
Accelerating Post Silicon Debug of
Deep Electrical Faults

Bao Le, Dipanjan Sengupta, Andreas Veneris, Zissis Poulos
University of Toronto, ECE Department, Toronto, ON M5S 3G4

({lebao, dipanjan, veneris, zpoulos}@eecg.toronto.edu)

Abstract—With the growing complexity of current designs and
shrinking time-to-market, traditional ATPG methods fail t o detect
all electrical faults in the design. Debug teams have to spend
considerable amount of time and effort to identify these faults
during post silicon debug. This work proposes off-chip analysis
to speed-up the effort of identifying hard-to-find electrical faults
that are not detected using conventional test methods, but cause
the chip to crash during functional testing or silicon-bring-up.
With the goal of reducing the search space for reconstructing
the failure trace path formal methodology is used to analyze
the reachable states along the path. Isolating the root cause
of failure is also accelerated. Moreover, we propose a forward
traversal technique on a selected few possible faults to generate
a complete failure trace starting from the initial state to the crash
state. Experimental results show that the proposed approach can
significantly reduce the actual silicon run thereby reducing the
overall debug time.

I. I NTRODUCTION

Advancement of technology allows millions of logics gates to
be integrated in a single chip. ATPG algorithms generate test
vectors for each fault at the gate-level model of the circuit.
Although this methodology has high fault coverage, current
designs have large number of faults to be tested. Moreover,
the algorithm complexity makes this process time consuming
and expensive[]. The shortcomings are even more acute when
sequential ATPG algorithms are used to identify the electrical
bugs that require multiple cycles to be detected. Thus deep
electrical bugs - triggered only at extreme sequential depth -
often escape the manufacturing test step but cause the chip
to crash after few seconds of execution. Once a failure is
observed, additional validation step, post silicon debug,is used
to locate the design defects. The process of identifying these
bugs is painstakingly slow and takes more than half of the chip
development cycle[][][][]. In this paper we propose a novel
technique to reduce the debug time for diagnosing these bugs
by augmenting off-chip analysis for reconstructing the path
from initial state to the crash state.

In [], a post silicon debug technique is proposed to identify
such bugs. Starting from the crash state, [] traverses the failing
trace backwards towards the initial state. The possible setof
faults are pruned during this process. Fig. 1 shows the overall
methodology. Although the actual time to run the chip can
be in the order of a few seconds, performing reachability
analysis for each state requires the verification engineer to run
the chip multiple times. This is a very slow process negating
the effectiveness of the approach. Building on the previous
work on FD BackSpace, this paper reduces the time required
to identify a small set of electrical faults that can cause the
chip to fail.

In general deep electrical bugs cause the chip to malfunction
after executing millions of cycles. Generating test cases for
such bugs require months of simulation on server farms.
However, actual silicon run is several orders of magnitude
faster requiring few seconds to trigger the error in the design
thereby leading to the crash state. Unlike during pre-silicon
verification, the accessibility and visibility of internalsignals
are very limited in post-silicon debug and hence this is the
major challenge in the validation and debug of first silicon.
In [] trace buffersis proposed to store the values of selected
signals for multiple clock cycles. A binary-search-based debug
method [12] iteratively divides the search space in half until the
method identifies the first cycle in which the error is activated
and observed. All of these techniques address the observability
problem and can enhance off-chip analysis presented in this
paper.

This paper describes a technique that combines formal methods
with on-chip support logic to identify the root cause of the
failure. The off-chip analysis extracts information from the
crashing state that results in reduction of the number of actual
silicon runs. In particular, the contributions are as follows:

• We propose a formal technique to analyze the possible
states in the failure trace path. Rather than running
the chip to determine the reachability of each possible
state, we perform off-chip analysis to determine if a
state can exist on the failure trace path. This reduces
the number of silicon runs as well as constraints the
state space search.

• Assuming deterministic system behavior[], the algo-

rithm quickly reduces the number of possible faults by
identifying failure paths that do not match the actual
execution of the chip.

