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Abstract—Video content and, in particular, YouTube’s con-
tent account for the largest amount of today’s Internet traffic.
However, little is known about the behavior of video streaming
services for different kinds of network environments and under
varying network conditions. Due to network operators’ lack of
knowledge about the transmitted content, network resources may
not be optimally used in general. Thus, we propose a dyadic
measurement system composed of application, i.e., client-based
and network-based monitoring for YouTube’s video traffic. Using
our proposed monitoring methodology, we analyze the behavior
of YouTube’s HTTP-based adaptive video streaming mechanisms.
In detail, we quantify via experimental measurements on real
network traffic YouTube’s behavior for different videos under
static and varying network conditions. Our measurement results
show that in case of varying network conditions, YouTube
demands different video qualities in parallel in order to adapt to
the network situation. However, this behavior can result in up to
33 % of redundant network traffic, i.e., downloaded video content
of different quality levels for the same play time. Due to our
findings, network operators should try to optimize the allocation
of network resources for video content in a way that avoids
varying network conditions, resulting in less waste of network
resources.

I. INTRODUCTION

Today’s Internet traffic is dominated by video content.
Among all transport protocols used for video content delivery,
TCP/IP is nowadays more frequently used than RTP/UDP,
which was originally designed for delivering multimedia con-
tent. Whereas RTP/UDP is designed to adapt to varying net-
work conditions, TCP/IP may struggle due to its connection-
oriented nature that provides a reliable data delivery. However,
video content providers have to deliver the best optimal video
quality to their users, i.e., they have to provide a high Quality
of Experience (QoE). Thus, most video content providers use
HTTP Adaptive Streaming (HAS) over TCP to deliver content
to their users to cope with varying network conditions. With
HAS, a video player can choose between different quality
levels of a video dynamically, thus the video playback can
be adapted to the current network conditions. Furthermore,
in order to allow a continuous video playback without any
interruptions, i.e., stalling events, a player may request and
download different quality levels simultaneously.

The streaming configuration for videos is dependent on the
video content providers. For instance, providers determine the
amount of available quality layers of videos. Furthermore, the
streaming strategy, e.g., in which quality the video should start
playing, which quality levels should be requested, or when
the video should switch between different quality levels, is

dependent on the video provider and its provided player as
well. However, as the video client is only roughly aware of its
network access condition and even completely unaware of the
overall network conditions, the player’s streaming strategy may
not always lead to an improvement of the perceived video qual-
ity of users. Thus, triggered quality requests may even result
in a further degradation of the overall network performance,
thus a decrease of video quality. Besides, today’s networks are
also not aware of details of transmitted video content due to
lack of information exchange between video content providers
and network operators. Consequently, operators are not able to
provide network resources in a way that allows video clients
adapting to the current network situation in an optimal way.

In the Internet, YouTube is one of the dominant video
content providers. In North America, YouTube’s video traffic
counts with 17.61 % for the largest proportion of the total
mobile network traffic, and with 13.19 % for the second largest
amount in fixed access networks [1]. Whereas YouTube is re-
sponsible for a big share of Internet video traffic, less is known
about its streaming set-up for video content, and in particular,
how its adaptive streaming mechanisms behave under varying
network conditions. Existing works [2], [3], [4], [5] either fo-
cus on YouTube’s video streaming mechanism based on Flash
Video (FLV) or did not investigate its dynamic behavior under
varying network conditions. With this paper, we provide a new
measurement set-up that allows us to quantify the behavior of
video content delivery services. In particular, we demonstrate
how to use a dyadic monitoring system to quantify YouTube’s
video streaming behavior under varying network conditions in
detail. Knowledge about YouTube’s streaming behavior may
enable network operators to allocate their resources in such
a way that both the network operator and the video content
provider may benefit.

