3 Evaluation of Feasibility of SLA-Based
Infrastructure Management

In order to evaluate the feasibility approach of performing SLA-driven or-
chestration for dynamic application topologies presented in Chapter 3, we
used data gathered from simulating the distributed Enterprise Information
System (dEIS) presented in Section 7.1 with variable user numbers, payload
sizes and classes of workloads. In this section we analyse the value model
and alternatives of doing SLA-driven service orchestration. We the present
a comparison of various service allocation management strategies.

7.3.1 Value Model and Alternatives

The value model of the evaluation scenario is defined against two objec-
tives: (1) maximise the assurance that the response time guarantees for all
Consumers will be met and, (2) minimise waste of resources to spawn and
maintain multiple worker Instances.

To remain competitive, infrastructure providers need to maintain their
reputation for satisfying SLAs, while minimising their operational costs and
maximising their operational efficiencies. They want to accommodate ex-
isting customers, fluctuations in demand and new customers. Given that
cooling of data center equipment and connectivity costs are the highest con-
tributors to service operation costs, an increase in efficiency has significant
impact on both objectives. From these two objectives we derive three eval-
uation parameters discussed in the following paragraphs.

The first evaluation parameter is the Reaction Time rt for a service, such
as creating a new EIS Instance, is the sum of detection time dt, planning time
pt and action time at required by an administrator or management system
to respond to a potential incident, an undesirable state or an opportunity to
enhance operations. The average reaction time r̄t, expressed in equation 7.4,
is the sum of detection, planning and action times for a series of adaptation
triggering events e1, ..., en, divided by the number of events n.

r̄t = 1
n

n∑
e=1

dte + pte + ate (7.4)

The second evaluation parameter is the average number of SLA Violations
s̄v across a list of observed service states (s1, ..., sn) ⊆ S, with cardinality
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|S|, where S is the set of observable states and each s ∈ S is a collection of
metrics Ms ⊂M . The set S is extracted from logs and from live monitoring
probes.

s̄v = |S −GS|
|S|

(7.5)

Finally, the third evaluation parameter is the Provisioning Efficiency
pe of the infrastructure considers the ratios of consumed resources Rtcons
and provisioned resources Rtprov for the EIS application topology over a
time series t ∈ (t1, ..., tn). The PE is a measure of the resource provider’s
ability to satisfy demands, while minimising resource costs and waste. The
statistical trends (PEmean, PEmax, PEmin and PEmode) in PE over the
time series (PE1, ..., PEn) are of interest in assessing the performance of
alternatives to service management, as shown in Equation 7.6.

pet = Rtcons
Rtprov

(7.6)

There are three fundamental alternatives that can be derived, consider-
ing independent optimisation strategies for the three objectives stated in the
value model. (1) Minimise reaction time rt: over provision to avoid need to
monitor and adapt the initial deployment; (2) Minimise SLA violations sv:
over provision to avoid violations; (3) Maximise provisioning efficiency pe:
provision for mean or modal workload. Different configurations of these can
lead to other alternatives but these 3 make for a comprehensive feasibility
evaluation against the SLA-driven orchestration approach.

7.3.2 Comparison of Alternatives to SLA-Driven Service Management
To compare the average reaction time r̄t defined in Equation 7.4, we use a
qualitative architecture analysis approach to estimate the relative reaction
time per alternative, in comparison to an unmanaged system’s response. An
unmanaged system is considered as one where there is no active system in
place to avoid, monitor or respond to changes in system’s workload.

The results for the over-provisioned, under-provisioned and dynamic ap-
proaches were 25%, 50% and 83.3% of the maximum planned workload re-
spectively, where the dynamic approach refers to the one described in this
thesis. These results indicate that the over-provisioned alternative has the
best potential for performing better than an unmanaged system with regards
to the set of adaptation triggers, and the under-provisioned approach per-
forming worst. Our dynamic approach sits in the middle. The reason that
the over-provisioned approach performs best is the provision of redundancy
and assumption that resource costs are irrelevant. With massive redundancy
in place, peaks and in some cases failures are masked by readily available
resources. However, this assumption about resource costs is not scalable
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Figure 7.14: SLA Violations

or applicable to all circumstances, such that our dynamic approach has a
better potential to satisfy multiple operational constraints.

In an analysis of SLA violations, using equation 7.5 and presented in Fig-
ure 7.14, the over-provisioning alternative will inevitably yield fewer SLA
violations (tending to 0), as its contingency is to over-compensate with re-
dundancy. The figure shows different values for the provisioned capacity of
the system in terms of how many users it is able to handle without exceeding
the maximum SLA-defined limits for the execution time.

The duration of SLA-violations in this case was the Mode-Provisioned
strategy, as the mode tended to be low for this particular distribution of
users. The duration of SLA-violation state for our dynamic approach is
temporally similar to the mean-provisioned strategy (where the system is
provisioned to handle the previously measured average or mean number of
users in the SLA-defined limits of the performance) but the difference in
user demand and service capability is significantly smaller throughout the
duration, making the SLA violation impact less significant.
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Although the over-provisioned (or max-provisioned) strategy appears to
make sense from the perspective of minimising (zero-setting) reaction time
and SLA violations, there is a penalty to pay for efficiency, as shown in
Figure 7.15.
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Figure 7.15: Provisioning Efficiency

The dynamic approach enables almost 20% of the operation time to be at
near maximum efficiency, while the over-provisioned approach incurs above
20% at minimum efficiency for a fluctuating workload. The over-provisioned
case can only be efficient if there is a constant burst of maximum anticipated
users. Losses in efficiency with the dynamic approach are again transient,
and can be addressed by optimising the reaction time to adaptation triggers.

125



7.4. EXPERIMENTAL TESTBED USED FOR RUNNING
VM SCALING EXPERIMENTS

Region A Region B

Circuit-Switched Optical Link

Packet-Switched Link

Figure 7.16: Testbed Connections

7.4 Experimental Testbed used for Running
VM Scaling Experiments

The experiments performed for validating this research work were staged
on two local and one distributed testbeds. The local testbeds were set
up at SAP Switzerland and at University of Amsterdam (UvA), while the
distributed testbed included the two mentioned local testbed connected by
a circuit-switched optical network. We describe below the hardware used in
each testbed.

The physical environment deployed at SAP consisted of three servers
with Intel(R) Core(TM)2 Duo CPU E8400 CPUs, 4GB of memory and 1
Gbps network interface. CS and LB VMs were co-located on the same server,
while WK and ST were each located on a separate server. A fourth server
was used for running validation experiments, by using two additional VMs,
one VM for the WK service and one VM for the ST service.

The UvA test-bed provided a single cloud-machine (Dell R810: 48cores,
128GB-RAM, 600GB storage) for on-demand computation and storage re-
sources, which was used for running experiments with a large number of
VMs.

The testbed was connected by a circuit-switched optical network (light
paths) and a packet-switched network, as shown in Fig. 7.16. The opti-
cal network links had a bandwidth of 1Gbps and used Gigabit Ethernet
over SDH as underlying technology. The exchange of signalling and con-
trol messages were transmitted over a permanent network connection using
a packet-switched link, which was protected from communication interrup-
tions.

The VMs created in the experiments were connected to the network
environment using virtual Ethernet bridges created on each physical server
using linux brctl [35] utility program. Each VM was connected to two virtual
bridges, corresponding to the two primary networks: the circuit-switched
optical link and the packet-switched link.
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Figure 7.17: Distribution of resource utilization: above, trend per hour, below,
trace per 5 minutes time slot

7.5 Evaluation of the Algorithm for Multi-Objective Cloud-
Resources Allocation

We conducted a number of simulations for validating the system’s charac-
teristics with regards to the multi-criteria optimization of VM allocation
described in Chapter 6. We did this by comparing the efficiency of the
Genetic Algorithm -based (GA) VM allocator with that of various known
heuristics for the allocation of VMs. For this purpose we used synthetic gen-
erated VM request traces with seasonal distributions (matching Fig. 7.17)
in order to load the system. For each VM we generated CPU and network
traces with which we fed the monitoring and forecasting modules. We also
varied the amount of noise added to the traces between 30% and 90%, in
order to test the system stability.

In order to test the multi-objective evaluator, we selected for simulation
the scenario in which the provider wishes to maximize his profits. Therefore
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Figure 7.18: Cost and profit distribution for GA (genetic algorithm) and FF (first
fit) allocators

we assigned the value of 1 to all four weights described in section 6.1.1. The
weights describe the importance of each optimisation criterion (profit max-
imisation, energy efficiency, minimisation of SLA penalties) in the evaluation
of each allocation of VMs.

We simulated a month of VM requests, including adding new VMs and
removing existing ones, and we compared the SLA violations and energy ef-
ficiency of the allocations produced by the group-oriented genetic algorithm
with forecasting (described in Section 6.1.2) with the first-fit and energy
aware algorithms (presented in Section 6.2). The actual calculations for
determining the costs of SLA violations and energy consumption were per-
formed using the generated monitoring data and not the forecasted data.

For further testing of the algorithm’s stability, we varied the genetic
algorithm’s parameters considering three different population sizes corre-
sponding to one, two and four utilization weeks, four values for crossover
probability (0.3, 0.5, 0.8 and 1) and the same four values for mutation prob-
ability. The results were consistent with the ones described below.

Our simulated infrastructure was composed of 10 hosts with quad-core
CPUs, 16GB RAM and Gigabit networking. We varied the number of VMs
between 10 and 50. The algorithm performed in average 1600 live migrations
per simulation month (equivalent with two live migrations per hour) and at
most one VM was selected for migration at a time.

The results are displayed in Figure 7.18, where the profits and SLA
penalties caused by the live migration and over-subscription of resources are
graphed using box-plots. The results show a consistent 100% reduction of
network-SLA penalties together with a 30% reduction in CPU-SLA penal-
ties, at the expense of below 1% of the revenues used for live migration. The
total profit generated by using the GA allocator were in average 50% higher
than the ones generated by the FF and energy-aware allocators. Also, the
GA allocator distributes better the load across the infrastructure, leading to
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a more uniform host utilization, lowering of the total energy consumption
and reducing host wear.

7.6 Evaluation of Algorithms for Dynamic Composition of
SLA Scaling Rules

We have evaluated the DynSLAOp (Dynamic SLAs Optimiser system),
which we described in Section 5.1, by analysing the behaviour of the dEIS
application when using a DynSLAOp generated SLA for its management.
For this purpose, we have run several experiments involving multiple VMs
deployed in a physical environment. A increasing generated workload was
directed at the dEIS application and the performance indicators of the ap-
plication services were recorded. This allowed us to describe the scaling
behaviour of the dEIS and to also gather large datasets which we then used
for analytical determination of relations between the monitoring metrics and
the system’s scale.

