
SystemC-based Minimum Intrusive Fault Injection Technique with Improved
Fault Representation

Rishad Ahmed Shafik, Paul Rosinger, Bashir M. Al-Hashimi
School of ECS, University of Southampton, Southampton, UK, SO17 1BJ

Email: {ras06r, pmr, bmah}@ecs.soton.ac.uk

Abstract

In this paper, we propose a new SystemC-based fault in-
jection technique that has improved fault representation in
visible and on-the-fly data and signal registers. The tech-
nique is minimum intrusive since it only requires replacing
the original data or signal types to fault injection enabler
types. We compare the proposed simulation technique with
recently reported SystemC-based techniques and show that
our technique has fast simulation speed, better fault repre-
sentation, while maintaining simplicity and minimum intru-
sion. We demonstrate fault injection capabilities in a be-
havioural SystemC description of MPEG-2 decoder using
proposed technique and show that up to 98.9% fault repre-
sentation within data and signal registers can be achieved.

1 Introduction

Electronic systems reliability is a growing concern in
deep sub-micron, in particular due to increased errors due
to higher integration and packing density. SystemC is high-
level design language with potential improvements in de-
sign productivity by allowing the designer to operate at
higher- or mixed-levels of abstraction than available with
traditional RT-level synthesis tools, such as VHDL or Ver-
ilog. An important aspect in the development of such elec-
tronic systems is how to validate the feasibility of fault-
robust design in an early phase to reduce the re-design cost.
Existing fault injection (FI) tools have been mainly VHDL
based, most of these have been limited to RT-levels [1].
For large and complex systems, fault injection using these
techniques require time-consuming re-design and valida-
tions, which can be greatly simplified using SystemC [2, 3].
With growing interest in SystemC-based development, sim-
ple, minimum intrusive, and fast fault injection technique
with fault access and representation in all visible registers
is much needed.

Existing SystemC-based fault injection techniques re-
ported in [4, 5, 6] are saboteur and mutant based, which
have poor fault access and representation in different data
and signal registers and also has highly intrusive and time
consuming re-design technique for fault injection. Recently
reported techniques in [3, 2] have poor fault access for
different data and signal types due to signal type restric-
tions. In this paper, we present a minimum intrusive and
fast SystemC-based FI technique implemented in a proto-
type simulator that works by replacing data and signal types
to equivalent FI enabler types. The proposed FI technique,
thus, achieves very high fault access and representation for
all visible and on-the-fly registers. Similar approach to sim-
ulation modeling for design space exploration was reported
in [7].

2 Existing Fault Injection Techniques

Existing simulated FI techniques are based on sabo-
teurs, mutants or simulation command-based approach [1].
SystemC-based FI techniques using emulation approach
(such as [8]) is outside the scope of this paper due to our
focus on simulated FI approach. In the following, existing
simulated FI techniques are described.

2.1 Saboteurs and Mutants

Saboteur is a special component added between signal
drivers and receivers to alter their value or timing charac-
teristics when a fault is injected [1]. Due to signal based
approach, saboteurs have no access to data registers, such
as variable and on-the-fly registers [9]. Also, for designs
with large number of signals, saboteurs have limited practi-
cal application. To ease such re-design,VHDL-based sabo-
teur libraries are proposed in [1] and automatic saboteur in-
sertion technique was proposed in [10]. However, for multi-
level abstractions, such techniques are not practical due
to poor fault access and highly intrusive design modifica-
tions. Saboteur-based FI using SystemC is presented in [4]

and distributed saboteur-like fault injection controllers are
shown in [5].

On the other hand, a mutant is a component description
that replaces another component description. Mutants can
be accomplished either by adding saboteurs to structural or
behavioural component descriptions, or by mutating struc-
tural component descriptions or behavioural components to
achieve complex and detailed fault models [1]. Similar to
saboteurs, mutants require time consuming re-writing or
conversions, and therefore, mutant-based re-design can be-
come complex for large designs. SystemC-based external
signal manipulation for fault simulation has been carried
out in [6], showing attack based fault scenarios and using
fault insertion models more like mutant based designs.