• In addition to backward traversal along the failure
trace path, as proposed in [], this work proposes
forward traversal technique that further reduces the
actual silicon runs. This additional analysis also helps
in reducing the overall debug time.

Experiments on the ITC’99 benchmarks demonstrate the ef-
fectiveness of our approach. On average the number of silicon
runs were reduced by X%. This can be translated to shorter de-
bug time. The rest of the paper is organized as follows. In Sec-
tion II provides the background information and the introduces
the notations used in the rest of the paper. Sections III, IV
and V presents the three off-chip analysis techniques that
reduce the debug time. Experimental results are presented in
Section VI followed by conclusions in Section VII.

II. PRELIMINARIES

A. Notation and Basic Definitions

We model the fault-free circuitC as a finite state machineM ,
with S latches,I inputs,O outputs, initial statesI ⊆ 2S , and
transition relationδ ⊆ 2S × 2I × 2S . An execution path (run)
on M is a finite sequence of statesπ = s0s1s2 . . . sn, where
n ∈ N. A crash stateis a state of the chip where a bug is
observable (e.g., a system hang). A pathsisi+1 . . . sn is said
to be a valid trace leading to the crash state ifsn is the crash
state and for eachsj , i ≤ j ≤ n − 1, sj is a predecessor of
sj+1 and reachable from the initial state.

A signatureof a states ∈ Q is a projection ofs onto a set of
latchesSig ⊆ L, i.e., in this paper, we consider a signature to
be just a subset of the bits of a state.

For any nodeg, we denote byfanout(g) and fanin(g) the
set of fan-out and fan-in nodes ofg, respectively.

For any fault-free nodeg, the variable,̄g, denotes its faulty
counterpart. We denote bȳC a faulty circuit. To simplify our
exposition, we will assume a single-stuck-at fault model: the
notation ḡ(0) (̄g(1)) refers to a stuck-at-0 (stuck-at-1) fault at
nodeg. However, our method works for any fault model that
can be modeled using the SAT-based technique described next.

B. Fault Modeling

Similar to [], we use the SAT-based fault-modeling technique
introduced by we augment the model of the fault-free circuit
C (henceforth,C’) by adding amuxat the output of each gateg.
Eachmuxhas onefault-selectand onesignal line. We denote
the set offault-selectlines byE = {e1, e2, . . . , en} and the
set of correspondingfault-signal lines byW =
{w1, w2, . . . , wn}, wheren = |G|. By settingei = 1, the node
gi is disconnected fromfanout(gi), andwi is connected to
every nodegj ∈ fanout(gi).

This modeling framework allows us to disconnect any input
of a gate from the circuitC and force and arbitrary faulty
value instead. For example, for the single-stuck-at fault model,
we would constrain that exactly oneei = 1 (which enforces
“single”), we would assign the correspondingwi to be 0 (1)
for stack-at-0 (stuck-at-1), and we would not allowei or wi to
change in different time-frames (which enforces “stuck-at”).

b

a g

g

g

e

w3
e

w2

e

ew

w1

1 2

443

1
2

43 g

x’

y’

y

x

(c)

D

Q

Q

a

b

x

y

gg
1

g
3

2 D

4
g

s−a−1

x’

y’

y’

x’
D

D

Q

Q

a

b

x

yg g

g g
2

3

1

4

(a)

(b)

Fig. 1. Sequential Circuit (a) fault-free (b) faulty (c) added hardware

For example, consider the sequential circuit in Fig. 1(a). A
possible faulty version is in Fig. 1(b), where as-a-1 fault is
present ing2. Fig. 1(c) shows the augmented circuit with a
set ofmuxesused to model each fault. (For space reasons, the
latches have been removed in Fig. 1(c).) The fault is modeled
by setting fault-select linee2 = 1 with all other ei = 0, and
fault-signal linew2 = 1.