We have checked whether the scaling sequence calculated by the dyn-
SLAOp system provides a good compromise between the number of allocated
VMs and the measured application’s performance and how sensitive it is to
the level of difference between the training set (benchmarks generated) and
the synthetic workload. The application was tested using a different type of
user load, as shown in Figure 7.19.
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Figure 7.19: Concurrent Requests Distribution used for SLA validation

The number of concurrent requests at successive time moments was
given, and the validation application client maintained a number of concur-
rent requests equal to the interpolated value between the two time moments.
For example, if at time t = 0 there should be 10 concurrent requests and at
time t = 10 there should be 20 concurrent requests, then at time t = 3 the
validation client would maintain a number of 13 concurrent requests. The
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validation client performs this check every 50ms.
While the training data has a clear increasing trend for the number of

requests, the same is not true for the actual monitoring data obtained from
the virtual machines. Here, the data is being sampled every x milliseconds,
which can create difficulties in understanding the real state of the system,
if only a individual data points are used, as the system’s behaviour can
only be observed during periods of at least several seconds. Additionally,
the load is not perfectly balanced across the worker services, leading to the
addition of ’noise’ within the observed monitoring time series. In order to
level-out the differences between the same service running in different VMs,
monitoring data of all probes is aggregated (e.g. averaged) over predefined
time intervals (e.g. one minute). This helps taking the decision whether the
distributed application performs within the specified SLA contracts.

The following pipeline of experiments was executed.

• We defined the application as (1) the set of semantic service descrip-
tions, (2) critical SLA metrics and (3) service dependencies and ini-
tialization parameters.

• We set the maximum service scale-out factor.

• We set the SLA range for application response time tr, as an example
of a monitored metric for Worker service.

DynSLAOp outputs the following information: (1) correlogram matrix,
(2) the predicted sequence of landscapes, (3) linear regression coefficients,
and (4) the final set of regression coefficients associated with this scaling
sequence. Finally, the set of regression coefficients are transformed into
SLA scaling rules and the generated SLA is tested as described below.

The DynSLAOp Benchmark Manager fires up the workload generator
after customizing it for the agreed application. The VM containing the
benchmark service is used to generate the workload according to four pa-
rameters: (1) maximum response time, (2) initial number of requests, (3)
concurrent requests increment step, and (4) number of repetitions for each
batch of requests. The request generator will perform the following steps:

1. send the initial number of requests in parallel

2. wait for all requests to complete their execution

3. record the requests’ execution time

4. calculate the average execution time for all the requests in the batch

5. if the average execution time is lower than the maximum specified
benchmark response time, then the generator will increase the number
of requests and will repeat the procedure from step (1).
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Figure 7.20: dEIS Correlogram
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Figure 7.21: EIS Benchmark response for a landscape configuration with 4
Worker VMs and 6 Storage VMs
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6. each batch of requests is repeated for the specified number of times.
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Figure 7.22: System’s capacity of handling end-to-end requests vs. number of
Worker and Storage VMs

The correlogram depicting the correlation between all the pairs of aggre-
gated time series corresponding to the dEIS monitoring metrics is presented
in Figure 7.20, where each metric is represented by a letter. From this graph
it can be observed that metrics belonging to the Load Balancer service (a-e,
e.g. the opening of a new user session at the LB service and the selection
of the next suitable WK instance) are highly correlated, together with the
aggregated average execution time of the Worker (g) and Storage (l), and
the average number of Worker requests.

The before mentioned parameters form the actual metrics, which have
been used for estimating the linear models for Worker and Storage scaling.

For each application topology configuration, the maximum concurrent
load, for which the average worker execution time is below 5000ms, is deter-
mined. Figure 7.21 displays the dependency between the concurrent dEIS
consumer requests and the response time measured at the worker, for a vir-
tual landscape composed of 4 Worker VMs and 6 Storage VMs. In the Figure
7.22 it can be seen that as the number of concurrent requests executed by
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the dEIS application is increased from 5 to 180 concurrent requests, the
average execution time also increases linearly from approximately 500ms to
5000ms. The variance of the measured execution time also increases as the
number of concurrent requests increases, due to the fact that the size of the
data processed by the service for each request is not constant.

The dependency between the maximum number of concurrent user re-
quests and the number of worker and storage service instances is displayed
in Figure 7.22. From the graph can be observed that the request handling
capacity of the distributed application stops increasing after a certain point.
From the application source code profiling it became clear that the bottle-
neck was caused by the database connection management at the storage
service. The authors think that replacing the current database (JDBC [9])
connection release mechanism with a pooled connection management would
increase the application parallelism, as this would significantly lower the
time required for opening a database connection. However, at the time we
performed the experiments, there was no such straightforward implementa-
tion for MySQL [121] using OSGi [6].

Figures 7.23 and 7.24 show the values for the number of VMs as cal-
culated using regression models for Worker, respectively Storage services.
Each plot presents the number of VMs for Worker, respectively for Storage
services (black line), the number of VMs calculated by using the regression
model (blue line) and the filtered number of VMs resulting by applying a
moving average smoothing on the regression-fitted values, combined with
truncating the resulting value. In each graph, the blue line represents the
model fitted values, while the black line represents the actual number of
service instances determined from the scaling path.

For the application under test, the maximum request handling capac-
ity was reached for a virtual landscape composed of 4 Worker VMs and 8
Storage VMs. After this point there was no significant increase in applica-
tion processing capacity, given the requirement of executing the concurrent
requests in less than 5000ms.

As previously described in Section 5.1.2, the resulting set of regression
model coefficients were transformed into an SLA scaling rule, expressed as
two IF statements using MVEL [34] expression language.

Figure 7.25 shows the actual application response while the SML was
managing the EIS using the DynSLAOp generated SLA scaling rules. The
graph of the number of concurrent requests is displayed in Figure 7.19. The
actual VMs scaling for Worker and Storage services is presented in Figure
7.26, showing both the scaling-out and scaling-in.

Due to the fact that the service scale-out was triggered when the num-
ber of EIS concurrent user requests reached the maximum handling capacity
of the application (average request execution time exceeded the maximum
execution time), combined with the fact that VM instantiation is not an im-
mediate action (average VM instantiation time was one minute plus around
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Figure 7.23: Worker Service Scaling Model

one minute for the OSGi bundles to start and to register to the distributed
OSGi registry), the actual average execution time exceeded the SLA defined
limit of 5 seconds (plotted as the red line in Figure 7.25), because of the
delay between the VM instantiation time and the moment when the service
becomes operational. This situation was repeated several times during the
experiment, but only during the ramp-up phase. Towards the end of the
experiment there was no SLA violation as the application had enough free
capacity.

Overall, the experiment was a success, with 84% of the time enforcing
the SLA, and a median execution time of 4284ms.
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Figure 7.24: Storage Service Scaling Model
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Figure 7.25: Average Worker Execution Time [ms]

7.7 Evaluation of Algorithms for Analytic Optimisation of
SLAs

In order to validate the algorithms presented in Chapter 5.2 related to the
analytic optimization of SLAs, we ran a number of four experiments using
VMs deployed on the SAP tested, as follows. The first experiment was used
for showing how correlations can help detect performance bottlenecks and
incorrect service scaling policies. The second experiment validated the con-
clusion of first experiment related to scaling policy. The third experiment
(1) validates the improved scaling policy and (2) confirms the detected corre-
lation. The fourth experiment validates the use of prediction in combination
with auto-correlation.
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Figure 7.26: Actual Service Scaling
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Experiment 1: Performance Optimisation using Correlations Detection

We initially deployed the EIS application in a single domain, with one ser-
vice VM per application service (four VMs in total). The application was
accompanied by a SLA containing a guaranteed state and two guaranteed
actions for increasing and decreasing the number of Worker and Storage
services. The SLA guaranteed state used in the experiments referred to the
maximum number of concurrent user sessions, measured at the Load Bal-
ancer service with regards to the statically-defined processing capacity of
the Worker service. This is further detailed below.

The specified minimum number (as defined by SLA) of application ser-
vices were then instantiated in their corresponding VMs. The VMs start-
ing, booting, active and shut-down times are displayed in Fig. 7.27. The
report load generator was then started, triggering sending of multiple re-
quests for generating reports using the data stored in the database. The
number of concurrent Consumer requests has been controlled to remain in
a specified region, as displayed in Figure 7.28. As can be seen in the figure,
the consumer response time (1) varies with the increase in the number of
concurrent requests and (2) follows the shape of both Worker and Storage
services, suggesting that these SLA metrics might be influencing factors of
the application performance.

Using the monitoring information received from the service probes, the
system scaled the EIS application in order to maintain the SLA guaran-
teed state. The actual response times and system scaling responses can be
observed in Figures 7.27 and 7.28.

In this first experiment, the consumer requested generating a PDF re-
port from a variable portion of the TPCH database entries. The SLA scaling
rule contained an expression for scaling the worker service when the average
number of concurrent consumer requests (during a determined monitoring
window) per number of active worker services exceeded 5, as shown in Equa-
tion (7.7), where LBsi is the number of concurrent sessions at load balancer
service at time i, W is the number of samples in time window of the Se-
mantic SLA Processor, t is the sample number, ‖Worker‖ is the number
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Figure 7.27: Experiment 1 - Service/VM Execution Times
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Figure 7.28: Experiment 1 - Consumer Execution Plan and Response Times
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Figure 7.29: Correlogram for the Enterprise Information System Monitoring

Metrics

or active Worker/Instance services and c is a constant defining the worker
service capacity, measured as the number of concurrent requests.

∑t
t−W LBsi
W

> ‖Worker‖ · c (7.7)

Since the only defined SLA guaranteed actions was the scaling of the
worker/instance services, this led to a bottleneck at the Storage service.
This behavior was confirmed by the correlogram of the performance metrics
belonging to the EIS services, as it can be observed in Figure 7.29 and Table
7.3, where the second highest correlation coefficient (0.826) is between the
Consumer and Storage services.
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Table 7.3: The Metrics with the Highest Correlation
Metric A Metric B correlation
a (Consumer Sessions) c (LB Sessions) 0.965
b (Consumer Rep. Time) m (Storage 1 Rep. Time) 0.826
a (Consumer Sessions) j (Storage 1 Req. Cnt.) 0.738
c (LB Sessions) j (Storage 1 Req. Cnt.) 0.715

Experiment 2: Validation of Performance Correlations

For validating the assumption of high correlation between the Consumer and
Storage services, we conducted a second experiment with only one Worker
service and one Storage service, by disabling the application scaling.
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Figure 7.30: Experiment 2 - Service Execution Times

The response times displayed in Figure 7.30 confirmed that the response
time increase is caused by the under-performing database service, as the
response time seen at the Consumer is correlated with the query execution
time at the Storage service. The same correlation was also observed in
experiment 1, i.e. in Figure 7.29.

Experiment 3: Multi-Service Scaling SLA

We then prepared another experiment, in which the SLA-actions considered
scaling both the report processing service (Worker) and the database service
(Storage). Also, looking at the high correlation (Figure 7.29, squares corre-
sponding to values above 0.85) between the number of concurrent sessions at
the load balancer service and the response times measured at the consumer
service, we decided to improve the SLA scale-action trigger to also consider
the consumer average response time. In this way, the scaling would be per-
formed only if the response time measured at the consumer would approach
the limit defined in the SLA guaranteed state.
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The system scaling response for this experiment is presented in Figure
7.31. Here, the running number of Worker services is the same as the number
of running Storage services. The response time measured at the Consumer
service decreases each time a new Storage service is started, confirming
the correlation between (1) the Consumer requests’ execution time, (2) the
number of Storage services, and (3) the query execution time measured at
the Storage service.

