Accelerating Post Silicon Debug of
Deep Electrical Faults

Bao Le, Dipanjan Sengupta, Andreas Veneris, Zissis Poulos
University of Toronto, ECE Department, Toronto, ON M5S 3G4
({lebao, dipanjan, veneris, zpoul@eecg.toronto.edu)

Abstract—With the growing complexity of current designs and
shrinking time-to-market, traditional ATPG methods fail t o detect
all electrical faults in the design. Debug teams have to spen
considerable amount of time and effort to identify these falts

during post silicon debug. This work proposes off-chip analsis
to speed-up the effort of identifying hard-to-find electrical faults

that are not detected using conventional test methods, butatise
the chip to crash during functional testing or silicon-bring-up.

With the goal of reducing the search space for reconstructig

the failure trace path formal methodology is used to analyze
the reachable states along the path. Isolating the root caes
of failure is also accelerated. Moreover, we propose a forwd

traversal technique on a selected few possible faults to gerate

a complete failure trace starting from the initial state to the crash
state. Experimental results show that the proposed approdccan

significantly reduce the actual silicon run thereby reducirg the

overall debug time.

In general deep electrical bugs cause the chip to malfumctio
after executing millions of cycles. Generating test cases f
such bugs require months of simulation on server farms.
However, actual silicon run is several orders of magnitude
faster requiring few seconds to trigger the error in the giesi
thereby leading to the crash state. Unlike during pressilic
verification, the accessibility and visibility of internaignals
are very limited in post-silicon debug and hence this is the
major challenge in the validation and debug of first silicon.
In [] trace buffersis proposed to store the values of selected
signals for multiple clock cycles. A binary-search-basedud
method [12] iteratively divides the search space in halfl tim
method identifies the first cycle in which the error is actiht
and observed. All of these techniques address the obsktyabi
problem and can enhance off-chip analysis presented in this

paper.

I. INTRODUCTION

Advancement of technology allows millions of logics gates t
be integrated in a single chip. ATPG algorithms generate tes
vectors for each fault at the gate-level model of the circuit
Although this methodology has high fault coverage, current
designs have large number of faults to be tested. Moreover,
the algorithm complexity makes this process time consuming
and expensive[]. The shortcomings are even more acute when
sequential ATPG algorithms are used to identify the elealri
bugs that require multiple cycles to be detected. Thus deep
electrical bugs - triggered only at extreme sequential ldept
often escape the manufacturing test step but cause the chip
to crash after few seconds of execution. Once a failure is
observed, additional validation step, post silicon delmigsed

to locate the design defects. The process of identifyingehe
bugs is painstakingly slow and takes more than half of thp chi
development cycle[][][][]. In this paper we propose a novel
technique to reduce the debug time for diagnosing these bugs
by augmenting off-chip analysis for reconstructing thehpat
from initial state to the crash state.

This paper describes a technique that combines formal rdetho

- _) _ ~ with on-chip support logic to identify the root cause of the
In [], a post silicon debug technique is proposed to identifyfailure. The off-chip analysis extracts information fromet

such bugs. Starting from the crash state, [] traverses tliegfa crashing state that results in reduction of the number afadct
trace backwards towards the initial state. The possibleoet silicon runs. In particular, the contributions are as fato

faults are pruned during this process. Fig. 1 shows the bvera
methodology. Although the actual time to run the chip can
be in the order of a few seconds, performing reachability
analysis for each state requires the verification engireaurt

the chip multiple times. This is a very slow process negating
the effectiveness of the approach. Building on the previous
work on FD BackSpace, this paper reduces the time required
to identify a small set of electrical faults that can cause th
chip to fail.

We propose a formal technique to analyze the possible
states in the failure trace path. Rather than running
the chip to determine the reachability of each possible
state, we perform off-chip analysis to determine if a

state can exist on the failure trace path. This reduces
the number of silicon runs as well as constraints the
state space search.