2.2 Simulation Command

Simulation command-based approach, which is em-
ployed in this paper, is a powerful and minimum intrusive
way to inject faults via variable or signal manipulation [1].
Variable manipulation technique works by altering values
of variables, while signal manipulation technique works by
altering the value of signals in the system description. Con-
trolling the observation time different faults can be man-
ifested using such techniques. Signal manipulation tech-
nique in SystemC requires re-wiring abilities. Although,
new SystemC version 2.2 allows ports to be open during
runtime, unlike previous versions, dynamic re-wiring is still
not possible.

Recently, SystemC simulation command-based ap-
proach have been reported by [2, 3], which employ the
introduction of extra values within SystemC type sc logic
to control stuck-at-faults, which are sc logic A meaning a
stuck-at-1, sc logic B meaning a stuck-at-0, and sc logic R
meaning reset for stuck-at faults. However, in behavioural
models involving different variable and signal types, restric-
tion to only sc logic or its array type sc lv<N> may require
programming effort and conversions. Often such conver-
sions are not feasible for primitive types, such as float and
SystemC types, such as sc fixed<..>. Hence, simulation
command-based approaches [2, 3] for FI have limited ac-
cess to fault injection for such systems.

3 Proposed Fault Injection Technique

The proposed fault insertion technique has three major
components as shown in a prototype simulator in Fig. 1: the
database of possible fault locations, fault policy manager
(FPM) and finally and the fault injection manager (FIM).
The system clock is connected to the FIM (Fig. 1) to enable
fault injection over system timespace. Brief description of
each component follow.

Database of
fault locations

Auto Register
when Declared

Unregister when
Out of Scope

Clock

SystemC
Design

Descriptn
with

Proposed
Data/Signal

Types

Testbench or
Top-level
Module

distribution,
fault_type,
probability

Fault Injection
Manager

Fault Injection
Policy

Device Under Test and Testbench

Compile

Fault Free
Simulation

Faulty
Simulation

Simulate

Proposed SystemC Fault
Injection Modules

Figure 1. Proposed fault injection technique
in a prototype simulator

3.1 Database of Possible Fault Locations

The proposed FI technique works by automated creation
and update of database of possible fault locations, initiated
by replacing the original data and signal register types to
the FI enabler types shown in Table 3.1 (most commonly
used C++/SystemC types shown but other types are also
implemented). The FI enabler types (Table 3.1) have care-

Original types Fault injection enabler types
primitive type (int, bool etc.) Reg<primitive type>
sc logic LogicReg
sc int<N> IntReg<N>
sc bigint<N> BigIntReg<N>
sc lv<N> LogicVectorReg<N>
sc bv<N> BitVectorReg<N>

Table 1. SystemC/C++ types and corresp.
fault injection enabler types

ful and transparent implementation of their original types
such that their functions are kept intact. The FI enabler
types manages fault locations’ database by overloading the
initialisers (constructors) and de-initialisers (destructors) in
different scopes in the SystemC descriptions (Fig. 1). The
database contains type, fault and size specific information
with thread-safe update such that no mutually inclusive up-
dates are allowed. The SystemC definitions of proposed
Reg<primitive type> and IntReg<N>, which are equiva-
lent to primitive types and SystemC sc int<N> type, are
shown in Fig. 2. As shown in Fig. 2(a), for Reg<primitive
type>, the constructor function registers the address pointer
of the original type to a centralised list by calling its mem-
ber function registerInsert(..). Similarly, in Fig. 2(b), each
of the overloaded constructors of IntReg<N> registers ad-
dress pointers of value-holder variable m val. Both type
implementations have destructors that have function call to

//Reg.h
#define BYTE 8 //byte->bits
#define size(x) ((int) (sizeof(x) * BYTE))
template <typename T>
struct Reg{
 T reg;
 //Constructor
 Reg(T _reg = 0) {
 reg = _reg;
 FIMgr::getInstance().registerInsert
 ((void *) ®, size(reg), DATA_TYPE);
 }