Experiment 4: Using Predictions and Auto-Correlation for SLA Optimisa-
tion

We also tested the ability of the system to predict the future system load.
For this we enabled the prediction mechanism for the Load Balancer’s active-
session-count SLA metric. Figure 7.32b presents the received (noisy) moni-
toring data colored as black (roughly two periods) and the predicted values
for the Load Balancer’s active-session-count metric colored as blue, confirm-
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Figure 7.31: Experiment 3 - Service Response Times
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ing that for certain types of application loads the prediction of monitoring
metrics becomes a useful mechanism for improving the overall application
performance and resource allocation. As shown in the paragraphs below, the
predicted workload can be used for triggering in advance the instantiation
of VMs, therefore minimising the impact of the instantiation delay on the
application’s processing capacity.

The data series for application load used in experiment 1 (see Figure
7.28) had a high predictability (confirmed by a high autocorrelation at a
lag approaching the series period), enabling a good scheduling of service
instantiation. As seen in Fig. 7.32a, the autocorrelation has a local maxi-
mum around lag (time series delay) value of 4900, indicating that this is the
signal’s period. The period is also confirmed by analyzing the plot from Fig.
7.32b, where two periods of the signal are plotted, along with the prediction
and its confidence intervals for the next two periods.
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Figure 7.32: Experiment 4 - Consumer Concurrent Sessions Count. (a)
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Figure 7.33: Experiment 4 - Service Start Times with Prediction

Using the predicted time when the load will increase (as calculated by
the second algorithm in Section 5.2), it became possible to schedule the in-
stantiation of the Storage service such that it was ready for processing at the
time the load actually began increasing. In Fig. 7.33, the Storage services
are instantiated earlier than the Worker services, so that both Storage and
Worker services become active at the same time. The reason for the longer
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instantiation time of the Storage service is that the VM of the Storage ser-
vice is eight times larger in size (8GB) than the VM of the Worker service
and so, it takes a longer time to be copied from the VM image repository.

7.8 Simulations of VM-Scaling Algorithms

Having performed multiple experiments on the physical local testbeds, we
used the gathered monitoring information about the dynamic behaviour of
the dEIS application for building a flexible simulation model, which we then
used for validating the three VM-scaling algorithms described in Section 4.4
using several dynamic workloads.

We describe the validation of the simulation model of the dEIS applica-
tion in Section 7.8.1. The next two sections 7.8.2 and 7.8.3 deal with the
large-scale simulations of the SLA-based VM-scaling algorithms.

7.8.1 Validation of the dEIS Simulation Model

We aim to evaluate the CloudSim simulation’s ability to model and re-
produce the properties of the targeted distributed application. For this
purpose, we used Kolmogorov-Smirnov (KS) [44] statistical test and linear
dependency regression coefficient [130] for comparing the simulation and ex-
perimental results. We also evaluated the model’s ability to simulate envi-
ronments with different numbers of VMs and different concurrent workload.
The simulations used the same concurrent workload values as the real-world
scenario presented in Section 7.2.

The two-sample KS test compares cumulative distribution functions
(CDF), and the test statistic is the maximum difference in CDF value, as
defined by Equation 7.8,

Dn,n′ = sup
x
|F1,n(x)− F2,n′(x)| (7.8)

where F1,n and F2,n′ are the empirical distribution functions of the first
and the second sample respectively.

In Fig. 7.34a we show the comparison between the simulator input val-
ues (Profile performance traces) and the output produced by CloudSim,
showing very similar density distributions of the execution times. The dif-
ference between the distribution of values is low, as indicated by a D value
of 0.0855 of the KS test. In the top left graph we show the plot of values
that were measured from an actual dEIS system running in a physical envi-
ronment. The bottom left graph shows the CloudSim simulated durations
using the models described in Section 7.2. As it can be seen, the two graphs
are very similar, indicating that the simulation models is representative for
the reproduced application behaviour. This fact is further confirmed by the
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Figure 7.34: (a) Simulation input vs. output comparison. (b) EIS End-To-End
Response Time (ms) - Experiment vs. Simulation comparison at constant load
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graphs on the right, showing the distribution of values, which have the same
shape (log-normal with a long tail) and percentiles.

We also validated the ability of the simulation model to correctly repro-
duce end-to-end response times under constant concurrent workload. In Fig.
7.34b we show the KS test values and linear dependency between the values
gathered in experiment and simulation. The graphs show a good correlation
with a value of 0.3 of KS statistic (maximum difference between CDF func-
tions), and a linear coefficient of 1.05 between experiment and simulation
results (indicating that the simulation values differ with only 5% from the
experiment values).
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Figure 7.35: Experiments 1 and 2: Concurrent number of LB sessions

In order to test the simulation model under varying workload conditions
and with a different number of VM instances for the dEIS services, we ran
two additional experiments, as shown in Fig. 7.35. In the first experiment
still used one VM per service. However, we varied the concurrent workload
from 1 to 17-and back to 1 parallel request. In the second experiment we
used 2 VMs for each of WK and ST services, using in total 4 servers, while
the concurrent workload was varied from 1 to 20 parallel requests, with 5
seconds pause before switching to a new workload level. The experiments
were performed with real resources and then the results were compared with
the same scenario running in the simulator.

In case of experiment 1, simulation results shown in Fig. 7.36 validated
the modeling of the dependency between service task durations and the
corresponding number of executed CPU instructions, as the simulated end-
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Figure 7.36: EIS End-To-End Response Time (ms) - Experiment 1 vs. simulation
results comparison with 1 WK and 1 ST VMs

to-end response time closely followed the measured dEIS response times.
The increased variance in simulation results was caused by the simulator’s
event communication overhead and by the fact that the simulator randomly
chooses the requests to be simulated.

Experiment 2 validated the modeling of concurrent computing workloads
distributed across multiple VMs. The simulation results closely matched
the ones measured during the experiment experiment, as can be seen in Fig.
7.37.

We present in Table 7.4 descriptive statistics between the end-to-end
response duration measured in the two experiments and the values produced
by the simulation. In both experiments, the difference between the median
and mean values is around 15%, showing a good ability of the simulation to
estimate the real behaviour of the modeled distributed application.

7.8.2 Simulation of the Reactive SLA-Based VM-Scaling Algorithm

In order to evaluate the integration of the SLA Scaling Manager and Parallel
Cloudlet Scheduler into CloudSim simulator we ran three different simula-
tions testing both the handling of multiple cloud tenants and the ability to
scale the number of VMs according to high-level SLAs.

For building a system able to compare the SLA-based VM-Scaling poli-
cies, we extended our dEIS CloudSim-based simulator [12, 14]. We added

144
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Figure 7.37: EIS End-To-End Response Time (ms) - Experiment 2 vs. simulation
results comparison with 2 WK and 2 ST VMs

two new CloudSim scaling policies for the algorithms described in Sections
4.4.2 and 4.4.3, supported by two new additional monitoring metrics (arrival
rate and throughput) at the CloudSim datacenter-broker level.

For integrating the multi-step prediction mechanism described in Section
4.3 we wrote a series of analytic scripts in R [129] (for calculating the linear
regression model, prediction from the regression model, and prediction’s
accuracy), which were invoked by our CloudSim extended datacenter broker
using the TCP/IP Rserve [145] library. Given that the Rserve library does
not allow transferring of arbitrary complex R objects, we had to cache the
regression’s results in R, by allocating unique model identifiers to each pair
of cloud tenant and service. In this way, CloudSim would transmit the

Table 7.4: Simulation vs Experiment End-to-End dEIS Response Time Statistics
(in ms)

Exp. 1 Sim. 1 Exp. 2 Sim. 2
Min. 320 141.8 69.01 135.0
1st Quantile 1730 576.0 235.40 293.0
Median 2952 2520.0 347.70 414.0
Mean 2964 3117.8 439.60 526.1
3rd Quantile 4106 4901.3 549.30 652.0
Max. 6939 12804.0 4597.00 2690.0
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model identifier when a regression model was calculated, and then the same
identifier would be used when CloudSim required calculating a prediction
based on the regression model.

Simulation 1: Constant Workload

In this simulation we considered a single cloud tenant running a constant
load of 20 concurrent transactions distributed across multiple services, with
the dEIS system configured to use only one VM for each service. We used
this simulation as a base for comparing the others simulations where we will
introduce multi-tenancy and varying scaling conditions.
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Figure 7.38: Simulation 1 (a) CS Concurrent Load (b) CS Response Time (c)
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In Fig. 7.38a we display the simulated load, which varied between 19
and 20 concurrent requests due to asynchronous sampling of the number
of active dEIS requests. Fig. 7.38b shows the response time measured at
the CS service for each distributed concurrent transaction, under the given
workload. As the simulation model uses datasets from a real distributed
application [13], it has a rather large variance. Fig. 7.38c displays the
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distribution of response times at CS service. The average CS response time
was 2200ms at the considered workload level of 20 concurrent transactions
per second.

In Fig. 7.39a we display the execution times at the WK service, respec-
tively in Fig. 7.39b at the ST service. This shows the breakdown of total
transaction execution time between WK and ST services, with an average
WK execution time of 1652ms and a standard deviation of 1025ms, and
an average of 533ms and standard deviation of 329ms for the ST service
respectively.
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Figure 7.40: Simulation 1 (a) Hosts CPU Utilization. (b) Hosts Power

Consumption. (c) Total Datacenter Power Consumption

Fig. 7.40a displays the hosts’ average CPU utilization as calculated from
the VMs’ CPU utilization, while Fig. 7.40b shows the energy consumption
of the hosts, by considering a linear dependency model between the CPU
utilization and host’s power consumption. It is important to note the fact
that hosts with no active utilization still consumed a large amount of energy.

Fig. 7.40c shows the total power consumption at datacenter level, which
was summed over every second, for the first simulation. The total simulated
energy consumption had a value of 335.9 KJ, distributed evenly across the
entire simulation duration, as a consequence of the constant workload.

This simulation re-confirms that the dEIS simulator is indeed accurate
with regards to the models described in Section 7.2. Having confirmed the
behaviour of the dEIS application under constant workload, we can not
proceed to simulating more complex workloads with multiple cloud tenants
(e.g. multiple applications). This also proves that the CloudSim-based
dEIS simulator is able to simulate and validate the VM-scaling algorithms
described in Section 4.4.

Simulation 2: Multi-Tenant dEIS

In the second simulation we considered two cloud tenants (client organiza-
tions), each executing a varying workload as shown in Fig. 7.41a, which
increased from 1 to 20 concurrent transactions and then decreased back to
1. The first tenant (#0) executed its workload on a fixed virtual infrastruc-
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ture (static number of VMs/ no scaling), while the second tenant (#1) had
scaling enabled at 1000ms for WK service, and at 400ms for the ST service
respectively.
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Figure 7.41: Simulation 2 - Per tenant, CS service (a) Concurrent Load (b)

Execution Time (c) Histogram of Execution Times

As shown in Fig. 7.41b and Fig. 7.41c, tenant #1 (SLA scaling enabled)
had a lower average transaction execution time of 965.8 ms, compared to
tenant #0, who had an average execution time of 1144.1 ms. This shows
the advantages of running the cloud workload under SLA conditions on a
dynamically scaled infrastructure, compared to running it on a fixed-sized
virtual infrastructure.