Assuming deterministic system behavior[], the algo-

rithm quickly reduces the number of possible faults by g X5 o X
identifying failure paths that do not match the actual 2
execution of the chip. b— r

e In addition to backward traversal along the failure @7}0 Yipb o y
trace path, as proposed in [], this work proposes

forward traversal technique that further reduces the
actual silicon runs. This additional analysis also helps

in reducing the overall debug time. @

° g X
Experiments on the ITC'99 benchmarks demonstrate the ef- % s_a:D Q
fectiveness of our approach. On average the number of silico b— r
runs were reduced by X%. This can be translated to shorter de- } y y
bug time. The rest of the paper is organized as follows. Ir Sec B % b Q
tion Il provides the background information and the introelsi
the notations used in the rest of the paper. Sections Ill, IV

and V presents the three off-chip analysis techniques that
reduce the debug time. Experimental results are presented i
Section VI followed by conclusions in Section VII.

Il. PRELIMINARIES

A. Notation and Basic Definitions

We model the fault-free circuif’ as a finite state machin¥,
with S latches,I inputs, O outputs, initial stateg C 2°, and
transition relatiory C 25 x 27 x 25. An execution path (run)
on M is a finite sequence of states= sgs1s2...s,, where

n € N. A crash stateis a state of the chip where a bug is
observable (e.g., a system hang). A patk;.; ...s, is said
to be a valid trace leading to the crash state,ifis the crash o example, consider the sequential circuit in Fig. 1(a). A
state and for eack;, i < j < n —1, s; is a predecessor of osiple faulty version is in Fig. 1(b), wheresaa-1 fault is

sj+1 and reachable from the initial state. present ing. Fig. 1(c) shows the augmented circuit with a
A signatureof a states € (is a projection ofs onto a set of S€t ofmuxesused to model each fault. (For space reasons, the

|atche38ig C L, i.e., in this paper, we consider a Signature t0|atCheS. have been rem_oved in Flg 1(C)) The fault is modeled
be just a subset of the bits of a state. by setting fault-select line; = 1 with all othere; = 0, and

fault-signal linew, = 1.

Fig. 1. Sequential Circuit (a) fault-free (b) faulty (c) a&tthardware

For any nodey, we denote byfanout(y) and fanin(g) the
set of fan-out and fan-in nodes gf respectively. Bao: write some text about modeling the circuit using SAT
modelTo communicate with the SAT solvef; is encoded in

For any fault-free nodg, the variable,, denotes its faulty conpjunctive Normal Form (CNF) using Tseitin transformatio
counterpart. We denote by a faulty circuit. To simplify our \yith the use of auxiliary variables

exposition, we will assume a single-stuck-at fault modeé t

notation(0) (5(1)) refers to a stuck-at-O (stuck-at-1) fault at

nodeyg. However, our method works for any fault model that C. FD-BackSpace

can be modeled using the SAT-based technique described negince the proposed off-chip analysis is based on the FD-
BackSpace framework, we briefly review the debug-flow here.

B. Fault Modeling For complete presentation we refer to [|. FD-Backspace

Similar to [], we use the SAT-based fault-modeling techeiqu framework starts from the observed bug sighting (e.g. crash
introduced by we augment the model of the fault-free circuitSFate)én) and goes backwards towards the initial states, con-
C (henceforth¢’) by adding amuxat the output of each gae sidering only the faults that are relevant to possible etieou