The experimental set-up used for measuring YouTube’s
performance is composed of virtual components, i.e., virtual
machine images, and OpenFlow-based software switches, i.e.,
open vSwitch [6]. Such a set-up allows to distribute and to
replicate all experiments. For measuring YouTube’s perfor-
mance, we combine two existing monitoring mechanics, an
application (client/browser-based) monitoring and a network-
based monitoring. Combining both monitoring approaches
allows to analyze YouTube’s video streaming performance.
To quantify YouTube’s performance in this paper, we focus
on video content that was downloaded but not displayed, i.e.,
video content that was unnecessarily downloaded. Unnecessar-
ily downloaded video content directly refers to wasted band-
width, i.e., an in-efficient use of available network resources.



The remainder of this paper is structured as follows. In
Section II, we explain HAS, refer to related work, and explain
YouTube’s mechanism that results in wasted traffic. In Sec-
tion III, we outline in detail the dyadic monitoring system and
how YouTube’s redundant traffic metric is estimated, which is
used in this paper to quantify YouTube’s performance. Sec-
tion IV presents the measurement results of the experiments.
Finally, we conclude and propose future research prospects in
Section V.

II. BACKGROUND & RELATED WORK

In the following, we first discuss HTTP Adaptive Streaming
(HAS). Afterward, we present the related work in the relevant
areas of research. At the end of the section, we examine the
behavior of YouTube’s adaptation algorithm that leads to the
observed redundant traffic.

A. HTTP Adaptive Streaming

HTTP Adaptive Streaming (HAS) allows for client-driven
adaptation of video content served by a HTTP server to device
capabilities (e.g. screen size) and available bandwidth. For
HAS, the content provider segments the video into fixed-length
segments (e.g. 2 seconds) and encodes each segment into
different representations (e.g. quality levels). The segments in
different representations are served to the client through the
HTTP protocol. In MPEG-DASH, a wide-spread HAS standard
adopted by YouTube, the URLs and encoding information
(e.g. average bit-rate) of the segments are made available to
the client through an XML-encoded manifest file (i.e. the
Media Presentation Description (MPD) file). The client first
requests the manifest file to learn the location and properties
of the different segments. Afterward the client selects the
segments of a desired quality level based on an unspecified
adaptation algorithm. The adaptation algorithm is not part of
the MPEG-DASH standard. Yet evaluations show, that the
adaptation algorithm has a strong influence on the resulting
playback behavior and therefore also on the perceived QoE of
the user [7].

B. Related Work

In [2] the authors evaluate the three streaming providers
Hulu, Netflix and YouTube in terms of streaming behavior,
traffic redundancy and bandwidth exploitation. For traffic re-
dundancy, the results for a single experiment are given. In the
experiment a tablet device (iPad) running the YouTube applica-
tion plays back an unspecified 750 second YouTube clip. The
device is connected over WiFi to a shaped bottleneck link. The
bandwidth (in Mbps) of the bottleneck link is set to a specific
static bandwidth from the list [5,0.5,1,2,4,5]. With the start
of the experiment, the bandwidth is set to the first value in
the list (i.e. 5 Mbps) and every 2 minutes the subsequent value
from the list is selected. For this scenario the authors observe
that YouTube switches aggressively to the next higher bit-
rate when the bandwidth of the link is increased, dropping
all buffered data of the lower qualities in that process. For
that experiment the authors calculate a percentage of redundant
traffic of 16 % for YouTube (Hulu 21 %, Netflix 22.5 %). In our
work, we confirm that behavior and evaluate the implications
for the network in greater detail. In [4], the authors evaluate
mobile video traffic and show that in some cases more than

35 % of the traffic is redundant. As cause for this behavior,
the authors discuss frequent termination of TCP connections
and discarded on-fly packets. In [5], [8], the authors model
YouTube’s traffic. Their findings suggest that the adaptation
behavior of YouTube changes with choose of device and player
technology (e.g. from Flash to HTMLS). In [9], the authors
show how users could benefit from an information exchange
between YouTube and the network. Furthermore, they show
how application control (e.g. triggering quality switches by a
local gateway resource management) can increase the resource
usage efficiency. An application control by the network can
help to prevent the redundant traffic observed by our work. In
[10], the authors evaluate YouTube’s application flow control
mechanism. The results show that YouTube uses block sending
to transfer video data in bursts and that 32s of block sending
are used in the initial buffering phase. The observed block
sending approach may increase the number of overlapping
segments if the block sending period is fixed to one quality
level.