The scaling behavior for tenant #1 is described separately for WK and
ST services. Fig. 7.42a shows the average execution time for the WK VMs
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Figure 7.43: Simulation 2 (a) Hosts CPU Utilization. (b) Hosts Power

Consumption. (c) Total Datacenter Power Consumption.

calculated over a moving time window of 40 seconds, correlated with the
concurrent workload presented in Fig. 7.41a. Fig. 7.42b shows the SLA
ratio between the average execution time and the SLA threshold of 1000ms.
As the SLA ratio approached the SLA scaling threshold (0.9 for scale-out,
respectively 0.6 for scale-in), the SSM Algorithm 4.2 varied accordingly the
number of VMs, as shown in Fig. 7.42c.

Similarly, the ST service was scaled based on the average execution time
shown in Fig. 7.42d. The SLA scaling ratio for ST service is shown in Fig.
7.42e, while the actual number of ST VMs is displayed in Fig. 7.42f. The
maximum number of ST VMs varied from 1 to 3 and then back to 1. It is
important to note that the system did not oscillate as the SLA scaling ratio
approached the scaling threshold, because of the scaling speed limitation
mechanism described in Section 4.4.1.

The effect of scaling VMs on the average CPU utilization of hosts can
be observed in Fig. 7.43a, while the energy consumption per host can be
observed in Fig. 7.43b. The CPU utilisation for hosts 1 and 7 is constantly
very low as they were not used for hosting VMs. However, their energy
consumption is not negligible, as it can be seen in Figure b. Also, the CPU
utilisation of the other hosts increases as more VMs are added to the system.
The total datacenter’s power consumption can be visualized in Fig. 7.43c
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Figure 7.45: Simulation 3 - (a) WK average execution (b) WK SLA Scaling Ratio

(c) Number of VK VMs

and had a value of 538 KJ. As the VMs’ utilization increases the effect on
datacenter’s power consumption is an increase with approx. 20%, as the idle
hosts still contribute significantly to the total power consumption.

Simulation 3: Reactive SLA-Based VM Scaling with Multi-Tenancy

The third simulation consisted of two tenants, each with SLA scaling en-
abled. The SLA scaling thresholds were the same for both tenants, 1000ms
for the WK services, respectively 400ms for ST services.

The workload executed by the first tenant was varying from 1 to 20 and
back to 1 concurrent transactions, while the workload of the second tenant
was constant at 20 concurrent transactions as shown in Fig. 7.44a. The
execution time per request of each tenant at the CS service is displayed in
Fig. 7.44b, and had an average value of 1017.4 ms for tenant 1, and 1802.2
ms for tenant 2 respectively. The measured average values are consistent
with the ones obtained in simulations 1 and 2. The histogram of tenants’
execution times measured at the CS service is displayed in Fig. 7.44c.

The WK’s average execution time per tenant is displayed in Fig. 7.45a,
while the SLA ratios are displayed in Fig. 7.45b, and the number of WK’s
VMs is shown in Fig. 7.45c. The simulated values are consistent with the
ones produced in the previous two simulations.

This concludes the validation of the dEIS simulator as we showed that
the simulator is capable of calculating complex interactions between multiple
VMs and using shared hosting resources (hosts). In the next section we will
use the dEIS simulator for validating the complex VM-scaling algorithms
using a large-scale VM simulation.

7.8.3 Large-Scale SLA-Based Simulation of dEIS Horizontal VM-Scaling
In order to evaluate the two new SLA-based VM-Scaling algorithms previ-
ously presented in Sections 4.4.2 and 4.4.3 we implemented them in CloudSim
[69], which allowed us to run multiple simulations against the dEIS dis-
tributed application.
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Figure 7.46: Actual Arrival Rate (black) vs. Predicted Arrival Rate

We compare the λ-based and predictive λ-based VM-Scaling algorithms
using simulations based on a synthetic workload. Finally, we describe a
real-world scenario where the incoming workload received by a system grew
with four orders of magnitude, and then we use this workload-description
to simulate and compare the three scaling algorithms described: reactive,
λ-based and predictive λ-based.

Evaluation of the Predictive VM-Scaling Algorithm

In order to evaluate the predictive VM-scaling algorithm, we created a
CloudSim simulation with 500 available hosts in which the workload was
increased linearly from 60 requests per minute to 1000 requests per minute
during 1200 seconds, and then it was linearly decreased back to 60 requests
per minute during 400 seconds. We ran the simulation first with the λ VM-
Scaling algorithm, and then with the predictive-λ VM-Scaling algorithm.
The prediction algorithm used a forecasting window of 50 seconds. The
simulated time for instantiating a VM was 18 seconds for the WK VM, re-
spectively 23 seconds for the ST VM. The maximum error value (εmax) for
considering a prediction as valid was set to 1.5%. The VM-Scaling algorithm
was executed every 5 seconds.

Figure 7.46 shows the distribution of workload across simulation’s du-
ration, measured at the WK service. The prediction horizon refers to the
time distance from the time moment when the prediction is calculated to
the time when the workload is forecasted. The black line represents the ac-
tual value of the workload calculated over a moving window of one minute.
As it can be seen, the prediction closely follows the actual values of the
workload. At simulated time 1200, when the workload’s trend changes from
increasing to decreasing, it can be observed that the prediction continues
to increase, however, it quickly realigns itself with the new direction. This
confirms that the prediction mechanism used was appropriate for predicting
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this type of workload, and that incorrect predictions do not affect the algo-
rithm’s correctness as the predictions are only used for scale-out and not for
scale-in.

Figure 7.47 shows the actual evolution of the number of VMs belonging
to the WK service. In the simulation shown in Figure 7.47a we used the
λ-based VM-Scaling algorithm, while in Figure 7.47b we used the predictive
λ-based VM-Scaling algorithm. It can be seen that in Figure 7.47b the plot
of the actual number of VMs is perfectly aligned with the calculated number
of VMs (the two lines overlap), while in Figure 7.47a there is a noticeable
gap between the calculated and the actual measured number of VMs at
times 500 and 1000, caused by the delay of 18 seconds in instantiating the
WK VM.

These two simulations have shown that it is advantageous to use predic-
tion in conjunction with the λ-based VM-Scaling algorithm. The prediction-
enabled VM-Scaling algorithm has the advantage of eliminating the effect of
the delays when scaling-out the VMs, as VMs become operational at exactly
the right moment compared to the increase in the workload responsible for
triggering the scale-out.

Real-World Application Scenario

For testing the ability of the VM-scaling algorithms to dynamically increase
and decrease the number of VMs allocated to distributed services, while also
complying with the SLAs regarding the maximum value of the execution
times, we have selected a simulation scenario based on a real-world event
[43].

In order to cover a Schwingen (Swiss sport) event and for reporting real-
time on the performance of sportsmen, as well as live-tracking the scores
of the fights, a cloud computing infrastructure was prepared and a set of
mobile applications were developed. The app combined real-time time pro-
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cessing and analytics with a mobile platform, while running in the cloud
environment.

However, due to the huge success of the event, the mobile application was
downloaded 70000 times, creating a very large workload for the computing
infrastructure. This, combined with sub-optimal scaling of the computing
infrastructure (according to [43]), led to some very poor performance on the
mobile side, with very long waiting times.

We attempted to simulate a similar load for the dEIS distributed ap-
plication, by creating a workload of up to 28000 dEIS-users (each user cor-
responding to a CS-issued request), while at the same time keeping the
combined response time for the WK and ST services below one second. Fig-
ure 7.48 shows the distribution of workload across time. The workload first
increases to 500 concurrent users during 1800 seconds, then to 1000 users
in 700 seconds, then it approximately doubles at every 600 seconds, until it
reaches 11000 users at time moment 4800. From there on the workload in-
creases with roughly 10000 users at every 1600 seconds, reaching 28000 users
at time 6300. The workload will stay at this level for about 600 seconds,
after which it begins decreasing to towards 25 users during approximately
1200 seconds. In total we simulate 8400 seconds, or 2 hours and 20 minutes.

The goal of the simulation scenario is to test the ability of the VM-scaling
algorithms to maintain the execution time below the one specified in the
SLA, and implicitly, to prevent the dEIS system from becoming overloaded
with requests.

Comparison of VM-Scaling Algorithms

For comparing the presented VM-Scaling algorithms, we used the workload
described in Section 7.8.3 together with a SLA policy defining a maximum
combined response time of 1 second for the dEIS system, divided between
WK and ST services with a ratio of 7:3. The resulting SLA specified a
maximum execution time of 700ms for the WK service, respectively 300ms
for the ST service.

The workload was simulated against the dEIS model [14] (constructed
using recorded dEIS monitoring traces) [12] in the CloudSim simulator.
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We set to compare the reactive SLA-based VM-Scaling algorithm [14]
with the λ-based algorithm described in Section 4.4.2, and the predictive
λ-based algorithm presented in Section 4.4.3. For all three algorithms we
will analyse the performance of WK and ST service, by considering the
distributions of (1) execution times, (2) the rate of incoming, processed,
and dropped requests, and (3) the total number of VMs.

Reactive SLA-Based VM-Scaling Algorithm

We first tested the reactive SLA-based VM-Scaling algorithm, by initially
simulating creating one VM for each of the dEIS application’s services (CS,
LB, WK and ST). After all 4 VMs were created, the workload generator was
started at the CS service, which began generating requests according to the
workload pattern shown in Figure 7.48.
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Figure 7.49: Simulation of the Reactive SLA-Based VM-Scaling Algorithm a)
Execution time corresponding to WK and ST services. b) Number of VMs

corresponding to WK and ST.

Figure 7.49a shows the average execution time (in seconds) measured at
WK and ST services. At simulation time equal to 2400sec the SLA ratio
parameter, calculated as the ratio between the average execution time (W )
measured during the last 60 seconds and the SLA-defined maximum value
of W , exceeded the scaling threshold of 0.8, triggering creation of a pair of
WK-ST VMs, which were instantiated after 18, respectively 23 seconds, as
it can be seen in Figure 7.49b.

The system’s behaviour is explained by the fact that once the processing
capacity of the available VMs is exceeded, the incoming workload will only
delay the execution of the requests that are already being executed. This will
lead to an increase for the execution time for all the requests. Combining this
with the fact that the considered dEIS application does not queue requests
(they begin their execution as soon as they are received), and that the
workload never drops to zero during the simulation, helps explain why the
execution time keeps increasing until the simulation’s end.
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Figure 7.50: Distribution of the arrival rate (red), processing rate (blue), and
dropped requests during the simulation of the Reactive SLA-Based VM-Scaling

Algorithm for dEIS a) WK service. b) ST service.

Figures 7.50a and 7.50b show the number of inbound (red line), processed
(blue line) and dropped (green line) requests at WK, respectively at ST
services. Soon after simulation time 2400sec (where the first VM-Scaling
for both WK and ST services was performed) it can be observed that the
number of requests being processed by the dEIS distributed system drops
below the number of inbound requests, creating an imbalance both at the
WK and ST services.