) : : to the actual bug. Initially the possible fault set consists
Eachmuxhas ondault-selectand onesignal line We denote all the possible faults in the circuit. Using formal anatysif

tshe? gfet:g::ggltg)iecjlﬁch:ﬁ:ib%ﬁlir?eé%v 61/%/’ o ent and the the corresponding RTL (or other model), we compute the set
(w1, ws 5 ¥, wheren 3 G|. By se){ting; — 1 the node of predecessor-candidateB)(of the crash state. If the fault

cannot exist under the crash state, then the tReis empty
and we remove the corresponding fault from the possiblé faul
set. If P is non-empty, we load each predecessor state into a
This modeling framework allows us to disconnect any inputbreakpoint circuit on the chip. Starting from the initiaht&t

of a gate from the circuitC and force and arbitrary faulty (so) the chip is run full-speed and stops at the breakpoint state
value instead. For example, for the single-stuck-at fawltleh, if the state exists in the failure trace path. The predecesso
we would constrain that exactly org = 1 (which enforces state is considered to be invalid if the chip does not reach
“single”), we would assign the corresponding to be 0 (1) the breakpoint state before reachisyg If a valid predecessor
for stack-at-0 (stuck-at-1), and we would not alleyor w; to state is observed then it is considered as possible trate pat
change in different time-frames (which enforces “stuch-at from the sq to s, under a given fault condition. As the

gi is disconnected fronmfanout(g;), andw; is connected to
every nodeg; € fanout(g;).

algorithm traverses through the state space, the possible f Corollary 1: Given a circuitC' and the setS where S is an
list is pruned. This framework was able to reduce the possiblabstraction of the set of reachable states, if for all state R
fault set to a handful of faults that can be further analyzed t the pair{s;, s} is an illegal transition ther is unreachable.

diagnose the root cause of failure.
9 Proof: As S is an abstraction of?, it must contain all

reachable state,.. Becauses, € R, {s,,s} is an illegal
I1l. PREVIOUS STATE ANALYSIS transition inC. From Theorem 1, the fact that &lk,, s} is

]] o illegal indicates that is unreachable. [|
We start this section by formally defining unreachable state

A light-weight technique to detect unreachable states és th It is essential to note that the opposite statement of Camoll,
presented. "if there exists a state; such that paifs;, s} is a legal transi-

o) o . o tion in C, s is reachable ” is not true. This is becausés just
Definition 1: Given a circuitC, a tracer is a finite sequence an abstraction o2 and hence may still contains unreachable
of statest = sgs1 - - - s, Wheren € N such thatsy is aninitial states. The state is reachable only ifs; is reachable, which
state and each pafs;, s;+1} in 7 is a legal transition irC. ~ cannot be confirmed without further investigation.

Definition 2: Given a circuitC, a states is said to be un- From Corollary 1, a state can be verified as unreachable by
reachable if and only if there does not exist a tracsuch answering the question: is there any state that can transiti
thatm = sps1 -+ s. to s given C? This question can be encoded as a SAT query.
In this SAT query, the next-state signals are constraineg as
while present-state signals are left unconstrained, aaGH&T
solver is asked to find a solution on the present-state signal
If there is a solution §AT’), no conclusion can be drawn on

Proof: From Definition 2, it is trivial that ifs is an s- If there is no solution{{ N.SAT), s is unreachable.
unreachable state then all sequemce= sos1---s IS N0t & |y the SAT query, we leave the present-state signals uncon-

trace. From Definition ﬁ a_sequen?e |s|n0t a trace when theig aineq so that the SAT solver can find a solution in the set of
exists a paif{s;, s;11} that is not a legal transition i6”. B 4 states which of course is an abstractionNevertheless,

Theorem 1:Given a circuitC. a states is unreachable if and this solution space can be reduced while still maintain the
only if for all reachable state,, the pair{s,,s} is an illegal ~Property as an abstraction di. Specifically, if a states is

Lemma 1:Given a circuitC, if a states is unreachable then
for all 7 = sgs; - - - s, there exists a paifs;, s;+1} that is not
a legal transition inC

transition inC. already found unreachable,can be safely removed from the
solution space. This is accomplished by simply forcing the
Proof: solver to return a solution that is different from As the
— direction: number of unreachable states found grows, this optimizatio