Bao: write some text about modeling the circuit using SAT
modelTo communicate with the SAT solver,C is encoded in
Conjunctive Normal Form (CNF) using Tseitin transformation
with the use of auxiliary variables

C. FD-BackSpace

Since the proposed off-chip analysis is based on the FD-
BackSpace framework, we briefly review the debug-flow here.
For complete presentation we refer to []. FD-Backspace
framework starts from the observed bug sighting (e.g. crash
state)(sn) and goes backwards towards the initial states, con-
sidering only the faults that are relevant to possible execution
to the actual bug. Initially the possible fault set consistsof
all the possible faults in the circuit. Using formal analysis of
the corresponding RTL (or other model), we compute the set
of predecessor-candidates (P) of the crash state. If the fault
cannot exist under the crash state, then the thenP is empty
and we remove the corresponding fault from the possible fault
set. If P is non-empty, we load each predecessor state into a
breakpoint circuit on the chip. Starting from the initial state
(s0) the chip is run full-speed and stops at the breakpoint state
if the state exists in the failure trace path. The predecessor
state is considered to be invalid if the chip does not reach
the breakpoint state before reachingsn. If a valid predecessor
state is observed then it is considered as possible trace path
from the s0 to sn under a given fault condition. As the

algorithm traverses through the state space, the possible fault
list is pruned. This framework was able to reduce the possible
fault set to a handful of faults that can be further analyzed to
diagnose the root cause of failure.

III. PREVIOUS STATE ANALYSIS

We start this section by formally defining unreachable states.
A light-weight technique to detect unreachable states is then
presented.

Definition 1: Given a circuitC, a traceπ is a finite sequence
of statesπ = s0s1 · · · sn wheren ∈ N such thats0 is an initial
state and each pair{si, si+1} in π is a legal transition inC.

Definition 2: Given a circuitC, a states is said to be un-
reachable if and only if there does not exist a traceπ such
that π = s0s1 · · · s.

Lemma 1:Given a circuitC, if a states is unreachable then
for all π = s0s1 · · · s, there exists a pair{si, si+1} that is not
a legal transition inC

Proof: From Definition 2, it is trivial that if s is an
unreachable state then all sequenceπ = s0s1 · · · s is not a
trace. From Definition 1, a sequence is not a trace when there
exists a pair{si, si+1} that is not a legal transition inC.

Theorem 1:Given a circuitC, a states is unreachable if and
only if for all reachable statesr, the pair{sr, s} is an illegal
transition inC.

Proof:
→ direction:
Assume there exists a reachable statesr that can reachs , a
traceπ is constructed such that it starts with an initial state
s0, gets tosr and finally reachess. Becausesr is reachable,
all pairs from s0 to sr are legal transitions inC. Hence,
πr = s0, s1, · · · sr, s is a trace ands is reachable. This is
a contradiction and thus, there does not exist such reachable
statesr.
← direction:
Consider an arbitrary sequenceπ = s0s1 · · · ss. If the last state
befores is reachable then the last pair is an illegal transition
from the assumption and thusπ is not a trace. If the last state
befores is unreachable, thenπ is obviously not a valid trace.
Therefore,s is unreachable.

In order to prove a states is unreachable, one can prove
that all sequenceπ = s0s1 · · · s contains at least one pair
{si, si+1} that is a illegal transition (Lemma 1) or prove thats
cannot be reached from any reachable state (Lemma 1). These
methods however require tremendous amount of work and are
not feasible in practice. In this work, a light-weight method to
verify whether a states is unreachable is proposed. The next
section describes the method and proves its correctness.

A. Unreachable State Identification

Theorem 1 provides an approach to verify whether a states is
unreachable. However, finding the complete set of reachable
statesR is a difficult task []. The following corollary of The-
orem 1 shows how we abstractR and simplify the verification
problem of an unreachable state.

Corollary 1: Given a circuitC and the setS whereS is an
abstraction of the set of reachable states, if for all statesi ∈ R
the pair{si, s} is an illegal transition thens is unreachable.

Proof: As S is an abstraction ofR, it must contain all
reachable statesr. Becausesr ∈ R, {sr, s} is an illegal
transition inC. From Theorem 1, the fact that all{sr, s} is
illegal indicates thats is unreachable.