C. Wasted Bandwidth & YouTube Behavior

In the following, we describe the behavior of YouTube’s
adaptation algorithm which causes the duplicate download of
playback intervals. Figure 1 illustrates the observed behavior.
The figure is taken from one of our experiment runs and shows
the range requests issued by YouTube’s adaptation algorithm
on the axis to the right. The time since the start of the
experiment run when a new request is started is shown on
the axis to the left from bottom to top. The figure shows
an experiment with three quality switches (at 27s, 45s and
54 s) and the corresponding wasted range requests of the lower
qualities. At first, the algorithm issues four consecutive range
requests for the lowest quality level (i.e. 144p). Afterward,
the algorithm starts to request one range of the next higher
quality level (i.e 240p). But the requested range overlaps with
the previously downloaded range of the quality level 144p.
Next, the algorithm revises his decision and selects quality
level 144p again before it switches directly to 360p. Overlaps
can also be observed for the quality switches to 360p and 480p.
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Fig. 1. Example for YouTube range requests taken from an experiment run.
First ranges with 144p are selected. Later switch to 240p, 360p and 480p.

Presumably, this way the adaptation algorithm tries to
maximize the user’s perceived QoE in situations where it
detects or assumes an increase in available bandwidth. By
revising a previously made decision for a quality level for a
specific range, the player can present the user with a higher
quality earlier. This comes with the cost of the lost buffer



contents of the previously selected lower quality level. The
observed behavior is also discussed in [2].

III. METHODOLOGY

In the following, we discuss the methodology of our
evaluation. We first give an overview on our experimental
set-up consisting of a virtual environment with a browser
and a virtual network. Next we introduce the two monitoring
approaches used, namely in-network monitoring and browser-
based monitoring. Afterward, we discuss how we estimate the
amount of redundant data requested by the YouTube player.
Next, we introduce the two reference bandwidths and three
switching frequencies (referred to as traffic shaping patterns)
used in the evaluation. Afterward, we give details about the
three video sequences used in the evaluation. At the end of the
section, we introduce the software utilized and implemented
in our experimental set-up.
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Fig. 2. Experimental set-up based on a virtual machine (VM) and virtual
network with browser-based and in-network-based monitoring.

Figure 2 gives an overview on our experimental set-up. To
allow for ease of distribution and reproducibility of the exper-
imental environment, we implement the environment as a vir-
tual machine (VM) image. Inside the VM we deploy a Linux-
based operation system with graphical user interface, a web
browser and a virtual network based on Mininet [11] connected
to the Internet. In the current version of our experimental set-up
the nodes emulate Layer-2 forwarding of commodity Layer-2
switches. Traffic shaping is done on the virtual network node
connected to the Internet. The measurements are automatized
and scripted based on configuration files. Each experiment run
is limited to a maximum run-time of 800 seconds and after
each experiment the virtual machine is reset to a default state.
Per experiment run only one video playback is started and not
repeated when the video finishes before the maximal run-time
limit of the virtual environment.

A. Monitoring

Two monitoring approaches are used to record the state and
behavior of the YouTube client application (i.e. the browser),
in-network and browser-based monitoring. The in-network
monitoring approach uses deep-packet inspection (DPI) to
analyze and record the range requests made by the browser.
For the browser-based monitoring we deploy a browser add-
on. The two monitoring approaches complement each other.

TABLE 1. MONITORING PLACEMENT & METRICS

Browser-based | In-network
Playback Quality X
Playback Position X
Playback State X
Buffer Level x) !
Range Request X
Downloaded Bytes X

Table I gives an overview on the different capabilities of
the two approaches in terms of metrics which are recorded
by each of them. Through monitoring of the video player
in the browser, we record the current playback quality (e.g.
180p), playback position (in seconds) and state (i.e. paused
or playing). Furthermore, we record the buffer level of the
currently playing quality level. By in-network monitoring we
record all range requests and the amount of data transferred for
each request. Next, we discuss both measurement approaches
in detail.