Assume there exists a reachable stgtdhat can reacly , a becomes more powerful as it does not only reduce the search
trace is constructed such that it starts with an initial statespace for the solver but also prevents the case where an
s0, gets tos, and finally reaches. Becauses, is reachable, unreachable state is not detected due to spurious solutions
all pairs from sy to s, are legal transitions inC'. Hence,

T, = 80,81, S, 8 IS @ trace ands is reachable. This is [0]e; [1e,

a contradiction and thus, there does not exist such reaehabl a

states,.. @EB— x'[0]
+ direction: b [

Consider an arbitrary sequenge= sgs; - - - s;. If the last state " X w,[1]
befores is reachable then the last pair is an illegal transition y B ' 9» E% v
from the assumption and thusis not a trace. If the last state

befores is unreachable, them is obviously not a valid trace. Wy “€ o w, @
Therefore,s is unreachable. [| [o] (o]

In order to prove a state is unreachable, one can prove Fig. 2. Unreachable State Example

that all sequencer = sps;---s contains at least one pair

{si, s;+1} thatis a illegal transition (Lemma 1) or prove that Example 1:Consider the example in Figure 2. The next-state

cannot be reached from any reachable state (Lemma 1). Thesignalz’ is constrained to 0 ang! is constrained to 1. In this

methods however require tremendous amount of work and axample, the circuit is also assumed under a stuck-at-1 faul

not feasible in practice. In this work, a light-weight medhto =~ at gateg.. We want to find a present-state, an assignment

verify whether a state is unreachable is proposed. The nexton x and y, such that it would satisfy the next-staté, 1 >.

section describes the method and proves its correctness. Unfortunately, there are no values srandy that can alternate
the stuck-at-1 fault at gatg. This implies that there is no state

o that can transition te< 0,1 >; hence< 0,1 > is unreachable
A. Unreachable State Identification under the stuck-at-1 fault aj,. Using the same argument,

Theorem 1 provides an approach to verify whether a stage < 0,1 > is also unreachable under the stuck-at-0 fauljat

unreachable. However, finding the complete set of reachablgigorithm 1 depicts the process of identifying an unreadtab
stateslt is a difficult task []. The following corollary of The- state. Given a circuiC’, a faultp and a states, the function
orem 1 shows how we abstraBtand simplify the verification returns whethes is unreachable under First, a CNF presen-
problem of an unreachable state. tation of circuitC' with the assumption of fauli is constructed

Algorithm 1: Unreachable State
input : circuit C

input : fault p

input : states

output: bool unreachable

¢ < CNF (C, p);

¢ < ConstrainNext_Stateg);

if Sol ve (¢) = SATthen return false
else return true;

A W N P

the faults, stuck-at-1 at gatg and the stuck-at-0 at gatg. If

the fault is stuck-at-0 at gai®, the state< 0,1 > is actually
reachable from the initial state 0,0 >. Figure 4 shows a
plausible path for the fault stuck-at-0 at gate In this case,

< 0,1 > is actually observed as the crash state and that refutes
stuck-at-1 at gat@. and the stuck-at-O at gatg as possible
faults.

Now what if a states is observed during a chip-run; this

observation indicates thatshould be reachable under the real
fault. As a result, ifs is observed and it is unreachable under
a fault p, p cannot be the real fault and is invalidated as a
possible fault. Algorithm 2 shows how to invalidate a fault

(line 1). Next, the next-state signals of the CNF instan@ ar) using this technique. Given a statethat is unreachable

constrained t& (line 2). Then, the CNF instance is sent to the
SAT solver. If there is a satisfying assignmestis reachable
and hence the algorithm returns false (line 3). Otherwise, t
algorithm returns true indicating is unreachable undep
(line 4).