 //Destructor
 ~Reg() {
 FIMgr::getInstance().registerDelete
 ((void *) ®);
 }
......
};

(a) (b)

//IntReg.h
template <int W>
class RegInt : public sc_int_base{

 //Constructors..
 IntReg():sc_int_base(W){
 FIMgr::getInstance().registerInsert
 ((void *) &m_val, W, DATA_TYPE);
 }
 IntReg(int_type v):sc_int_base(v, W){
 FIMgr::getInstance().registerInsert
 ((void *) &m_val, W, DATA_TYPE);
 }

 //Destructor
 ~IntReg(){
 FIMgr::getInstance().registerDelete
 ((void *) &m_val);
 }

};

Figure 2. SystemC definition of (a)
Reg<primitive type> as a replacement of
primitive types, (b) IntReg<N> as replace-
ment of SystemC sc int<N> type

registerDelete().. to de-register from the database, when the
scopes of these types are expired (Fig. 2).

Fault Policy
Manager
FIPolicy.h

GNU
Scientific

Library

void setFaultLength(long _fault_length)

int getProbabilityType()

void setProbabilityType(int _probType)

double getProbability()

void setProbability(double _prob)

long getFaultLength

void setFaultType(int fault_type)

long getFaultLocation

Figure 3. The fault policy manager

3.2 Fault Policy Manager

Fault policy manager (FPM) represents the second com-
ponent of the proposed FI technique (Fig 1) and controls
the location and probability of fault injection from the top-
level module or testbench. In Fig. 3, overview of FPM,
FIPolicy, is shown with some member functions. While set-
Probability(..) and setProbabilityType(..) set the probabil-
ity and its associated type for the fault injection, getFault-
Length(..) and getFaultLocation(..) return to the FIM the as-
sociated search length and fault location within the available
bit space within the list of data or signal registers as possible
fault locations. Different fault types (stuck-at, SEU, delay
or indetermination) can be set by setFaultType(..) and cur-
rent fault type can be returned by getFaultType(..). Random
number generation using different probability distribution is
managed with the help of GNU scientific library.

....//Header file inclusions
class FIManager: public sc_module{

 SC_CTOR(FIManager){

 SC_CTHREAD(insert_faults, clk.pos();
 }
 void insert_faults(){

 list<RegisterElement>::iterator listIterator;
 long loc_counter;
 while(true){
 wait();
 fault_length = currentPolicy.getFaultLength();
 fault_loc = currentPolicy.getFaultLocation();
 loc_counter = 0;
 for(listIterator = mylist.begin(); listIterator != mylist.end();){
 //Insert fault or clear it at fault_loc.....
 loc_counter+=(*listIterator).size_bits; listIterator++;
 if(loc_counter < fault_length && lisIterator == mylist.end())
 {wait(); listIterator = mylist.begin();}
 }
 }
 }

 FIPolicy currentPolicy; list<RegisterElement> mylist;
};
typedef Singleton<FIManager> FIMgr;

Figure 4. SystemC description showing fault
injection method for the FIM

3.3 Fault Injection Manager

Fault injection manager (FIM) is the third and main mod-
ule that interfaces with the FPM to inject faults within the
database of possible fault locations. In order to sample fault
insertion time into discrete fault probability in bitspace, sys-
tem clock of the top-level module/testbench is connected to
the FIM (for homogeneous, single-clock systems) by Sys-
temC statement

FIMgr::getInstance().clk(top_level_clock);.

SystemC description of the FIM module, FIManager, is
shown in Fig. 4 with main FI function insert faults. For sin-
gle or concurrent multiple fault injection or clearance, the
list of possible fault locations (mylist) is searched for given
search length (fault length) and fault location, (fault loc),
fed back by the FPM (Fig. 4). For all search lengths, the
search space is translated in the available bit space by N
simulation clock cycles (with N − 1 wait cycles, followed
by an iteration cycle), which is given by

N = 1; search length ≤ list size in bits

= � search length

list size in bits
�; otherwise.