The imbalance in processing of requests observed at both WK and ST
services caused the accumulation of requests being processed, increasing the
system’s occupancy and leading to the increase in the average execution
time (W ), clearly visible in Figure 7.49a.

As the W metric continued to increase, the reactive SLA-based VM-
Scaling algorithm continued to observe a SLA ratio value above the scaling
threshold, triggering the continuous creation of VMs at 20 seconds intervals
for the WK service, respectively 25 seconds for the ST service, as the VMs
have a instantiation delay of 18 seconds (WK), respectively 23 seconds (ST),
and the scaling algorithm was executed at every 5 seconds. This explains the
ascending trend of the number of VMs from Figure 7.49b and the different
slopes of WK and ST horizontal scaling plots.

Regarding the reason of this behaviour, it lies in the fact the dEIS dis-
tributed system was first scaled at a time when the average throughput
was higher than the optimal one, as described in Section 7.2.3. This, com-
bined with a constant increasing number of new arrivals, led to the continual
accumulation of requests, and an imbalance in the dEIS system’s inbound-
outbound flow of requests.

The processing imbalance remained present throughout the simulation,
as it can be observed in Figures 7.50a and 7.50b, which show a difference
between number of incoming and system’s throughput until simulation’s
end. This also explains why the number of VMs in Figure 7.49b does not
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drop to 1 at the end of simulation - because there were still requests being
processed and the execution time was over the SLA-defined maximum value.

The defined SLAs were violated during 71% of the simulation’s duration
as the algorithm did not manage to keep the distributed system in a SLA-
compliant state. This shows that the reactive SLA-based VM-Scaling is not
suited for scaling system with fast-increasing workloads, however, we will
show that the λ-based and predictive-λ-based VM-Scaling algorithms are
very suited for such tasks.

λ-Based VM-Scaling Algorithm

The λ-based VM-scaling algorithm was validated with a simulation of the
same workload described in Section 7.8.3, Figure 7.48, which has been also
used in the previous subsection as well.
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Figure 7.51: Simulation of the λ-Based VM-Scaling Algorithm a) Execution time
corresponding to WK and ST services. b) Number of VMs corresponding to WK

and ST.

The simulation started with one VM per dEIS-service and the target
SLAs defined a maximum execution time of 700ms for the WK service,
respectively of 300ms for the ST service.

Figure 7.51a shows the average execution time measured over a moving
time window of one minute, which was well below the maximum limit set by
SLA. The reason why this happened in contrast to the simulation presented
in Section 7.8.3 is that this algorithm considered a maximum processing
capacity per VM of 435 requests per minute for the WK service, and 456
requests per minute for the ST service. These values were calculated based
on the defined SLAs and the results of the benchmark described in Section
7.2.3.

Figure 7.51b shows the evolution of the number of VMs of both WK
and ST throughout the simulation. As it can be seen, the first scale-out
was performed earlier than in the case of the reactive VM scaling algorithm,
after 1815 seconds from the simulation’s start, when the average arrival rate,

156



7.8. SIMULATIONS OF VM-SCALING ALGORITHMS

0

10000

20000

0 2000 4000 6000 8000
Time (seconds

R
eq

ue
st

s 
P

er
 M

in
ut

e variable
incoming
throughput
dropped

(a)

0

10000

20000

0 2000 4000 6000 8000
Time (seconds

R
eq

ue
st

s 
P

er
 M

in
ut

e variable
incoming
throughput
dropped

(b)
Figure 7.52: Distribution of the arrival rate (red), processing rate (blue), and

dropped requests during the simulation of the λ-Based VM-Scaling Algorithm for
dEIS a) WK service. b) ST service.

equal to 388 requests per minute (for WK service), exceeded the algorithm’s
scaling capacity threshold (80% of 435 req. per minute). During the time
when the VM scaling-out was signalled and the actual time when the VMs
become operational, the number of incoming requests continue to increase,
however it did not exceed the services’ processing capability.

The maximum number of VMs corresponding to WK service was 73,
while for the ST service, the number was 68, given the slightly higher pro-
cessing capacity of ST service, according to the previously presented bench-
mark.

As shown in Figures 7.52a and 7.52b, the processing rate (throughput)
of both WK and ST followed closely the arrival rate of requests, validating
the algorithm’s capacity of maintaining the distributed system in fully SLA-
compliant state.

Predictive λ-Based VM-Scaling Algorithm

The predictive-λ-based VM-scaling algorithm was validated with the same
workload used in the previous two simulations, described in Section 7.8.3.

The simulation results match closely the ones from the previous simu-
lation (Figure 7.51), given that the scaling algorithm extended the λ-based
VM-scaling algorithm with prediction capabilities. The SLA compliance was
100% for both algorithms, but in the case of the the predictive λ algorithm
the scaling-out of VMs was scheduled to happen so that the VMs become
operational exactly at the time signalled by the control algorithm. This in-
creased the system’s protection to sudden increases in workload and kept
the spare processing capacity constant instead of diminishing it due to the
delay in VMs’ instantiation.

Figure 7.53a shows that the average execution time for both the WK and
ST services stayed below the SLA-defined maximum values of 700ms for the
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Figure 7.53: Simulation of the Predictive-λ-Based VM-Scaling Algorithm a)
Execution time corresponding to WK and ST services. b) Number of VMs

corresponding to WK and ST.
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Figure 7.54: a) Distribution of the arrival rate (red), processing rate (blue), and
dropped requests during the simulation of the Predictive-λ-Based VM-Scaling

Algorithm for the dEIS WK service. b) Accuracy of predicting the arrival rate at
the WK service.

WK service, respectively 300ms for the ST service. Figure 7.53b shows the
evolution of the number of VMs for both WK and ST services, which is
very similar to the one presented in Figure 7.51b, with the difference that in
the case of the predictive-λ-based VM-scaling algorithm the instantiation of
VMs happened exactly at the moment determined by the scaling algorithm
due to predicting the rate of incoming requests.

Figure 7.54a presents the evolution of processing capacity of the WK
service, which was perfectly balanced with the incoming workload. Figure
7.54b shows the prediction accuracy, which remained below the threshold
of 2.5% (green line) most of the time, enabling using the results of the
forecasting as input for the VM-scaling algorithm.

The algorithm achieved maintaining a SLA compliance rate of 100%
percent, while also creating a larger margin for the variation of the arrival
rate, as the whole system was scaled faster due to the use of prediction.
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Chapter 8

Conclusions and Outlook

Cloud Computing has evolved to become an enabler for delivering access to
large-scale distributed applications running inside managed environments
composed of network-connected computing systems. This made it possible
to host Distributed Enterprise Information Systems in cloud environments,
while enforcing strict performance and quality of service requirements, de-
fined using Service Level Agreements. The first generation of cloud comput-
ing provided on-demand access to single virtual machines (VM), which could
be scaled in and out on demand. The expectations of how cloud computing
can be used most effectively for enterprise-scale applications have evolved, as
existing enterprise applications are not single, monolithic software bundles,
but are distributed systems, which can even span data centers and service
providers.

In this thesis, we have investigated the use of SLAs as input for manage-
ment of cloud infrastructure, with regards to providing a machine-readable
representation of distributed applications, including composition relations
between their services, monitoring metrics, key performance indicators, per-
formance guarantees and automated scaling actions. We then showed how
these enhanced SLAs can be used for building several algorithms and optimi-
sation methods for management of both physical and virtual cloud-resources.

We describe in Section 8.1 the initial research questions and the corre-
sponding solutions provided by this thesis. These contributions are then
summarized in Section 8.2, and finally Section 8.3 outlines promising re-
search topics for future work related to our contributions.

8.1 Challenges Addressed

We considered multiple connected problems from the perspective of both
enterprise application owners and cloud infrastructure providers regarding
the efficient management of SLAs, in the context of scaling distributed ap-
plications using virtual cloud-resources.

The first perspective is that of the application owner, who is interested
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in finding the optimum amount of computing and network resources to en-
sure that the performance requirements of all applications are met. After
the initial allocation of virtual computing resources, the application owner is
also interested in appropriately scaling distributed applications so that ap-
plication performance guarantees are maintained even under dynamic user-
generated workload conditions.

Similarly, the infrastructure providers are interested in optimally allo-
cating the virtual resources on the physical infrastructure resources so that
its operational costs are minimised, while maximising the tenant’s appli-
cation performance. In this context, we show how predicting the infras-
tructure utilisation peaks (using both triple exponential smoothing and a
streaming version of linear regression combined with feedback based on the
out-of-sample error) and dynamically optimising the distribution of virtual
resources (by using a VM allocator using a group-oriented genetic algorithm,
combined with VM-scaling algorithms based on benchmarking and Little’s
Law) leads to optimising the use of available cloud resources, lowering the
penalties caused by violating the tenant’s performance-SLAs during the live-
migration of VMs.

Therefore, we raised the following question: "How do distributed appli-
cation owners and infrastructure providers benefit from using Service Level
Agreements in Cloud Computing environments?". The answer to this ques-
tion was provided in Chapter 3 where we presented an extensible, machine-
readable semantic language for representing distributed applications along
with their service levels agreements. Our proposed enhanced SLA specifica-
tion language allows representing both (1) structural elements of distributed
applications (services) along with infrastructure resources required for the
proper instantiation of these services, as well as (2) the application specific
performance metrics and quality of service parameters, which are then used
for specifying application-specific invariants (e.g. guarantees) and actions
that must be executed when the application’s state changes towards vio-
lating the SLA guarantees. The validation for this solution was described
in Chapter 7.3, where we looked at the benefits of using SLAs for control-
ling virtual resource allocation in cloud environments, compared to using
different fixed allocation policies. Our results indicated that a dynamic al-
location of cloud resources is clearly more valuable than both over- and
under-provisioned assignment of infrastructure cloud-resources.

Having created a flexible representation language for the description of
distributed applications and SLAs, we decided on exploring the resource al-
location problem from the perspective of the cloud-infrastructure provider,
consequently, trying to answer the following research problem: "How to
control infrastructure resource allocation in cloud environments while max-
imising both tenants’ Quality of Experience and provider’s Efficiency of Op-
erations?". The answer to this question was provided in Chapter 6 where we
described a resource allocation algorithm, which is capable of taking into ac-
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count multiple optimization criteria, such as the impact of over-subscribing
computing and network resources, energy costs, SLA penalties and gen-
erated profits. We then evaluated this algorithm in Section 7.5, showing
that this approach provides more benefits to the cloud provider compared
to simpler resource allocation algorithms, such as first-, worst- or best-fit
heuristics.

At the cloud-platform level, the tenants are interested in obtaining a con-
stant application-level performance, independent of the number of external
users accessing their cloud-applications. This behaviour can be obtained if
the cloud-platform-manager ensures that the appropriate number of virtual
resources (e.g. VMs) are allocated to the distributed applications. Opti-
mally determining the number of necessary VMs for supporting given levels
of application-performance leads to three distinct sub-problems: (1) find-
ing the relation between the quantity of virtual resources (or size of the
virtual infrastructure) allocated to distributed cloud-applications and the
corresponding application-level performance metrics; (2) finding the optimal
VM-scaling policy; and (3) using prediction to optimally vary the number of
VMs allocated to cloud applications in order to minimise resource utilisation
while meeting the agreed SLA performance guarantees.