IV. PATH ANALYSIS

In this section, a technique to prune out suspect faulty é&arl
the run of FD-BackSpace is presented. This technique isdbas
on the consistency between a fault and the chip’s behavior.

under faultp, a timeout and an initial statg,, the function
returns whethep is an invalid fault. This function runs the
chip to find if s can be observed (line 2). This is accomplished
by using the original BackSpace framework slfs observed,
the function returns false indicating thatis an invalid fault;
otherwise, true result is returned (line 3- 4). This techeiq
although requires additional chip-runs has the ability tone

out spurious faults that can not be detected by the original
é:D—BackSpace framework.

Algorithm 2: Invalid Fault

Recall that in the FD-BackSpace framework, if under the

assumption of a faulp, a states has no predecessors, it is
ignored and the algorithm continues to analyze faultin

this case, the algorithm is conservative and assumes that th
states is not in the plausible path. This is sensible as proved

in Section lll, if a states has no predecessor-states, it is
unreachable under the faylt Though,s is unreachable under
p does not imply that it is unreachable under other faultss Thi
scenario is illustrated in Example 2.

Fig. 4. Plausible Path Example

input : fault p
input : set initial state, states
input : timeout

output: bool invalid fault

/'l s is unreachabl e under p
Run_Chip(Qo, s, timeout);
if s is observedhen return false

1
2
3
4 else return true;

V. FORWARD TRAVERSAL

This section proposes a simple heuristic to reduce the numbe
of SAT calls in FD-BackSpace. This heuristic utilizes thetfa
that simulation is much faster than a formal engine.

In FD-BackSpace, a fault is considered possible if under the
assumption ofp, there is a plausible path from a reachable
state to the crash state. To find such path, the algorithm
traverses from the crash state until it reaches a reachtabée s
During our analysis, we realize that the set of reachabtesta
usually just contains one initial state. This of course bisd
the traversal process as it is difficult to reach that onesstat
To tackle this problem, we use a fast simulation to find more
reachable states.

Specifically, under the assumption of a fap|twe simulate

the design from the initial state and collect states. Asehes
states are simulated from the initial state, they are rdaeha
and hence can be added to the set of reachable states. Te reduc
overhead, a timeout is set. Algorithm 3 shows the technigque i
detail. Given a circuit”, a faultp and a set of initial stateQ,

we expand the set of reachable states updé&irst, a timeout

Example 2:Consider the scenario in Figure 3 where a faultyis set to one second. Next, the circuit with the assumption of

circuit is returned with a crash state and an initial statethls
case, the crash stateds0, 1 > and the initial state isc 0,0 >.
Now let us assume that the real fault is a stuck-at-O at gate
We have proved that the state0,1 > is unreachable under

fault p is simulated until timeout is reached (line 3). During
the simulation, a log file is utilized to store the state inteac
clock-cycle. Every state in the log file is then added to the se
of reachable states (line 5).

Algorithm 3: Reachable State Set Expansion Algorithm 4: The Updated FD-BackSpace Algorithm

input : circuit C' input : circuit C'
input : fault p input : set of initial state€),, crash states.
input : initial_stateQq input : timeout
output: reachablestates input : set of initial faultsg
1 // assign timeout to 1 second output: final set of possible faultg
2 timeout+ 1; 1 set of invalid faultsg;;
3 log + Simulate(Y,, timeout) ; 2 foreach fault p € G do
4 foreach s € log do 3 set of visited state$, unvisited statesy,,.,;
5 | reachablestates« s ; set of reachable states. unreachable state$,,;
6 end Expand ReachableState Set(C, p, Qo, S,);

current states;

bool invalid = false;

A. The Updated FD-BackSpace Algorithm goglf_a?c? = false;

In this section, we present the updated algorithm of FD-10 Sy Qo;

BackSpace after integrating techniques mentioned in pusvi 11 while valid # invalid do