1) In-Network Monitoring & Bytes-to-Second Index: Cap-
turing and analyzing the packets transmitted “on the wire”
in the network allows to accurately quantify the amount of
transferred data between two endpoints. Furthermore, by the
means of DPI we gain an insight into the application protocol
in use. In the case of YouTube the application protocol is HTTP
(or HTTPS), which in turn uses the stream-based transport
protocol TCP. With HTTPS, where the transport is encrypted
by SSL, it is not possible to read the application data without
invalidating the end-to-end property of the secure connection
(e.g. through a men-in-the-middle attack by a proxy server).
In our experimental set-up we disable the use of HTTPS
for YouTube. For the remainder of this work we assume
an unencrypted HTTP connection. This does not change the
generality of our findings.

We deploy the DPI application on the virtual node con-
nected to the Internet and in the first step capture all packets
belonging to TCP connections with HTTP GET requests and
responses. For the GET request, three URL-encoded parame-
ters are of relevance for us. The ifag parameter, which selects
a specific quality of the video, the range parameter, which
denotes a byte range of the video the client wants to download,
and the video id. Note that this is a custom range selection
mechanism, not the range parameter specified in the HTTP
protocol. Also note that this way, the YouTube server may
choose to not deliver the full byte range requested by the client,
but a shorter one. To translate byte ranges to playback seconds,
we download the video once in full, parse the encoded video
data and create a bytes-to-second index.

2) Application Monitoring: In order to monitor the ap-
plication metrics, we deploy a browser add-on. The add-on
records four metrics. The player state (playing, paused), the
playback position in video seconds, the playback quality and
the the buffer level for the currently selected playback quality
in seconds. We record the four metrics once per second.

3) Redundant Traffic Estimation: We define redundant
traffic as the percentage of the total video size that was
downloaded but not shown to the user. Be s a point in video
time in seconds from the beginning of the video. Be (3(g, s)
the number of bytes required to decode and display the video

1Only currently selected quality level.



TABLE II. TRAFFIC PATTERNS

Pattern Interval (secs) Bandwidth Patterns (Mbps)
No changes 0.5
1 60 0.5040304050.60.70.6 05
120 0.5 0.25 0.5 0.75 0.5
No changes 1.0
2 60 1.00908091.01.1121.1 1.0
120 1.0 0.75 1.0 1.25 1.0
TABLE III. VIDEOS USED IN THE EVALUATION
Video Length Description
Clip 1 2 101 seconds Scene from a baseball match with com-
mentary.

843 seconds > Point-of-view shot taken from a car
driving down a steep mountain road.
Environmental documentary shot en-

tirely from a helicopter.

Patra ~

Home 7 5597 seconds >

interval [s, s + 1] on quality level ¢ and be « the total number
of video bytes downloaded during the playback of the video
as recorded by the in-network monitor. Be [ the length of
the video in seconds. Furthermore, we denote Q(s) as the
quality level selected at video playback position s. The ratio
a=Y"" B(Q()i)
S BRI

In a nutshell, the percentage describes the overhead relative
to the bytes required for the playback of the video without
overlapping playback time segments.

of redundant traffic § is calculated as § =

B. Traffic Shaping & Shaping Patterns

In order to evaluate the behavior of the YouTube player
under varying available bandwidth conditions, we control the
Internet downlink bandwidth on the virtual network node
connected to the Internet. Table II presents the two traffic
patterns used in this work. The first pattern oscillates around a
reference bandwidth of 0.5 Mbps with a minimum bandwidth
of 0.25Mbps and maximum bandwidth of 0.75Mbps. The
second around a reference bandwidth of 1.0Mbps with a
maximum bandwidth of 1.25Mbps and minimum bandwidth
of 0.75Mbps. The reference bandwidth values are chosen
loosely based on the average bit-rates of the quality levels
360p and 480p of the three videos selected for this work. For
each pattern we introduce two inter-arrival intervals for the
bandwidth changes, 60 seconds and 120 seconds. E.g., for the
60 seconds interval, each traffic shaping setting stays active
60 seconds long before a new traffic shaping value is selected.
The values listed in Table II for each pattern and interval are
set active in the order as presented in the table.