Given these objectives and the research question of "How to design an
effective system for management (scaling) of SLA-constrained distributed
cloud services?", we described in Chapters 5 and 4 (1) several mechanisms
for optimisation the scaling rules contained in SLAs by using statistical
correlations between application-level monitoring metrics, and (2) multiple
algorithms for scaling distributed applications using prediction and results
from applying Little’s Law to distributed systems, while considering the
impact on the given SLA guarantees. We then described several experi-
ments involving scaling a distributed enterprise application, as well as sev-
eral large-scale simulations, which have validated the previously presented
SLA-optimization methods and SLA-based VM-scaling algorithms.

8.2 Summary of Contributions
Overall, the key contributions of this dissertation are:

• (Chapter 3) a semantic SLA-enabled specification language and archi-
tecture for dynamically managing distributed software, together with
the corresponding computing, storage and network cloud infrastruc-
ture virtual and physical resources [18]

• (Chapter 4) multiple SLA-based VM scaling algorithms that use reac-
tive and analytic mechanisms combined with data prediction method,
as well as results from applying Little’s Law ([14, 12, 15])

• (Chapter 5) a method of sizing virtual infrastructures based of SLA-
defined constraints and benchmark-gathered application profiling in-
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formation [16], and composing scaling rules for distributed services
using prediction mechanisms and correlation-derived relationships be-
tween SLA monitoring metrics [11]

• (Chapter 6) a framework for dynamically allocating VMs to physical
resources while considering SLA-constraints and multiple objectives
optimisations which uses a bin-oriented genetic algorithm combined
with data forecasting (exponential smoothing) [19]

The enhanced semantic specification language for SLA representation
and topology orchestration described in Chapter 3 is addressing the first re-
search question ("How do distributed application owners and infrastructure
providers benefit from using Service Level Agreements in Cloud Comput-
ing environments?") by enabling both cloud providers and users to express
their requirements in terms of available infrastructure capabilities, as well
as application performance requirements and service dependencies.

The VM scaling algorithms and management system’s architecture pre-
sented in Chapter Chapter 4 are providing an answer to the research question
of ("How to control the allocation of infrastructure resources in cloud envi-
ronments while maximising both tenant’s Quality of Service and provider’s
Efficiency of Operations?").

Finally, the third research question ("How to design a system for manage-
ment (scaling) of SLA-constrained distributed cloud services?") is addressed
in Chapters 5 and 6. In Chapter 5 we present a method for analysing the
dependencies between performance metrics of distributed application based
on benchmarks-generated datasets, as well as the design of a system for
analysing these dependencies and producing scaling plans, which can them
be used for the management of distributed applications. Chapter 6 provides
the answer to the multi-objective mapping of virtual machines to physical
infrastructure resources.

We discuss next each of the main contribution points of this thesis in
detail.

Enhanced Semantic Specification Language for SLA Representation and Topol-
ogy Orchestration

We have presented an SLA-centric specification model, architecture and
value model for dynamic application topology specification and orchestra-
tion. Our specification model is designed to simplify validation of selection,
deployment and adaptation rules for application to infrastructure allocation
of resources. Secondly, the specification provides application architects with
an application management model that is applicable at specification and
operation time, separating the concerns of specification from configuration.
Subsequently, given an architecture like we proposed, such a specification
increases the level of infrastructure management automation, including pro-
visioning, deployment, monitoring, problem specification and resolution, as
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an explicit expression of locality, scaling and adaptation constraints are in-
cluded for each class of infrastructure resource: storage, computation and
networking.

Our results show that the dynamic approach of allocating services (as
opposed to having a fixed allocation) is a better choice, considering the
objectives of minimising SLA violations and maximising efficiency. A qual-
itative estimation of the average reaction time showed advantages for the
dynamic approach under basic assumptions about the readiness of over and
under-provisioned strategies for response to adaptation triggers. However,
there is some overhead introduced by the need to monitor more metrics with
a greater frequency, and the occurrence of transient non-availabilities during
adaptation of the infrastructure.

SLA-Based Reactive VM-Scaling Algorithm

We have shown how CloudSim can be used as a simulation platform for test-
ing SLA-based infrastructure scaling policies using application performance
traces recorded from a small-scale cloud deployment. We described, imple-
mented and validated a time-shared parallel cloudlet scheduler for CloudSim,
which we used for building and evaluating a SLA scaling manager for VMs,
by running three simulations of varying workloads in a multi-tenant cloud
environment.

We have also proposed and validated a CloudSim model for translating
application-level performance profiling information to VM-level CloudSim
scheduler resource utilization level. We have also identified some possible
optimization points in cloud infrastructure management, regarding energy
consumption of idle servers. We have shown that SLA guarantees can be
used for VM scaling purposes when it is possible to convert them to SLA
ratios.

SLA-Based Predictive VM Scaling Algorithms

We presented two new VM-scaling algorithms focused on distributed en-
terprise applications, which can be used by cloud infrastructure manage-
ment systems to optimally detect the most appropriate scaling conditions
using performance-models of distributed applications derived from constant-
workload benchmarks. We have shown how to combine benchmark results,
with Little’s Law and SLAs for identifying the optimal processing capac-
ity of cloud services, and then we used it in a SLA and arrival rate-based
VM-scaling algorithm. We have extended the arrival rate-based VM scaling
algorithm to consider prediction of the arrival rate, by using linear regression
and multi-step forecasting.

We have evaluated a total of three VM-scaling algorithms by simulat-
ing them in a cloud simulator against trace-based performance models of a
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distributed application, using a real-world application scenario involving a
large variable number of users. Our results show that using predictive SLA-
driven scaling algorithms in cloud management systems for guaranteeing
performance invariants of distributed cloud applications improves the man-
agement efficiency of infrastructure-cloud management systems, as opposed
to using only reactive SLA-based VM-scaling algorithms.

System for Dynamic Composition of SLA Scaling Rules Based on Concurrent
Benchmarks

We have presented a way of dynamically optimising SLAs by generating
SLA-bounded scaling models for the VM-deployed services of the distributed
applications. The resulting SLA scaling rules enable a service management
system to react to the variations in the number of application users, while
minimizing the number of SLA violations, therefore facilitating service scale-
out and service-in. We have described the analytic and benchmark mecha-
nisms for dynamically generating the SLA scaling rules. By using heuristics
for selecting the appropriate scaling-out paths for the services of distributed
applications, we have shown how SLA scaling rules can be inferred and then
used for controlling the runtime scale-in and scale-out of VM-bounded ser-
vices. We have validated our architecture and models by performing scaling
experiments with a distributed application representative for the enterprise
class of information systems. We have then shown how dynamically gen-
erated SLAs can be successfully used for controlling the management of
distributed services belonging to a distributed application.

Method for Analytic Optimization of SLAs for Scaling of Distributed Services

We have presented a system enabling dynamic composition, instantiation
and control of distributed applications using guaranteed actions and guar-
anteed states contained in SLAs. We have shown how SLAs can be used
for controlling the allocation and scaling behavior of services belonging to
distributed applications. We have presented how predictions can be used
for improving the allocation of resources, when prior monitoring informa-
tion exists for the system under test. Finally, we have validated our system
by conducting multiple experiments using a distributed enterprise applica-
tion running in a distributed European testbed. We have also experimented
with improving SLAs and application performance response using system-
provided correlations between the different monitoring metrics of the services
belonging to a distributed application.

Statistical Modelling of the Performance of a Distributed Enterprise Application

We have presented an approach for building a simulation model of a dis-
tributed application for concurrent workload processing, by analyzing ap-
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plication’s performance traces gathered in small-scale real deployments. We
then showed how to integrate the simulation model into CloudSim and how
to build a simulation with varying concurrent workload. We have also pre-
sented an approach for modeling concurrent computing workloads using the
CloudSim simulator. Finally, we validated our models by running experi-
ments with varying workload and with different VM scaling factors.

Our results show that it is possible to accurately model the behavior
of a distributed enterprise information system using CloudSim, although
extensions for supporting concurrent task processing need to be added. Also,
due to variance in the execution times of distributed requests, the simulation
models cannot perfectly represent the real distributed systems, however, a
good-enough representation of key application-level metrics has been shown
to be obtainable, by means of statistical analysis.

Multiple-Objective Infrastructure-Resource Allocation Algorithm

We described a system for supporting the planning and load distribution
disciplines of SLA management while taking into consideration multiple ob-
jective optimizations and the impact of SLAs into resource provisioning and
into dynamic scaling of the virtual infrastructures. We proposed a way of
combining resource utilization estimation, with cost prediction and impact
of the infrastructure operations for implementing the complete set of disci-
plines used in SLA management. We validated our model using simulation
data and we were able to show that our proposed resource allocation ap-
proach significantly outperforms several standard heuristics.

8.3 Outlook
The work conducted in this thesis opens a broad range of possible directions
for future research and innovation in the field of SLA-based management of
distributed services. We briefly elaborate on some of the most promising
topics that relate to our contributions.

Future work can hence be oriented towards a more empirical analysis of
infrastructure adaptation, towards minimising the reaction time, as well as
assessing the impact on management effort. We believe that the main way
of minimising reaction time is through more accurate prediction, combined
with long-term scheduling algorithms. Further studies can therefore be tar-
geted at incorporating and assessing the value of predictive algorithms and
methods with a longer prediction horizon in cloud computing management
systems.

Another possibility of using the prediction mechanisms is to use them
also for controlling the scale-down behaviour of the distributed services
based on the forecasted load and the duration of the services start-up period,
combined with the possibilities of scheduling infrastructure actions.
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With regards to optimising SLAs using data analysis mechanisms, we
mention using statistical algorithm-based analytics, for (1) detecting period-
icity patterns in the SLA monitoring data, and (2) including these patterns
as triggers of SLA actions.

Given our work for modelling the resource consumption of distributed
applications for simulation purposes, we envision refining the models of VM
resource consumption by taking into consideration the distribution of com-
puting resources between software-tasks, the effect of background VM ser-
vices and impact on other VM resources, such as disks. Also, the simulation
models can be further improved by explicit consideration of a more complex
state model for the CPU, including wait states and effect of I/O operations.

We can also identify a possibility of conducting further research in the
field of performance characterisation of distributed systems, in particular
with regards to applying the Little’s Law to always-on systems, in which
the workload never drops to zero. In such systems it is difficult to enforce
the stability constrains requested by Little’s Law and therefore a differential
approach should be investigated.
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Chapter 9

Annex

9.1 Complete SLA Example in Enhanced-USDL-SLA

1 @prefix : <http://sap.com/research/sla#> .
2 @prefix owl: <http://www.w3.org/2002/07/owl#> .
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
4 @prefix sla: <http://sap.com/research/sla#> .
5 @prefix xml: <http://www.w3.org/XML/1998/namespace> .
6 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
7 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
8 @prefix usdl-sla: <http://www.linked-usdl.org/ns/usdl-sla#> .
9 @prefix usdl-core: <http://www.linked-usdl.org/ns/usdl-core#> .