This gives one list iteration within the fault locations’
database per clock cycle for single fault injection or two
list iterations for two faults’ injection and so on. The reg-
isters in the list within the database, mylist, are converted

to their original types and size within the FIM and different
types of faults are implemented with appropriate operations
replaced in bold commented place in insert faults (Fig. 4).
A list of possible faults (temporary and permanent) and
necessary parameters and actions needed are shown in Ta-
ble 3.3. For simplicity, symbol for each parameter is used:
L meaning search length, r meaning fault loc, τ meaning
fault duration and r′ meaning approx fault loc.

Fault types Fault injection technique
Stuck-at-fault A bit at r in L is changed to ’1’ or ’0’ for stuck-

at-1 or stuck-at-0 faults for τ cycles (if temporary)
or indefinitely (if permanent)

Bit-flip/SEU A bit at r in L is XORed with ’1’ for one clock
cycle duration

Delay Original SystemC wait() statements are replaced
by wait(N) statements, where N is registered in
the fault database. A bit close to r′ in L is bit
flipped for such types

Indetermination A logic type value close to r′ in L is changed from
’Z’ to ’X’ for τ cycles (if temporary) or indefi-
nitely (if permanent)

Table 2. Fault types and injection techniques

4 Motivations and Comparisons

In this section, we demonstrate the capabilities of the
proposed FI technique and compare it with saboteur, mu-
tant and simulation command-based approach (such as [3]).
Using the motivational SystemC example setup, the follow-
ing comparisons are carried out.
Comparison 1: Simplicity and Intrusiveness

Inclusion of saboteurs or mutating behavioural descrip-
tions in saboteur or mutant-based approaches require direct
intrusion into the description and are not suitable for higher-
or mixed-level systems (Sec. 2.1). The proposed tech-
nique employs powerful simulation command-based ap-
proach and can be applied to a design with minimum in-
trusion, similar to [3]. To demonstrate and facilitate com-
parison of simplicity and intrusion, first a block diagram of
a synchronous 8-bit counter and a SystemC description of
the same is presented in Fig. 5(a) and Fig. 5(b). SystemC
descriptions using [3] and our proposed technique are pre-
sented in Fig. 6(a) and Fig. 6(b).

Using observational comparison among the SystemC de-
scriptions in Fig. 5 and 6, it can be seen that the pro-
posed technique (Fig. 6(b)) requires replacement of origi-
nal types bool and sc uint<8> (Fig. 5(b)) to their equiv-
alent FI enabler types (from Table 3.1) Reg<bool> and
UIntReg<8> (marked block 1 in Fig. 5(b)), requiring in-
clusion of proposed type definitions’ header file FIReg.h
(marked block 2 in Fig. 5(b)). The simulation command-
based approach [3] requires these types to be converted to
sc logic and sc lv<8> (Fig. 6(a)) and using the extra types

8-bit counter

re
s

e
t

e
n

a
b

le

c
lo

ck

8-bit counter output

SC_MODULE (counter8bit) {
 sc_in_clk clock ;
 sc_in<bool> reset, enable;
 sc_out<sc_uint<8> > counter_out;
 sc_uint<8> count;

 void incr_count() {
 while(true){
 if (reset.read() == 1) {
 count = 0; counter_out.write(count);
 }
 else if (enable.read() == 1) {
 count = count + 1;
 counter_out.write(count);
 }
 wait();
 }
 }

 SC_CTOR(counter8bit) {
 SC_THREAD(incr_count);
 sensitive << reset << clock.pos();
 }
};

(a) (b)

Figure 5. (a) Block diagram of a sync. 8-
bit counter, and (b) SystemC description of
a sync. 8-bit counter

(Sec. 2.2) to inject faults from testbench or top-level mod-
ule. Such conversion require extra programming effort as
shown in marked block 2 in Fig. 6(a) to keep the function-
alities similar.
Comparison 2: Fault Representation and Capabilities