© 0 N o g b

sections. 12 if Sy, iS emptythen
Algorithm 4 takes in the circuiC, the set of initial states 13 gy(za_lld <_ true;
Qo, the crash state., a timeout and the set of initial faults 15 end AR
G. At the end of its computation, this algorithm returns the 16 else
set of possible faults¥. The setg,; is used to store invalid 17 s « S,v.top():
faults (line 1). For each faultS,, S.., S, S.. are sets of 18 S Z ' '
visited states, unvisited states, reachable states, cirabke 19 ifUS c S then
states, respectively. To expand reachable state set founla fa a0 valiZl true
p, a function ExpandReachableState Set is called (line 5). 01 Fep: '
Moreover, for each fault, two Boolean variablealid and - end '
inwvalid are employed to keep track of its status (line 7- 8). 3 else if UnreachableState(”, p, s) then
The loop is terminated when the faplis proved to be invalid " if Invalid Fault@ 0 S’ ti}neout)then
or valid (line 11). If S, is empty,p is an invalid fault as all o5 invalid < trué' 0
states found during traversal are proved unreachable {)e o6 G p: '
Whenp is proved invalid, it is added tg; (line 13- 14). At 7 end ! '
each iteration, a stateat the top ofS,,, is analyzed (line 17). 28 S s
If s is reachable from an initial state, is a possible fault g end ur '
and it is added toF (line 19- 21). Otherwise, it is tested on 20 else
unreachability (line 23). If it is unreachable but obseriec 2 & « ONF (C, p):
chip-run,p is marked as invalid fault (line 25). However, if it 2 yon Constra{inl\'lext Stateg):
can only be unreachable, it is addeddg,. (line 28). When 33 while Solve@)_: SAT do '
an unreachability test cannot draw any conclusionsptthe 24 s' = Solveg) :
algorithm attempts to go back further. All predecessors of 5 if (' ¢ S,) A ’(S/ ¢ S,) then
are found using the SAT solver (line 33). For each predecessa,, RUN éhip(Q o qﬁmeout)'
states’, it is carefully tested before added £),, (line 37). , it & is obse(;\’/ed,hen ’
First, s’ must be different from all found unreachable states, Suv.push back§):
s’ ¢ Sur, and is not visited before] ¢ S, (line 35). Moreover, - end wer - '
s’ must be observed during a chip-run (line 37). These testsﬁ9 end
assure that’ has not been encountered before and it is a real,) end
state appearing in a chip-run. a end
42 end
VI. EXPERIMENTAL RESULTS 43 end

This section presents the experimental results of the @exgho
framework. The presented techniques are implemented on top
of the original FD-BackSpace framework from.All experinen

are run on an Intel Core i5 3.1 GHz quad-core workstatio
with 8 GB of RAM. To interface with the original BackSpace
framework, all circuits are synthesized using the Back8jsac
cell library. We use Synopsys Design Compiler Version Y-
2006.06-SP2 and Synopsys VCS Version A-2008.09 as o
compiler and logic simulator, respectively.

ﬁA s-a-0 or a s-a-1 is then randomly inserted to each gaté-leve
netlist. For each benchmark, we simulate the gate-levéikhet
with the accompanying test-bench. We then collect the crash
state. Experiments are conducted with five different versib
Igorithm 4. In the first version, we turn off all new technigi
o represent the the original FD-BackSpace framew®ik
BackSpace Then we turn on each technique individually,
Ten ITC'99 benchmark circuits are used in our experimentsunreachable state identificatit/R, reachable states expansion
After a circuit is synthesized, a gate-level netlist is aid. RS, invalid fault removalF + UR. Note that in order to apply

IF, we need to detect unreachable states first and hence Ufids six invalid faults more than the original FD-BackSpace
must be turned on for IF to work. As a result, we encode thealgorithm.

invalid fault removal optimization a#~ + UR. Finally, we

apply all new optimization&)R + RS + IF.

It is essential to note that the unreachable state idertidica
technique poses quite an overhead in run-times when applied

Table | displays the information of each benchmark. Thendividually. This technique requires the system to make a
first column gives instance names. The next two column$ot more SAT queries and hence increases the run-times
respectively show the numbers of flops and the initial numbersignificantly. However, this extra run-times come with the

of faults.