It is essential to note that the opposite statement of Corollary 1,
”if there exists a statesi such that pair{si, s} is a legal transi-
tion in C, s is reachable ” is not true. This is becauseS is just
an abstraction ofR and hence may still contains unreachable
states. The states is reachable only ifsi is reachable, which
cannot be confirmed without further investigation.

From Corollary 1, a states can be verified as unreachable by
answering the question: is there any state that can transition
to s givenC? This question can be encoded as a SAT query.
In this SAT query, the next-state signals are constrained ass
while present-state signals are left unconstrained, and the SAT
solver is asked to find a solution on the present-state signals.
If there is a solution (SAT), no conclusion can be drawn on
s. If there is no solution (UNSAT), s is unreachable.

In the SAT query, we leave the present-state signals uncon-
strained so that the SAT solver can find a solution in the set of
all states, which of course is an abstraction ofR. Nevertheless,
this solution space can be reduced while still maintain the
property as an abstraction ofR. Specifically, if a states is
already found unreachable,s can be safely removed from the
solution space. This is accomplished by simply forcing the
solver to return a solution that is different froms. As the
number of unreachable states found grows, this optimization
becomes more powerful as it does not only reduce the search
space for the solver but also prevents the case where an
unreachable state is not detected due to spurious solutions.

0

0 0

0

1

1

1

a g

g

g

e

w3
e

e

ew

w1

1 2

443

1
2

43 g

x’

y’

x

y

w
2

b

Fig. 2. Unreachable State Example

Example 1:Consider the example in Figure 2. The next-state
signalx′ is constrained to 0 andy′ is constrained to 1. In this
example, the circuit is also assumed under a stuck-at-1 fault
at gateg2. We want to find a present-state, an assignment
on x and y, such that it would satisfy the next-state< 0, 1 >.
Unfortunately, there are no values onx andy that can alternate
the stuck-at-1 fault at gateg2. This implies that there is no state
that can transition to< 0, 1 >; hence< 0, 1 > is unreachable
under the stuck-at-1 fault atg2. Using the same argument,
< 0, 1 > is also unreachable under the stuck-at-0 fault atg4.

Algorithm 1 depicts the process of identifying an unreachable
state. Given a circuitC, a fault p and a states, the function
returns whethers is unreachable underp. First, a CNF presen-
tation of circuitC with the assumption of faultp is constructed

Algorithm 1: Unreachable State
input : circuit C
input : fault p
input : states
output: bool unreachable

1 φ← CNF (C, p);
2 φ← ConstrainNext State(s);
3 if Solve (φ) = SAT then return false;
4 else return true;

(line 1). Next, the next-state signals of the CNF instance are
constrained tos (line 2). Then, the CNF instance is sent to the
SAT solver. If there is a satisfying assignment,s is reachable
and hence the algorithm returns false (line 3). Otherwise, the
algorithm returns true indicatings is unreachable underp
(line 4).

IV. PATH ANALYSIS

In this section, a technique to prune out suspect faults early in
the run of FD-BackSpace is presented. This technique is based
on the consistency between a fault and the chip’s behavior.

Recall that in the FD-BackSpace framework, if under the
assumption of a faultp, a states has no predecessors, it is
ignored and the algorithm continues to analyze faultp. In
this case, the algorithm is conservative and assumes that the
states is not in the plausible path. This is sensible as proved
in Section III, if a states has no predecessor-states, it is
unreachable under the faultp. Though,s is unreachable under
p does not imply that it is unreachable under other faults. This
scenario is illustrated in Example 2.