C. Selected Video Sequences

Table IIT presents the three videos selected for the evalu-
ation. One short clip selected from the list of popular videos,
one 10 minute video and one full movie. Clip 1 presents a
101 seconds scene from a baseball match. The 10 minute video
(Patra) shows a scenic first-person view of a car driving down a
mountain. The selected movie (Home) is a nature documentary
filmed entirely from a helicopter. Table IV gives the average
bit-rates of the four quality levels 144p, 240p, 360p and 480p
of each clip. The bit-rate range from 0.105 Mbps (Clip 1, 144p)
to 1.022 Mbps (Patra, 480p).

D. Used Software

The experiments are conducted on a virtual Xubuntu 14.04
64-bit. For traffic shaping the Linux Traffic and Control frame-

TABLE IV. AVERAGE BIT-RATES OF USED VIDEO SEQUENCES
Quality | Clip 1 Home Patra
144p 0.108 Mbps | 0.105 Mbps | 0.109 Mbps
240p 0.245 Mbps | 0.242 Mbps | 0.245 Mbps
360p 0.419 Mbps | 0.477 Mbps | 0.443 Mbps
480p 0.772 Mbps | 0.933 Mbps | 1.022 Mbps

work is used. The YouTube web-page with the video content
is fetched and displayed by Firefox. As video player the Flash
player is selected. The Firefox playback status and buffer
level is monitored using YoMo plugin [12]. The in-networking
monitoring was accomplished by YoMo [13]. The Bytes-to-
playback-seconds index of the downloaded video content was
created utilizing MP4Box of the GPAC project [14].

IV. RESULTS

In the following, we present the results of our evaluation
for the static and dynamic bandwidth case. At the end of the
section, we discuss and summarize the main findings. Each
experiment was repeated 50 times. Our experimental set-up
limits the maximal run-time to 800 seconds. Longer videos are
interrupted when reaching the time limit and a new experiment
is started. If not otherwise noted, the data is presented as box
plots with the median, first and third quartile and whiskers
for the most extreme values which are not considered outliers.
Outliers (i.e. data points outside of 1.5 times the inner quartile
range) are omitted. The mean of the data is presented as red
diamond. Next we discuss results for static bandwidth.

A. Static Bandwidth

Figure 3 gives the percentage of redundant traffic for Clip
1 for a set of static bandwidths. The evaluated bandwidth
values range from 0.2 Mbps to 1.5 Mbps in steps of 0.1 Mbps.
Furthermore, we evaluate a static bandwidth of 10Mbps as a
reference and verification. 10 Mbps is ten times the average bit-
rate of the evaluated video and sufficient bandwidth to avoid
quality switches during playback.
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Fig. 3. Percentage of redundant traffic for Clip 1 for a set of static bandwidths.

The lowest percentage of redundant traffic is observed
for a static bandwidth of 0.2 Mbps, with a median of 18 %.

Zhttps://www.youtube.com/watch?v=u42d_upf-5g, accessed 15-02-2015
3https://www.youtube.com/watch?v=Ad IRGjg2ips, accessed 15-02-2015
“https://www.youtube.com/watch?v=jqxENMKaeCU, accessed 15-02-2015
3Our experimental setup limits the time of playback to 800 seconds.
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Fig. 4. Patra: Redundant traffic for two static reference bandwidths and two
switching frequencies (every 60 seconds as k(igh) and 120 seconds as I(ow)).

For 0.8 Mbps, 1.2Mbps and 0.9 Mbps, we observe a median
redundant traffic percentage of over 30% (33 %, 32 % and
31 %, respectively). For the reference bandwidth of 10 Mbps,
we observe a median of 0.2 %. Furthermore, we notice that
the 1st to 3rd quantile intervals are the largest encompassing
a bandwidth of 1Mbps. Also we observe the second lowest
median of about 21 % for 1 Mbps.

For Patra and Home, two static bandwidth values are eval-
uated, 0.5 Mbps and 1.0 Mbps. For Patra, a median redundant
traffic percentage of 4% for both 0.5Mbps and 1.0 Mbps
is observed. For the Home video, we measure a median
redundant traffic percentage of 10% and 12 % for 0.5 Mbps
and 1.0 Mbps, respectively. More details are given in the
subsequent section IV-B, where the static bandwidth results
of Patra and Home are used as a reference.