10 @base <http://sap.com/research/sla> .
11

12 <http://sap.com/research/sla> rdf:type owl:Ontology ;
13 owl:imports <http://www.linked-usdl.org/ns/usdl-core> ,
14 <http://www.linked-usdl.org/ns/usdl-sla> .
15

16 #############################
17 # Annotation properties
18 #############################
19

20 ### http://www.linked-usdl.org/ns/usdl-sla#hasServiceLevel
21 usdl-sla:hasServiceLevel rdf:type owl:AnnotationProperty .
22

23 ### http://www.linked-usdl.org/ns/usdl-sla#hasServiceLevelProfile
24 usdl-sla:hasServiceLevelProfile rdf:type owl:AnnotationProperty .
25

26 ### http://www.linked-usdl.org/ns/usdl-sla#hasVariable
27 usdl-sla:hasVariable rdf:type owl:AnnotationProperty .
28

29 ### http://www.linked-usdl.org/ns/usdl-sla#serviceLevelExpression
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30 usdl-sla:serviceLevelExpression rdf:type owl:AnnotationProperty .
31

32 #############################
33 # Object Properties
34 #############################
35

36 ### http://sap.com/research/sla#hasActionPrecondition
37 :hasActionPrecondition
38 rdf:type owl:ObjectProperty ;
39 rdfs:domain usdl-sla:GuaranteedAction ;
40 rdfs:range usdl-sla:ServiceLevelExpression .
41

42 ### http://sap.com/research/sla#hasConstant
43 :hasConstant
44 rdf:type owl:ObjectProperty ;
45 rdfs:range :Constant ;
46 rdfs:domain usdl-sla:ServiceLevelExpression .
47

48 ### http://sap.com/research/sla#hasMetricType
49 :hasMetricType
50 rdf:type owl:ObjectProperty ;
51 rdfs:range :MetricType ;
52 rdfs:domain :MonitoringMetric .
53

54 ### http://sap.com/research/sla#hasMonitoringMetric
55 :hasMonitoringMetric
56 rdf:type owl:ObjectProperty ;
57 rdfs:range :MonitoringMetric ;
58 rdfs:domain usdl-core:Service .
59

60 ### http://sap.com/research/sla#isAssociatedWith
61 :isAssociatedWith
62 rdf:type owl:ObjectProperty ;
63 rdfs:domain usdl-sla:Variable .
64

65 ### http://sap.com/research/sla#refersToMetric
66 :refersToMetric rdf:type owl:ObjectProperty .
67

68 ### http://sap.com/research/sla#refersToServiceType
69 :refersToServiceType
70 rdf:type owl:ObjectProperty ;
71 rdfs:range usdl-core:Service ;
72 rdfs:domain usdl-sla:Variable .
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73

74 #############################
75 # Data properties
76 #############################
77

78 ### http://sap.com/research/sla#hasEvaluationRegion
79 :hasEvaluationRegion rdf:type owl:DatatypeProperty ;
80 rdfs:domain usdl-sla:Variable .
81

82 ### http://sap.com/research/sla#hasExpressionPreprocessor
83 :hasExpressionPreprocessor rdf:type owl:DatatypeProperty .
84

85 ### http://sap.com/research/sla#hasRepresentation
86 :hasRepresentation rdf:type owl:DatatypeProperty .
87

88 #############################
89 # Classes
90 #############################
91

92 ### http://sap.com/research/sla#Constant
93 :Constant rdf:type owl:Class .
94

95 ### http://sap.com/research/sla#MetricType
96 :MetricType rdf:type owl:Class .
97

98 ### http://sap.com/research/sla#MonitoringMetric
99 :MonitoringMetric rdf:type owl:Class .

100

101 ### http://www.linked-usdl.org/ns/usdl-core#Service
102 usdl-core:Service rdf:type owl:Class .
103

104 ### http://www.linked-usdl.org/ns/usdl-sla#GuaranteedAction
105 usdl-sla:GuaranteedAction rdf:type owl:Class .
106

107 ### http://www.linked-usdl.org/ns/usdl-sla#GuaranteedState
108 usdl-sla:GuaranteedState rdf:type owl:Class .
109

110 ### http://www.linked-usdl.org/ns/usdl-sla#ServiceLevelExpression
111 usdl-sla:ServiceLevelExpression rdf:type owl:Class .
112

113 ### http://www.linked-usdl.org/ns/usdl-sla#ServiceLevelProfile
114 usdl-sla:ServiceLevelProfile rdf:type owl:Class .
115
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116 ### http://www.linked-usdl.org/ns/usdl-sla#Variable
117 usdl-sla:Variable rdf:type owl:Class .
118

119 ### http://www.w3.org/2000/01/rdf-schema#Resource
120 rdfs:Resource rdf:type owl:Class .
121

122 #############################
123 # Individuals
124 #############################
125

126 ### http://sap.com/research/sla#ApplicationMetric
127 :ApplicationMetric rdf:type :MetricType ,
128 owl:NamedIndividual .
129

130 ### http://sap.com/research/sla#ConsumerService
131 :ConsumerService rdf:type usdl-core:Service ,
132 owl:NamedIndividual .
133

134 ### http://sap.com/research/sla#InfrastructureMetric
135 :InfrastructureMetric rdf:type :MetricType ,
136 owl:NamedIndividual .
137

138 ### http://sap.com/research/sla#InstancesCountMetric
139 :InstancesCountMetric rdf:type :MonitoringMetric ,
140 owl:NamedIndividual ;
141

142 :hasMetricType :ApplicationMetric .
143

144 ### http://sap.com/research/sla#LoadBalancerService
145 :LoadBalancerService rdf:type usdl-core:Service ,
146 owl:NamedIndividual ;
147 usdl-sla:hasServiceLevelProfile :loadBalancerSLAProfile .
148

149 :RunningOrStartingInstancesCountMetric
150 rdf:type :MonitoringMetric , owl:NamedIndividual ;
151 :hasMetricType :ApplicationMetric .
152

153 ### http://sap.com/research/sla#ServiceMetric
154 :ServiceMetric rdf:type :MetricType ,
155 owl:NamedIndividual .
156

157 ### http://sap.com/research/sla#StorageService
158 :StorageService rdf:type usdl-core:Service ,
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159 owl:NamedIndividual .
160

161 ### http://sap.com/research/sla#WorkerService
162 :WorkerService rdf:type usdl-core:Service ,
163 owl:NamedIndividual ;
164 usdl-sla:hasServiceLevelProfile :workerSLAProfile .
165

166 ### http://sap.com/research/sla#loadBalancerSLAProfile
167 :loadBalancerSLAProfile rdf:type usdl-sla:ServiceLevelProfile ,
168 owl:NamedIndividual ;
169 usdl-sla:hasServiceLevel
170 :workerServiceInstancesPerConnectedUsersState .
171

172 ### http://sap.com/research/sla#loadbalancerService
173 :loadbalancerService rdf:type rdfs:Resource ,
174 owl:NamedIndividual .
175

176 ### http://sap.com/research/sla#networkBandwidthScaleDownAction
177 :networkBandwidthScaleDownAction
178 rdf:type usdl-sla:GuaranteedAction ,
179 owl:NamedIndividual ;
180 :hasActionPrecondition :networkScaleDownCondition .
181

182 ### http://sap.com/research/sla#networkBandwidthScaleUpAction
183 :networkBandwidthScaleUpAction
184 rdf:type usdl-sla:GuaranteedAction ,
185 owl:NamedIndividual ;
186 :hasActionPrecondition :networkScaleUpCondition .
187

188 ### http://sap.com/research/sla#networkScaleDownCondition
189 :networkScaleDownCondition
190 rdf:type usdl-sla:ServiceLevelExpression ,
191 owl:NamedIndividual .
192

193 ### http://sap.com/research/sla#networkScaleUpCondition
194 :networkScaleUpCondition
195 rdf:type usdl-sla:ServiceLevelExpression ,
196 owl:NamedIndividual .
197

198 ### http://sap.com/research/sla#numberOfActiveRequestsMetric
199 :numberOfActiveRequestsMetric rdf:type :MonitoringMetric ,
200 owl:NamedIndividual .
201
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202 :numberOfActiveSessionsAtLoadBalancerVariable
203 rdf:type usdl-sla:Variable , owl:NamedIndividual ;
204 :refersToServiceType :LoadBalancerService ;
205 :refersToMetric :numberOfActiveSessionsMetric .
206

207 ### http://sap.com/research/sla#numberOfActiveSessionsMetric
208 :numberOfActiveSessionsMetric rdf:type :MonitoringMetric ,
209 owl:NamedIndividual ;
210 :hasMetricType :ServiceMetric .
211

212 ### http://sap.com/research/sla#workerSLAProfile
213 :workerSLAProfile rdf:type usdl-sla:ServiceLevelProfile ,
214 owl:NamedIndividual ;
215 usdl-sla:hasServiceLevel :workerServiceScaleDownAction ,
216 :workerServiceScaleUpAction .
217

218 ### http://sap.com/research/sla#workerScaleDownCondition
219 :workerScaleDownCondition
220 rdf:type usdl-sla:ServiceLevelExpression ,
221 owl:NamedIndividual ;
222 :hasRepresentation "scaleDownConditionValue == true"^^xsd:string ;
223 :hasExpressionPreprocessor """
224 var averageNumberOfActiveSessionsAtLoadBalancerVariable =
225 average(numberOfActiveSessionsAtLoadBalancerVariable);
226 var scaleDownThreshold =
227 (workerServiceInstancesCountVariable - 1.0) *
228 workerServiceCapacityConstant;
229 var scaleDownConditionValue =
230 averageNumberOfActiveSessionsAtLoadBalancerVariable <
231 scaleDownThreshold;
232 System.out.println(\"Average number of active user sessions: \" +
233 averageNumberOfActiveSessionsAtLoadBalancerVariable);
234 System.out.println(\"Current Worker Service instances count: \" +
235 workerServiceInstancesCountVariable +
236 \" (scale-down threshold: \" + scaleDownThreshold + \" ) \");
237 if (scaleDownConditionValue) {
238 System.out.println(\"Service Scale-DOWN triggered.\");
239 }
240 """ ;
241 usdl-sla:hasVariable :numberOfActiveSessionsAtLoadBalancerVariable ;
242 :hasConstant :workerServiceCapacityConstant ;
243 usdl-sla:hasVariable :workerServiceInstancesCountVariable .
244
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245 ### http://sap.com/research/sla#workerScaleUpCondition
246 :workerScaleUpCondition
247 rdf:type usdl-sla:ServiceLevelExpression ,
248 owl:NamedIndividual ;
249 :hasExpressionPreprocessor """
250 var currentWorkerServicesCapacity =
251 workerServiceRunningOrStartingCountVariable *
252 workerServiceCapacityConstant;
253 var averageNumberOfActiveSessionsAtLoadBalancerVariable =
254 average(numberOfActiveSessionsAtLoadBalancerVariable);
255 var workersAreApproachingTheSLALimit =
256 averageNumberOfActiveSessionsAtLoadBalancerVariable >=
257 currentWorkerServicesCapacity;
258 System.out.println(\"Current user handling \"+
259 \"capacity of all Worker Services: \" +
260 currentWorkerServicesCapacity);
261 System.out.println(\"Average number of active user sessions: \" +
262 averageNumberOfActiveSessionsAtLoadBalancerVariable);
263 if (workersAreApproachingTheSLALimit) {
264 System.out.println(\"Service Scale-UP triggered.\");
265 } """ ;
266 :hasRepresentation "workersAreApproachingTheSLALimit == true" ;
267 usdl-sla:hasVariable
268 :numberOfActiveSessionsAtLoadBalancerVariable ;
269 :hasConstant
270 :workerServiceCapacityConstant ;
271 usdl-sla:hasVariable
272 :workerServiceRunningOrStartingCountVariable .
273