0

n

0

0

0

0
0

0

n

n

n
n+1

n+1

1

g
2

(a)

g
1

g
3 4

g

x

g
2

(a)

g
1

g
3 4

g

x

a

b

b

a

s−a−0

s−a−0
x

y

y

y

Fig. 3. Crash State and Initial State Example

0

0

0 0

0

1

0

10

0

a g

g

g

e

w3
e

e

ew

w1

1 2

443

1
2

43 g

x’

y’y

w
2

xb

Fig. 4. Plausible Path Example

Example 2:Consider the scenario in Figure 3 where a faulty
circuit is returned with a crash state and an initial state. In this
case, the crash state is< 0, 1 > and the initial state is< 0, 0 >.
Now let us assume that the real fault is a stuck-at-0 at gateg2.
We have proved that the state< 0, 1 > is unreachable under

the faults, stuck-at-1 at gateg2 and the stuck-at-0 at gateg4. If
the fault is stuck-at-0 at gateg2, the state< 0, 1 > is actually
reachable from the initial state< 0, 0 >. Figure 4 shows a
plausible path for the fault stuck-at-0 at gateg2. In this case,
< 0, 1 > is actually observed as the crash state and that refutes
stuck-at-1 at gateg2 and the stuck-at-0 at gateg4 as possible
faults.

Now what if a states is observed during a chip-run; this
observation indicates thats should be reachable under the real
fault. As a result, ifs is observed and it is unreachable under
a fault p, p cannot be the real fault and is invalidated as a
possible fault. Algorithm 2 shows how to invalidate a fault
p using this technique. Given a states that is unreachable
under faultp, a timeout and an initial stateQ0, the function
returns whetherp is an invalid fault. This function runs the
chip to find if s can be observed (line 2). This is accomplished
by using the original BackSpace framework. Ifs is observed,
the function returns false indicating thatp is an invalid fault;
otherwise, true result is returned (line 3- 4). This technique
although requires additional chip-runs has the ability to prune
out spurious faults that can not be detected by the original
FD-BackSpace framework.

Algorithm 2: Invalid Fault
input : fault p
input : set initial stateQ0, states
input : timeout
output: bool invalid fault

1 // s is unreachable under p
2 Run Chip(Q0, s, timeout);
3 if s is observedthen return false;
4 else return true;

V. FORWARD TRAVERSAL

This section proposes a simple heuristic to reduce the number
of SAT calls in FD-BackSpace. This heuristic utilizes the fact
that simulation is much faster than a formal engine.

In FD-BackSpace, a faultp is considered possible if under the
assumption ofp, there is a plausible path from a reachable
state to the crash state. To find such path, the algorithm
traverses from the crash state until it reaches a reachable state.
During our analysis, we realize that the set of reachable states
usually just contains one initial state. This of course hinders
the traversal process as it is difficult to reach that one state.
To tackle this problem, we use a fast simulation to find more
reachable states.

Specifically, under the assumption of a faultp, we simulate
the design from the initial state and collect states. As these
states are simulated from the initial state, they are reachable
and hence can be added to the set of reachable states. To reduce
overhead, a timeout is set. Algorithm 3 shows the technique in
detail. Given a circuitC, a faultp and a set of initial statesQ0,
we expand the set of reachable states underp. First, a timeout
is set to one second. Next, the circuit with the assumption of
fault p is simulated until timeout is reached (line 3). During
the simulation, a log file is utilized to store the state in each
clock-cycle. Every state in the log file is then added to the set
of reachable states (line 5).

Algorithm 3: Reachable State Set Expansion
input : circuit C
input : fault p
input : initial stateQ0

output: reachablestates

1 // assign timeout to 1 second
2 timeout← 1;
3 log← Simulate(Q0, timeout) ;
4 foreach s ∈ log do
5 reachablestates← s ;
6 end

A. The Updated FD-BackSpace Algorithm

In this section, we present the updated algorithm of FD-
BackSpace after integrating techniques mentioned in previous
sections.