B. Dynamic Bandwidth

In the dynamic bandwidth scenario we evaluate the two
traffic shaping patterns presented in Table II for the video
sequences Patra and Home. Table V summarizes the results
as the medians for all bandwidth/frequency combinations.

Figure 4 depicts the percentage of redundant traffic for
the Patra video sequence for the two reference bandwidths
(0.5Mbps and 1.0 Mbps) and the three switching frequencies
(static, every 60s and every 120s). For the static case, the
data shows a low redundant traffic of 4 % for both reference
bandwidths. Additionally, the experimental results for the two
static cases show a low variation (a difference from first to
third quartile of about 2 %). For the two switching frequencies,
the percentage of redundant traffic is considerable higher. For
the high (i.e. every 60s) switching frequency, we observe a
percentage of redundant traffic of 27 % (0.5 Mbps) and 30 %
(1 Mbps), with a first to third quantile range of about 6 %. For
the lower switching frequency (i.e. every 1205s), we observe a
lower median percentage of 25 % and 27 %, respectively.

Figure 5 presents the results for the Home sequence. In the
following, we compare the findings for the Home sequence to
the Patra sequence. For the Home video sequence, we notice
a considerable higher percentage of redundant traffic for the
static bandwidth case. Whereas the experimental results for
Patra show a percentage of 4 % for both reference bandwidths,
the evaluation of the Home sequence show a percentage of
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Fig. 5. Home: Redundant traffic for two static reference bandwidths and two
switching frequencies (every 60 seconds as h(igh) and 120 seconds as I(ow)).

10% and 12 %, respectively. For the two switching frequen-
cies, the median percentage of redundant traffic is similar for
both sequences. For switches every 60 s the median percentage
is higher for Home by 3 % and 2 %, respectively. For switches
every 120, the median percentage is equal for both sequences
for a reference bandwidth of 0.5 Mbps. For a bandwidth of
1 Mbps the median percentage for Patra is lower by 2 %.

Table V summarizes the results for the two traffic shaping
patterns. For the static reference bandwidth we observe the
lowest median percentage of redundant traffic (4 % to 12 %).
For the higher switching frequency (i.e. every 60 seconds) we
see 27 % and 30 % for Patra and Home with the first pattern,
respectively, and 30 % and 32 % for the second pattern.

TABLE V. MEDIAN OF REDUNDANT TRAFFIC FOR HOME AND PATRA

FOR DYNAMIC BANDWIDTH SCENARIO

Ref. Bandwidth Switching Frequency | Patra | Home
static 4% 10 %
0.5 Mbps (Pattern 1) every 60s 27 % 30 %
every 120s 25 % 25 %
static 4% 12 %
1.0 Mbps (Pattern 2) | every 60s 30 % 32 %
every 120s 27 % 25 %

C. Discussion

In the following, we discuss the main findings of this work
(i.e. the influence factors) and the implications. Table VI sum-
marizes the identified influence factors. Dynamic bandwidth
as a factor shows an increase of redundant traffic from 4 % in
the static case to 30 % (bandwidth switch every 60s, 1 Mbps)
for Patra. The evaluation of the video length shows, that the
short video clip has a higher redundant traffic percentage as
the longer video sequences for static bandwidths. Furthermore,
we see a dependency on the content. Patra and Home show a
difference of up to 8 % for the static bandwidth case.

A possible explanation for the difference in redundant
traffic for the two video sequences Patra and Home (4 % to
10 % and 4 % to 12 % for static 0.5 Mbps and static 1.0 Mbps,
respectively) can be inferred from the bit-rate histograms of the
two sequences. Figure 6a presents the bit-rates of the quality
levels 360p and 480p for the first 800 seconds of the Home
video sequence. From the figure, we conclude that the bit-
rate of the video sequence for the two quality levels is not
constant, but can fluctuate during the playback. Whereas the
first 200 seconds of the sequence the bit-rate oscillates with



TABLE VI IDENTIFIED INFLUENCE FACTORS FOR YOUTUBE’S

REDUNDANT TRAFFIC

Influence Factor
Dynamic Bandwidth

Description

The percentage of redundant traffic increases for
dynamic bandwidths compared to static traffic
shaping.