TABLE I. INSTANCEINFORMATION
Instance | No. of | Initial No.
Name Flops of Faults
b01 5 146
b02 4 70
b03 30 382
b04 66 1406
b05 34 4140
b06 9 146
b07 49 886
b08 21 484
b09 28 403
b10 17 426

Table 1l shows the results of all our experiments. The firs
column gives the instance name. The next three column
respectively shows the final numbers of faults, the run4ime
and the numbers of chip-runs under the original FD-Back&pa
framework. Columns five, and six shows the run-times an
numbers of chip-runs undddR. Column seven and eight

C

benefit of less chip-runs. Given that each chip-run can take
hours to set-up and run, the extra time spent in the analysis
software is justified. Moreover, identifying unreachahigtes

is crucial for thelF + UR optimization later. ThdF + UR
optimization gives us the ability to find invalid faults earl

in the run. This means a lot less states to analyze compared
to UR and FD-BackSpace. As a result, while + UR still
makes extra SAT queries on unreachable analysis, it is a lot
less compared to when onlyR is applied. Furthermore, in
some cases while FD-BackSpace as go further back and
makes extra SAT querieiy + UR marks a fault invalid and
stops analyzing that fault. In fact, as seen from the tdble;

UR reduces the numbers of chip-runs, finds more invalid faults
and has comparable runtimes compared to FD-BackSpace. The
RS optimization of course reduces the run-times and chip-
Rins as it allows us to stop much earlier during the path
traversal compared to FD-BackSpace. Overall, when applyin

[l optimizations we are able to obtain 36% reduction in run-
imes and 44% reduction in the numbers of chip-runs compared
to the original FD-BackSpace. This shows the effectiveinéss

give the run-times and the numbers of chip-runs uri@&r
Note that these optimizations cannot detect more invalitt§a
than the original FD-BackSpace framework. Hence, the final
numbers of faults in these experiments stay the same as in the
original FD-BackSpace. These numbers are hence omitted forr
the sake of the length of the paper. Column nine, ten andreleve
respectively show the final numbers of faults, the run-tiares
the numbers of chip-runs undegt + UR In this case, the final
numbers of fault are different from the original FD-Back&pa
and hence are reported. The last two columns give the rurj;
times and the numbers of chip-runs when all optimization
are turned onYR + RS + IF). We do not report the final
numbers of faults in this case because they are the same
whenlF + UR is applied.

Off-chip Runtime s
1 Number of Chip-run s

(1]

0.8

0.6

Ratio

(2]

0.4

0.2

s o o o = S
[=} [=} [=] [=] [=] [=} [=) [=) [=]
S % 2 % S

Debugging Instances [4]

Fig. 5. Run-time and Numbers of Chip-runs Ratios

Figure 5 plots the ratios of run-times and the numbers of []
chip-runs between th&JR + RS + IF and the original
FD-BackSpace. Our algorithm outperforms the original FD- [6]
BackSpace framework in all cases both in run-times and the
numbers of chip-runs. Specifically, in b01, we are able to[]
obtain 60% reduction in run-times and 85% reduction in the
numbers of chip-runs. Note that for b01, our algorithm also

our methods.

VII. CONCLUSION

his work improves the original FD-BackSpace framework by
proposing three optimizations. First, a formal mechanism t
detect unreachable states without chip-run trials is dhiiced.
These unreachable states are used to find invalid faultg iearl
he run. Finally, we propose a light-weight technique toasma
he set of known reachable states from the set of initiaéstat
he end result is significant reduction both in run-times and

numbers of chip-runs, demonstrating the practicafiiyus
echniques.

REFERENCES

M. Prabhu and J. A. Abraham, “Functional test generation hard
to detect stuck-at faults using rtl model checking.” Bmropean Test
Symposium |IEEE Computer Society, 2012, pp. 1-6.