Algorithm 4 takes in the circuitC, the set of initial states
Q0, the crash statesc, a timeout and the set of initial faults
G. At the end of its computation, this algorithm returns the
set of possible faultsF . The setGi is used to store invalid
faults (line 1). For each fault,Sv, Suv, Sr Sur are sets of
visited states, unvisited states, reachable states, unreachable
states, respectively. To expand reachable state set for a fault
p, a function ExpandReachableState Set is called (line 5).
Moreover, for each fault, two Boolean variablesvalid and
invalid are employed to keep track of its status (line 7- 8).
The loop is terminated when the faultp is proved to be invalid
or valid (line 11). IfSuv is empty,p is an invalid fault as all
states found during traversal are proved unreachable (line12).
When p is proved invalid, it is added toGi (line 13- 14). At
each iteration, a states at the top ofSuv is analyzed (line 17).
If s is reachable from an initial state,p is a possible fault
and it is added toF (line 19- 21). Otherwise, it is tested on
unreachability (line 23). If it is unreachable but observedin a
chip-run,p is marked as invalid fault (line 25). However, if it
can only be unreachable, it is added toSur (line 28). When
an unreachability test cannot draw any conclusion ons, the
algorithm attempts to go back further. All predecessors ofs
are found using the SAT solver (line 33). For each predecessor
states′, it is carefully tested before added toSuv (line 37).
First, s′ must be different from all found unreachable states,
s′ /∈ Sur, and is not visited before,s′ /∈ Sv (line 35). Moreover,
s′ must be observed during a chip-run (line 37). These tests
assure thats′ has not been encountered before and it is a real
state appearing in a chip-run.

VI. EXPERIMENTAL RESULTS

This section presents the experimental results of the proposed
framework. The presented techniques are implemented on top
of the original FD-BackSpace framework from.All experiments
are run on an Intel Core i5 3.1 GHz quad-core workstation
with 8 GB of RAM. To interface with the original BackSpace
framework, all circuits are synthesized using the BackSpace’s
cell library. We use Synopsys Design Compiler Version Y-
2006.06-SP2 and Synopsys VCS Version A-2008.09 as our
compiler and logic simulator, respectively.

Ten ITC’99 benchmark circuits are used in our experiments.
After a circuit is synthesized, a gate-level netlist is obtained.

Algorithm 4: The Updated FD-BackSpace Algorithm
input : circuit C
input : set of initial statesQ0, crash statesc
input : timeout
input : set of initial faultsG
output: final set of possible faultsF

1 set of invalid faultsGi;
2 foreach fault p ∈ G do
3 set of visited statesSv unvisited statesSuv;
4 set of reachable statesSr unreachable statesSur;
5 Expand ReachableState Set(C, p, Q0, Sr);
6 current states;
7 bool invalid= false;
8 bool valid = false;
9 Suv ← sc;

10 Sr ← Q0;
11 while valid 6= invalid do
12 if Suv is emptythen
13 invalid← true;
14 Gi ← p ;
15 end
16 else
17 s← Suv.top();
18 Sv ← s;
19 if s ∈ Sr then
20 valid ← true ;
21 F ← p ;
22 end
23 else if UnreachableState(C, p, s) then
24 if Invalid Fault(p, Q0, s, timeout)then
25 invalid← true;
26 Gi ← p ;
27 end
28 Sur ← s ;
29 end
30 else
31 φ← CNF (C, p);
32 φ← ConstrainNext State(s);
33 while Solve(φ) = SAT do
34 s′ = Solve(φ) ;
35 if (s′ /∈ Sv) ∧ (s′ /∈ Sur) then
36 Run Chip(Q0, s′, timeout);
37 if s′ is observedthen

Suv.push back(s′);
38 end
39 end
40 end
41 end
42 end
43 end

A s-a-0 or a s-a-1 is then randomly inserted to each gate-level
netlist. For each benchmark, we simulate the gate-level netlist
with the accompanying test-bench. We then collect the crash
state. Experiments are conducted with five different version of
Algorithm 4. In the first version, we turn off all new techniques
to represent the the original FD-BackSpace frameworkFD-
BackSpace. Then we turn on each technique individually,
unreachable state identificationUR, reachable states expansion
RS, invalid fault removalIF + UR . Note that in order to apply

IF, we need to detect unreachable states first and hence UR
must be turned on for IF to work. As a result, we encode the
invalid fault removal optimization asIF + UR . Finally, we
apply all new optimizationsUR + RS + IF.