Simulated FI approaches rely on perturbation of regis-
ters. These approaches are based on the fact that faults
at the hardware level are propagated towards registers at
higher abstraction levels (in data or signal registers), often
referred to multiplicity. Although the effect of faults in the
inaccessible registers is not negligible but it scales much
in the similar way as the architected higher level registers
that appear in HDL descriptions [9]. A desirable feature
of a simulated FI technique is to have access to all visi-
ble data and signal registers of a model description for bet-
ter fault access and representation [1]. Saboteurs and mu-
tants, as described in Sec. 2.1, have poor access to vari-
able manipulation and requires expensive re-design using
manual or behavioural mutation to introduce fault injection.
Simulation command-based approach [3] restricts types to
sc logic and sc lv<N> only and has disadvantages as fol-
lows. Firstly, he value space in [3] increases to seven values
from four (Section 2.2), with default value to ’X’. To avoid
undesired initialisations in SystemC sc start(..) needs to be
replaced by sc initialize and sc cycle (to control simulation
cycles). Our proposed technique keeps the value space un-
changed by simple replacement of types (Table 3.1). Sec-
ondly, original types, such as int[], float[] etc. and sc logic
or sc lv<N> are not always directly compatible with each
other and often require manual code modifications and in-
trusions (such as, marked block 2 in Fig. 6(c)).

#include “fim/FIReg.h”
SC_MODULE (counter8bit) {
 sc_in_clk clock ;
 sc_in<Reg<bool> > reset ;
 sc_in<Reg<bool> > enable;
 sc_out<UIntReg<8> > counter_out;
 UIntReg<8> count;

 void incr_count() {
 while(true){
 if (reset.read() == 1) {
 count = 0; counter_out.write(count);
 }
 else if (enable.read() == 1) {
 count = count + 1;
 counter_out.write(count);
 }
 wait();
 }
 }

 SC_CTOR(counter8bit) {
 SC_THREAD(incr_count);
 sensitive << reset;
 sensitive << clock.pos();
 }
};

(a) (b)

1

2

SC_MODULE (counter8bit) {
 sc_in_clk clock ;
 sc_in<sc_logic> reset ;
 sc_in<sc_logic > enable;
 sc_out<sc_logic > counter_out;
 sc_lv<8> count;

 void incr_count() {
 while(true){
 if (reset.read() == 1) {
 count = 0; counter_out.write(count);
 }
 else if (enable.read() == 1) {
 count = count.to_int() + 1;
 counter_out.write(count);
 }
 wait();
 }
 }

 SC_CTOR(counter8bit) {
 SC_THREAD(incr_count);
 sensitive << reset;
 sensitive << clock.pos();
 }
};

1

2

Figure 6. SystemC descriptions of (a) a Sync.
8-bit counter using [3], and (b) a Sync. 8-bit
counter using proposed technique

The proposed FI technique can simulate major fault
types, including SEUs, stuck-up faults, (Sec. 3.3). It can
carry out directed or non-directed fault injection. For direct
fault injection into a target signal and data register, first the
location of the register in the list is obtained by

long loc = FIMgr::getInstance().getLocation
(DUT.target_register.get_ptr());

and fault location is set manually by

FIMgr::getInstance().setFaultLocation(loc);.

For non-directed fault injection, the member functions of
FPM, setProbability(..) and setProbabilityType(..) are used
within the testbench as described in Sec. 3.2 to access differ-
ent fault types and their associated probabilities from test-
bench. Similar non-directed SystemC-based FI technique
using saboteurs is reported in [4]. Fault injection technique
in [3] can employ direct method only.
Comparison 3: Speed of Simulation