274 :workerServiceCapacityConstant rdf:type :Constant ,
275 owl:NamedIndividual ;
276 :hasRepresentation "5" .
277

278

279 :workerServiceInstancesCountVariable
280 rdf:type usdl-sla:Variable ,
281 owl:NamedIndividual ;
282 :refersToMetric :InstancesCountMetric ;
283 :refersToServiceType :WorkerService .
284

285 :workerServiceInstancesPerConnectedUsersExpression
286 rdf:type usdl-sla:ServiceLevelExpression ,
287 owl:NamedIndividual ;
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288 :hasRepresentation
289 "average(numberOfActiveSessionsAtLoadBalancerVariable) <=
290 workerServiceInstancesCountVariable *
291 workerServiceMaxCapacityConstant" ^^xsd:string ;
292 usdl-sla:hasVariable
293 :numberOfActiveSessionsAtLoadBalancerVariable ,
294 :workerServiceInstancesCountVariable ;
295 :hasConstant :workerServiceMaxCapacityConstant .
296

297 :workerServiceInstancesPerConnectedUsersState
298 rdf:type usdl-sla:GuaranteedState ,
299 owl:NamedIndividual ;
300 usdl-sla:serviceLevelExpression
301 :workerServiceInstancesPerConnectedUsersExpression .
302

303 :workerServiceMaxCapacityConstant
304 rdf:type :Constant , owl:NamedIndividual ;
305 :hasRepresentation "10" .
306

307 :workerServiceRunningOrStartingCountVariable
308 rdf:type usdl-sla:Variable , owl:NamedIndividual ;
309 :refersToMetric :RunningOrStartingInstancesCountMetric ;
310 :refersToServiceType :WorkerService .
311

312 :workerServiceScaleDownAction
313 rdf:type usdl-sla:GuaranteedAction , owl:NamedIndividual ;
314 :hasActionPrecondition :workerScaleDownCondition ;
315 usdl-sla:serviceLevelExpression
316 :workerServiceScaleDownActionExpression .
317

318

319 :workerServiceScaleDownActionExpression
320 rdf:type usdl-sla:ServiceLevelExpression ,
321 owl:NamedIndividual ;
322 :hasRepresentation
323 """var outcome = new java.util.HashMap();
324 outcome.put(\"rule-action\", \"service-scale-down\");
325 outcome.put(\"service-name\", \"WorkerService,StorageService\");
326 return outcome;""" .
327

328 ### http://sap.com/research/sla#workerServiceScaleUpAction
329 :workerServiceScaleUpAction
330 rdf:type usdl-sla:GuaranteedAction ,
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331 owl:NamedIndividual ;
332 :hasActionPrecondition :workerScaleUpCondition ;
333 usdl-sla:serviceLevelExpression
334 :workerServiceScaleUpActionExpression .
335

336 ### http://sap.com/research/sla#workerServiceScaleUpActionExpression
337 :workerServiceScaleUpActionExpression
338 rdf:type usdl-sla:ServiceLevelExpression ,
339 owl:NamedIndividual ;
340 :hasRepresentation
341 """var outcome = new java.util.HashMap();
342 outcome.put(\"rule-action\", \"service-scale-up\");
343 outcome.put(\"service-name\", \"WorkerService\");
344 return outcome;"""^^xsd:string .

9.2 Little’s Law Experimental Results

Table 9.1: Dependency between average concurrency (L), average execution time
in milliseconds (W ), average arrival rate (λ), and average throughput (Th) for the

dEIS WK services
WK

L W λ Th

1.00000000000001 106.253175824763 118.0 133.402347559805
1.49209853730371 135.892854116163 236.0 263.615378438970
1.97765558945569 236.681193020889 333.3 366.391575874631
2.47256642885760 296.383069425486 355.5 392.945454399697
3.01893362528895 461.587023767713 315.7 362.823813497585
3.60030399746622 532.352964201406 358.8 406.079563427756
4.39220926885756 615.453746603090 377.8 419.509814133499
5.11854236888272 619.072416789109 414.8 462.415636632722
5.83689676700349 666.976063107783 435.4 483.388705827361
6.63212289306503 733.061835860666 442.2 491.276316774205
7.41423602440646 792.195126673492 456.7 513.412421758801
8.18564360062547 837.802534619118 470.0 527.413455784417
9.08582787863719 928.526782276457 435.4 479.495752545885
9.69589982826333 911.255316803602 470.7 524.184700910471
9.35991394532730 771.795157203942 56.2 614.143901691528
11.2358461793066 934.863415157991 526.2 573.564867732920
12.2431820442801 995.568303271454 542.1 595.962974534828
13.1560639251941 1057.30109519794 552.8 599.725248959365
14.0436654406718 1099.35802480836 564.3 621.791344674921
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14.9581159089741 1145.53360019043 577.7 634.911298143772
16.0216243076700 1211.53717647379 513.2 570.962763895424
17.3502289870072 1351.96160752844 459.1 512.949261547913
18.5083315266693 1413.13576143710 434.7 486.184171872724
19.4048813543123 1560.97410727780 405.1 456.359405076374
20.8294962525027 1664.70749366665 369.4 414.070283333598
21.8984129656136 1825.53316907034 345.1 385.826988320014
23.3101195854305 2106.68267229236 308.4 352.080416772491
24.6660809658003 2247.65501647306 285.3 335.762969610098
25.8968267382830 2676.22797209435 248.3 286.564419152066
27.1659519661257 2887.84524287492 227.0 266.324822314658
28.2986701403029 3242.03163125361 206.6 243.523719304605
29.5431997657446 3740.22673873201 178.6 219.988897011040
30.8801342719387 4630.11541141157 143.8 182.738088933414
31.9198633887045 5399.11204843935 127.8 171.465091203173
33.2360679787079 6506.76222859959 105.9 148.262136451378
34.4096464604505 8103.85897928056 91.8 135.505538843127
35.6362743819602 9249.97267210008 77.8 122.885119920617
36.6048632571997 11982.7034405657 63.0 135.736468722656
37.7987565418121 13870.7820891895 52.5 196.620710165341
38.8322274047968 16225.3426282825 45.9 93.8370381111032
39.6953979042764 21662.0884702283 38.5 95.5345712000983
41.0707989926740 23237.1940615593 28.0 73.0596832933760
41.1865747289015 26307.4126039314 28.6 77.8141164818046
43.0394503546099 39817.8373147920 19.9 80.1253979768785
44.3669283097855 55174.2663698470 17.2 98.8848615886668
45.6123263888889 52395.8898960765 12.4 72.4340269418790
46.1361828774063 76838.6210102231 11.9 108.671856505841
47.6818930041152 93300.8123419405 7.0 73.3100932958845
48.8130341880342 132771.381409054 6.4 45.5205607334689
49.8968253968254 159679.602527441 3.8 73.3356519392628

Table 9.2: Dependency between average concurrency (L), average execution time
in milliseconds (W ), average arrival rate (λ), and average throughput (Th) for the

dEIS ST services
ST

L W λ Th

1.00000000000000 44.1364749181384 118 133.379910942919
1.47848686037278 59.5419776964693 236 260.45383845421
1.91999218138395 78.5575478478216 333.3 363.105213983859
2.23688489269291 99.7188234216933 355.5 395.659723561377
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2.77404817736323 129.578414279590 315.7 381.528205154811
2.95331179724445 152.419315480892 358.8 418.438897585834
3.05369194176416 175.700209885490 377.8 433.727042215522
3.12136360786964 201.765625928640 414.8 476.121573003631
3.30678154677553 229.442377456606 435.4 497.158241115614
3.55941046923965 262.060833655668 442.2 510.376770050187
3.82791140908309 291.842081880850 456.7 515.457408180452
4.07817594845672 321.984808326989 470 529.618827975436
4.32237718295087 430.762906950733 435.4 477.846609113416
4.94937434449424 448.324755806419 470.7 523.948495578588
6.22546681630632 631.583241187162 56.2 588.724671869038
5.79329962240557 477.499313113676 526.2 584.500083292696
5.98612587342152 483.959131409734 542.1 598.297421253130
6.35912827611391 496.279205682649 552.8 606.039348898504
6.66014367963151 517.013824084418 564.3 618.685902058795
6.91036188285654 537.157086242621 577.7 635.958019476017
8.04327679530483 799.712717423534 513.2 562.230461192874
8.98507215133268 1078.11516057179 459.1 501.046274544561
10.0331799474438 1301.21405895084 434.7 473.559706642170
10.8792115495752 1500.17541640450 405.1 444.762894251641
12.0443069088006 1858.00083109819 369.4 405.106900988764
12.9671203586527 2113.10564938642 345.1 384.049776315713
13.9996860621033 2534.51352073512 308.4 349.845328218091
14.9988257536138 3012.59956331101 285.3 318.987771550790
15.9430091145108 3592.23410973396 248.3 282.229125217732
16.8753272857303 4222.07029225332 227 269.201443368447
17.7441692777037 4967.42344365356 206.6 237.427120701460
18.7956419465257 6564.07507081400 178.6 212.027904562730
19.6351598671498 8163.95851777649 143.8 176.171826879828
20.6353045350298 9299.52958628097 127.8 163.260658873135
22.1026456798327 12211.6323742269 105.9 138.529122322352
22.5935675665879 13707.6073089660 91.8 123.668054636167
24.1193802991880 17530.8144341426 77.8 112.649435071334
24.1933736017069 20406.0826289865 63.0 99.9264567610490
26.2239649239649 29377.9176209859 52.5 88.2885981574206
25.8570014980271 31233.1855246229 45.9 85.1585627799066
27.7547105911330 33796.6307878469 38.5 91.2779943352144
28.8909551176793 44034.3969891253 28.0 77.75752872945490
28.3240333740334 43647.7319287173 28.6 91.5182388521269
29.6584656084656 58770.2043950417 19.9 75.9436914407777
28.4602011494253 69040.9992810433 17.2 95.5058075816268
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31.2779710144928 95628.7775353784 12.4 64.2899806059830
31.1658119658120 85808.4478626768 11.9 62.8785073819733
33.2920289855072 115358.438405161 7.0 107.5525080689090

29.65486725663720 113851.123155687 6.4 86.689078530392
30.3407079646018 224803.927727526 3.8 79.8991928823325
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