Table I displays the information of each benchmark. The
first column gives instance names. The next two columns
respectively show the numbers of flops and the initial numbers
of faults.

TABLE I. I NSTANCE INFORMATION

Instance No. of Initial No.
Name Flops of Faults

b01 5 146
b02 4 70
b03 30 382
b04 66 1406
b05 34 4140
b06 9 146
b07 49 886
b08 21 484
b09 28 403
b10 17 426

Table II shows the results of all our experiments. The first
column gives the instance name. The next three columns
respectively shows the final numbers of faults, the run-times
and the numbers of chip-runs under the original FD-BackSpace
framework. Columns five, and six shows the run-times and
numbers of chip-runs underUR. Column seven and eight
give the run-times and the numbers of chip-runs underRS.
Note that these optimizations cannot detect more invalid faults
than the original FD-BackSpace framework. Hence, the final
numbers of faults in these experiments stay the same as in the
original FD-BackSpace. These numbers are hence omitted for
the sake of the length of the paper. Column nine, ten and eleven
respectively show the final numbers of faults, the run-timesand
the numbers of chip-runs underIF + UR In this case, the final
numbers of fault are different from the original FD-BackSpace
and hence are reported. The last two columns give the run-
times and the numbers of chip-runs when all optimizations
are turned on (UR + RS + IF). We do not report the final
numbers of faults in this case because they are the same as
when IF + UR is applied.

 0

 0.2

 0.4

 0.6

 0.8

 1

b01

b02

b03

b04

b05

b06

b07

b08

b09

b10

R
at

io

Debugging Instances

Off-chip Runtime
Number of Chip-run

Fig. 5. Run-time and Numbers of Chip-runs Ratios

Figure 5 plots the ratios of run-times and the numbers of
chip-runs between theUR + RS + IF and the original
FD-BackSpace. Our algorithm outperforms the original FD-
BackSpace framework in all cases both in run-times and the
numbers of chip-runs. Specifically, in b01, we are able to
obtain 60% reduction in run-times and 85% reduction in the
numbers of chip-runs. Note that for b01, our algorithm also

finds six invalid faults more than the original FD-BackSpace
algorithm.

It is essential to note that the unreachable state identification
technique poses quite an overhead in run-times when applied
individually. This technique requires the system to make a
lot more SAT queries and hence increases the run-times
significantly. However, this extra run-times come with the
benefit of less chip-runs. Given that each chip-run can take
hours to set-up and run, the extra time spent in the analysis
software is justified. Moreover, identifying unreachable states
is crucial for theIF + UR optimization later. TheIF + UR
optimization gives us the ability to find invalid faults early
in the run. This means a lot less states to analyze compared
to UR and FD-BackSpace. As a result, whileIF + UR still
makes extra SAT queries on unreachable analysis, it is a lot
less compared to when onlyUR is applied. Furthermore, in
some cases while FD-BackSpace andUR go further back and
makes extra SAT queries,IF + UR marks a fault invalid and
stops analyzing that fault. In fact, as seen from the table,IF +
UR reduces the numbers of chip-runs, finds more invalid faults
and has comparable runtimes compared to FD-BackSpace. The
RS optimization of course reduces the run-times and chip-
runs as it allows us to stop much earlier during the path
traversal compared to FD-BackSpace. Overall, when applying
all optimizations we are able to obtain 36% reduction in run-
times and 44% reduction in the numbers of chip-runs compared
to the original FD-BackSpace. This shows the effectivenessof
our methods.

VII. C ONCLUSION

This work improves the original FD-BackSpace framework by
proposing three optimizations. First, a formal mechanism to
detect unreachable states without chip-run trials is introduced.
These unreachable states are used to find invalid faults early in
the run. Finally, we propose a light-weight technique to expand
the set of known reachable states from the set of initial states.
The end result is significant reduction both in run-times and
the numbers of chip-runs, demonstrating the practicality of our
techniques.