Speed of simulation is often used as a benchmark for
simulator performance [9]. A D-type flip-flop (DFF) and
a synchronous 8-bit counter were designed and simulated
along with their testbenches using saboteur, mutant, simu-
lation command-based approach [3] and the proposed tech-
nique for fault injection. The SystemC simulation times
recorded as average elapsed time on RHEL 2.6.9-42 with
Intel Pentium-4 CPU at 3.20GHz clock speed and 1GB
RAM are shown in Fig. 7 for the following four cases:
i) DFF for 5 SEUs/10000 clock cycles, ii) 8-bit counter
for 5 SEUs/10000 clock cycles, iii) DFF for 5 stuck-at-0

Case−1 Case−2 Case−3 Case−4

0.5

1

1.5

2

2.5

3

3.5

S
im

u
la

ti
o

n
 T

im
e

(m
s)

Saboteur

Mutant

Sim. Command([3])

Proposed Technique

Figure 7. Comparison of simulation speed for
fault simulation techniques

faults/10000 clock cycles, and iv) 8-bit counter for 5 stuck-
at-0 faults/10000 clock cycles. As shown in Fig. 7, the pro-
posed technique has less simulation times than saboteurs
and mutant based FI techniques by on average 12.76% and
25.42%, respectively for four test cases. The proposed tech-
nique and simulation command-based approach [3] have
comparable simulation times with only 1.75% higher simu-
lation time on average due to dynamic list building in pos-
sible fault locations’ database.

5 MPEG-2 Decoder

In this section, we set up an MPEG-2 decoder to vali-
date fault injection (SEUs only) abilities using the proposed
technique (Fig. 1). Due to type restrictions, such setup is
not feasible by [3] (Sec. 2.2). To the best of our knowledge,
no such setup using SystemC-based FI methods have been
reported previously.

A cycle-accurate behavioural SystemC model for
MPEG-2 video decoder was developed following [11]. To
enable fault injections, all primitive C++ or SystemC data
and signal types were replaced by FI enabler types (Ta-
ble 3.1). Due to automatic registration and de-registration
(Sec. 3.1), the list size (i.e. the sum of all register sizes
within the database of possible fault locations) varies and is
averaged over total simulation time of 41928 clock cycles as
49323 bits. Constants within pre-processor directives can-
not be included by the proposed technique, which sum up as
a approximate total of extra 568 bits. As such, up to 98.9%
of visible and on-the-fly registers can be subjected to fault
injection within MPEG-2 video decoder, giving it very high
fault access and representation.

Different simulations were carried out with varied fault
probabilities with uniform distribution within the bitspace
for injecting SEUs within registers and memories of Sys-
temC MPEG-2 decoder description. The simulations were
recorded on Intel Pentium-4 CPU clocked at 3.20GHz sys-
tem with 1GB RAM running SystemC on RHEL 2.6.9-42 to

0 0.2 0.4 0.6 0.8 1

x 10
−4

0

2

4

6

8

10
x 10

4

Fault Probability

N
o

 o
f

F
au

lt
s

In
je

ct
ed

(a)

0 0.2 0.4 0.6 0.8 1

x 10
−4

0

50

100

150

200

250

Fault Probability

S
im

u
la

ti
o

n
 T

im
e

(m
s)

(b)

0 1 2 3 4 5 6 7 8

x 10
4

0

50

100

150

200

250

Faults Injected

S
im

u
la

ti
o

n
 T

im
e

(m
s)

(c)

Figure 8. (a) Fault probability against total faults injected, (b) Fault probability against simulation
time (ms), and (c) Faults injected against simulation time

decode a video with 3 frames and 93 encoded macroblocks
with picture size of 252 × 288 pixels. The recorded to-
tal SEUs injected and simulation times (as CPU elapsed
time) with varied fault probability are shown in Fig. 8(a)
and Fig. 8(b). The total injected SEUs with correspond-
ing simulation times is shown in Fig. 8(c). No more than
(1 × 10−4) could be carried out due to early termination of
application caused by faults injected.