The evaluation shows, that the two longer videos
have a lower percentage of redundant traffic for
static bandwidths.

Video Length

Content The amount of redundant traffic depends on the
content (i.e. the video). For Patra and Home a
difference of 8 % was observed (4 % to 12 % for
a static bandwidth of 1.0 Mbps).
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Fig. 6. Bit-rate histogram of the first 800 seconds of the quality levels 360p
and 480p for 10 second segments for a) Home and b) Patra.

a mean of 0.3 Mbps and 0.65 Mbps, respectively, the bit-rate
of the interval starting from 500 seconds to 750 seconds stays
constant at 0.6 Mbps and 1.1 Mbps a high percentage of the
time. For the two lower quality levels 144p and 240p not
shown in the figure, we observe a different behavior. For
them, the bit-rate stays stable at the average bit-rate given
in Table IV. Figure 6b depicts the bit-rates for the quality
levels 360p of 480p of the Patra video sequence. In contrast
to the Home sequence, we do not observe a general trend of
increasing bit-rate through the course of the 800 seconds. The
bit-rate fluctuations do not exceed a maximum of 0.6 Mbps
and 1.1 Mbps and the bit-rate returns quickly to the maximum
value after a negative-spike. From the given bit-rate histogram,
we can surmise, that the less stable bit-rate of the Home video
causes an increase in the frequency of adaptation events. A
higher number of adaptation events presumable increases the
number of adaptation events where segments are discarded.

The evaluation shows that the characteristic of the band-
width and the content influence the amount of redundancy
caused by YouTube’s adaptation. The identified influence fac-
tors can help to make better use of network resources. On the
side of the content provider (i.e. YouTube), a closer look into
the encoding of the videos can help to reduce redundant traffic.
By choosing an encoding with less fluctuations, the adaptation
algorithm might be more stable and decide less often to
revise a previously made decisions. From the perspective of
the network provider, an information exchange between the
application (i.e. YouTube client or server) and the network can
help to reduce the redundant traffic. By knowing the demands
of the application (i.e. the bit-rate histogram), the network can
assign a suitable share of resources to the application. This
way, the network can aim to reduce the redundant traffic to
the amount measured for static traffic shaping.

V. CONCLUSION

Video traffic counts for the largest portion of today’s Inter-
net traffic. Still, less is known about the behavior of large video
streaming applications, e.g., of YouTube, in particular under
strongly varying network conditions. However, such knowl-
edge is beneficial for network operators to manage network
resources in an application-aware manner, leading to a high
resource efficiency. Accordingly, we provide an experimental
measurement study of YouTube’s HTTP-based adaptive video
streaming mechanisms for varying network conditions. Using a
dyadic monitoring system that combines client-based and in-
network-based monitoring of YouTube’s video transmission,
we are able to quantify YouTube’s behavior in detail. Results
show that in case of varying network conditions, YouTube
wastes up to 33 % of already downloaded video content. As the
unnecessarily video content may not be used, the adaptation
mechanism may not always improve the user’s perceive video
quality in general. Further, it may even burden the network
with additional data, thus, decreases the overall network re-
source efficiency, i.e., network performance. Consequently,
network operators should try to provide YouTube’s video
streaming application with a resource allocation that has a low
fluctuation in order to avoid a waste of network resources.

YouTube forces data transmission via HTTPS since January
2015, i.e., secure connections that prevent a simple flow
monitoring. Current work focuses on concepts that still allow
analyzing YouTube’s video performance based on in-network
monitoring. We are currently developing an interface that
enables the exchange of information between user applications
and network operators. Having such an interface, we want
to provide resource management mechanisms that allocate
network resources in a way that incorporates application
knowledge. We assume that such an application agnostic
resource management decreases the amount of video content
that is unnecessarily downloaded.
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