REFERENCES

[1] M. Prabhu and J. A. Abraham, “Functional test generationfor hard
to detect stuck-at faults using rtl model checking.” inEuropean Test
Symposium. IEEE Computer Society, 2012, pp. 1–6.

[2] L. Zhang, I. Ghosh, and M. Hsiao, “Efficient sequential atpg for
functional rtl circuits,” in ITC’03, 2003, pp. 290–298.

[3] L. Lingappan, V. Gangaram, N. K. Jha, and S. Chakravarty,“Fast
enhancement of validation test sets for improving the stuck-at fault
coverage of rtl circuits,”IEEE Trans. Very Large Scale Integr. Syst.,
vol. 17, no. 5, pp. 697–708, May 2009.

[4] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and
D. Miller, “A reconfigurable design-for-debug infrastructure for socs,”
in Proceedings of the 43rd annual Design Automation Conference, ser.
DAC ’06. ACM, 2006, pp. 7–12.

[5] X. Liu and Q. Xu, “On multiplexed signal tracing for post-silicon
debug,” inDATE, 2011, pp. 685–690.

[6] J.-S. Yang and N. A. Touba, “Efficient trace signal selection for
silicon debug by error transmission analysis,”IEEE Trans. on CAD
of Integrated Circuits and Systems, vol. 31, no. 3, pp. 442–446, 2012.

[7] D. Sengupta, F. M. De Paula, A. J. Hu, A. Veneris, and A. Ivanov, “Lazy
suspect-set computation: Fault diagnosis for deep electrical bugs,” in
GLSVLSI’12, 2012, pp. 189–194.

TABLE II. U PDATED FD-BACKSPACERESULTS

Instance Original Unreachable Reachable Invalid UR + RS + IF
Info FD-BackSpace State(UR) State(RS) Fault(IF + UR)

Instance Final No. Runtime No. of Runtime No. of Runtime No. of Final No. Runtime No. of Run-time No. of
Name of Faults (s) Chip-run (s) Chip-run (s) Chip-run of Faults (s) Chip-run (s) Chip-run

b01 62 458 2068 689 1763 250 348 56 321 1334 183 302
b02 5 57 86 169 43 50 45 4 52 43 44 32
b03 3 382 96530 1706 95991 249 62921 3 364 91981 210 53066
b04 1 1166 109870 1382 109256 1114 104970 1 1166 92179 1153 91151
b05 4 8200 1994094 14931 1981779 8576 1987938 4 6269 1515094 5756 1391112
b06 2 181 1088 347 955 163 896 2 295 942 135 896
b07 219 5423 958083 7072 906767 2938 194314 205 4328 841090 2469 192482
b08 2 3954 217483 5505 211969 3803 212424 2 4212 162182 3015 116092
b09 3 1164 139910 1402 137336 719 128599 3 1364 133613 597 101798
b10 9 481 677 775 625 300 482 8 589 601 289 482

[8] Y.-C. Hsu, F. Tsai, W. Jong, and Y.-T. Chang, “Visibilityenhancement
for silicon debug,” inDAC ’06. ACM, 2006, pp. 13–18.

[9] ARM, Embedded Trace Macrocell Architecture Specification, July 2007,
vol. 20, ref: IHI0014O.

[10] C.-C. Yen, T. Lin, H. Lin, K. Yang, T. Liu, and Y.-C. Hsu, “Diagnosing
silicon failures based on functional test patterns,” inMTV ’06. IEEE
Computer Society, 2006, pp. 94–98.

[11] A. Smith, A. G. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and
logic debugging using boolean satisfiability,”IEEE Trans. on CAD of
Integrated Circuits and Systems, pp. 1606–1621, 2005.

[12] G. S. Tseitin, “On the complexity of derivations in the propositional
calculus,” in Studies in Constructive Mathematics and Mathematical
Logic. New York - London: Part 2. Consultants Bureau, 1968, pp.
115–125.

[13] M. Case, A. Mishchenko, and R. Brayton, “Inductively finding a
reachable state space over-approximation,”Proc. IWLS06, pp. 172–179,
2006.