L. Zhang, I. Ghosh, and M. Hsiao, “Efficient sequentiapatfor
functional rtl circuits,” inITC’03, 2003, pp. 290-298.

L. Lingappan, V. Gangaram, N. K. Jha, and S. Chakravéaifgst
enhancement of validation test sets for improving the satckault
coverage of rtl circuits,"IEEE Trans. Very Large Scale Integr. Syst.
vol. 17, no. 5, pp. 697-708, May 2009.

M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, Gelmi, and
D. Miller, “A reconfigurable design-for-debug infrastruo¢ for socs,”
in Proceedings of the 43rd annual Design Automation Confeeser.
DAC '06. ACM, 2006, pp. 7-12.

X. Liu and Q. Xu, “On multiplexed signal tracing for positicon
debug,” inDATE, 2011, pp. 685-690.

J.-S. Yang and N. A. Touba, “Efficient trace signal setettfor
silicon debug by error transmission analysif£EE Trans. on CAD
of Integrated Circuits and Systeml. 31, no. 3, pp. 442-446, 2012.
D. Sengupta, F. M. De Paula, A. J. Hu, A. Veneris, and Anbwg “Lazy
suspect-set computation: Fault diagnosis for deep etattbugs,” in
GLSVLSI'12 2012, pp. 189-194.

(8]
El

[10]

(11]

[12]

[13]

TABLE II.

U PDATED FD-BACKSPACERESULTS

Instance Original Unreachable Reachable Invalid UR + RS + IF
Info FD-BackSpace State(UR) State(RS) Fault(IF + UR)
Instance || Final No. | Runtime No. of Runtime No. of Runtime No. of Final No. | Runtime No. of Run-time No. of
Name of Faults (s) ‘ Chip-run (s) Chip-run (s) Chip-run of Faults (s) ‘ Chip-run (s) Chip-run
b01 62 458 2068 689 1763 250 348 56 321 1334 183 302
b02 5 57 86 169 43 50 45 4 52 43 44 32
b03 3 382 96530 1706 95991 249 62921 3 364 91981 210 53066
b04 1 1166 109870 1382 109256 1114 104970 1 1166 92179 1153 91151
b05 4 8200 | 1994094 14931 | 1981779 8576 | 1987938 4 6269 | 1515094 5756 | 1391112
b06 2 181 1088 347 955 163 896 2 295 942 135 896
b07 219 5423 958083 7072 906767 2938 194314 205 4328 841090 2469 192482
b08 2 3954 217483 5505 211969 3803 212424 2 4212 162182 3015 116092
b09 3 1164 139910 1402 137336 719 128599 3 1364 133613 597 101798
b10 9 481 677 775 625 300 482 8 589 601 289 482

Y.-C. Hsu, F. Tsai, W. Jong, and Y.-T. Chang, “Visibilignhancement
for silicon debug,” inDAC '06. ACM, 2006, pp. 13-18.

ARM, Embedded Trace Macrocell Architecture Specificatibuly 2007,
vol. 20, ref: IHI00140.

C.-C. Yen, T. Lin, H. Lin, K. Yang, T. Liu, and Y.-C. HsuDfagnosing
silicon failures based on functional test patterns,MiV '06. |EEE
Computer Society, 2006, pp. 94-98.

A. Smith, A. G. Veneris, M. F. Ali, and A. Viglas, “Faultiaignosis and
logic debugging using boolean satisfiabilityZEE Trans. on CAD of
Integrated Circuits and Systemgp. 1606-1621, 2005.

G. S. Tseitin, “On the complexity of derivations in theopositional
calculus,” in Studies in Constructive Mathematics and Mathematical
Logic. New York - London: Part 2. Consultants Bureau, 1968, pp.
115-125.

M. Case, A. Mishchenko, and R. Brayton, “Inductively ding a
reachable state space over-approximatiégc. IWLS06 pp. 172—-179,
2006.