It can be seen from Fig. 8(a) that the total SEUs injected
varies almost proportionately with fault probability due to
conversion of fault probability in bitspace into timespace
(Sec. 3.3). However, the simulation times increase sharply
(from 5ms to 50ms) when injected faults increase from 0
to 201 corresponding to fault probability increase from 0
to 5 × 10−7 (Fig. 8(a) and (b)). As the fault probability in-
creases, the simulation times gradually saturate due to faults
injection on almost every clock cycle (Fig. 8(b)). Refer-
ring to Fig. 8(c), a total of 52371 and 87682 SEUs were in-
jected over 41928 clock cycles with corresponding simula-
tion times of 181ms and 217ms, respectively. The increase
in the simulation times from fault-free case to faulty cases
are generally expected and in this case the search times of
fault locations in the list are also included. The simulations
times are still low (in the order of ms) with the given ad-
vantage of 98.9% fault representation, minimum intrusive
design by simple change of data types (Table. 3.1).

6 Conclusions

We have presented a new SystemC-based FI technique
with improved fault representation using replacement of the
original C++/SystemC types by proposed FI enabler types.
In doing so the the functions are kept intact and design mod-
ifications are kept simple and less intrusive. Using example
circuits, we have shown that the proposed technique has less
or comparable simulation times as recently reported tech-
niques. An MPEG-2 decoder based experimental setup is
also presented to demonstrate the fault injection capabili-
ties of the proposed technique in a high-level behavioural
system. We have shown that our technique has 98.9% fault

representation, acceptable speed of simulation and requires
less modification to enable fault injection.

Acknowledgment

The authors would like to thank the EPSRC (UK) for funding this re-
search in part under grants EP/C512804/1 and EP/035965/1.

References

[1] J. Gracia, J. Baraza, D. Gil, and P. Gil, “Comparison and Applica-
tion of Different VHDL-based Fault Injection Techniques,” in Pro-
ceedings of the IEEE DFT’01, San Francisco, CA, USA, 2001, pp.
233–241.

[2] S. Misera, H. T. Vierhaus, L. Breitenfeld, and A. Sieber, “A Mixed
Language Fault Simulation of VHDL and SystemC,” in Proceedings
of DSD, 2006, pp. 275–279.

[3] S. Misera, H. Vierhaus, and A. Sieber, “Fault Injection Techniques
and Their Accelerated Simulation in SystemC,” in Proceedings of
DSD, Aug. 2007, pp. 587–595.

[4] A. Fin and F. Fummi, Languages for System Specification. Springer
US, 2004, ch. LAERTE++: An Object Oriented High-Level TPG for
SystemC Designs.

[5] K. Chang and Y. Chen, “System-level Fault Injection in Systemc De-
sign Platform,” in Proceedings of 8th International Symposium on
Advanced Intelligent Systems (ISIS), 2007.

[6] K. Rothbart, U. Neffe, C. Steger, R. Weiss, E. Rieger, and
A. Muehlberger, “High Level Fault Injection for Attack Simulation
in Smart Cards,” in Proceedings of the ATS’04, Nov. 2004, pp. 118–
121.

[7] G. Beltrame, C. Bolchini, L. Fossati, A. Miele, and D. Sciuto,
“Resp: A Non-intrusive Transaction-level Reflective MPSoC Sim-
ulation Platform for Design Space Exploration,” in Proceedings of
IEEE ASPDAC, 2008, pp. 673–678.

[8] A. Castelnuovot, A. Fin, F. Fummi, and F. Sforza, “Emulation-based
Design Errors Identification,” in Proceedings of the IEEE DFT’02,
2002, pp. 365–371.

[9] P. Gil, H. Madeira, and J. Arlat, “Fault Representativeness,” LAAS-
CNRS (France), Tech. Rep., 2002, project funded by the European
Community under the IST Programme (1998-2002).

[10] J. Baraza, G. J., D. Gil, and P. Gil, “Improvement of Fault Injec-
tion Techniques based on VHDL Code Modification,” in Proceed-
ings of Tenth IEEE International High-Level Design Validation and
Test Workshop, 2005, pp. 19–26.

[11] ISO, “ISO/IEC 13818-2: 1995 (E),” http://www.iso.org.

