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Failure Mitigation in Linear, Sesquilinear and
Bijective Operations On Integer Data Streams Via

Numerical Entanglement
Mohammad Ashraful Anam and Yiannis Andreopoulos∗

Abstract—A new roll-forward technique is proposed that
recovers from any singlefail-stop failure in M integer data
streams (M ≥ 3) when undergoing linear, sesquilinear or bijec-
tive (LSB) operations, such as: scaling, additions/subtractions,
inner or outer vector products and permutations. In the pro-
posed approach, theM input integer data streams are linearly
superimposed to formM numerically entangled integer data
streams that are stored in-place of the original inputs. A series
of LSB operations can then be performed directly using these
entangled data streams. The output results can be extracted
from any M − 1 entangled output streams by additions and
arithmetic shifts, thereby guaranteeing robustness to a fail-
stop failure in any single stream computation. Importantly,
unlike other methods, the number of operations required
for the entanglement, extraction and recovery of the results
is linearly related to the number of the inputs and does
not depend on the complexity of the performed LSB oper-
ations. We have validated our proposal in an Intel processor
(Haswell architecture with AVX2 support) via convolution
operations. Our analysis and experiments reveal that the
proposed approach incurs only 1.8% to 2.8% reduction in
processing throughput in comparison to the failure-intolerant
approach. This overhead is 9 to 14 times smaller than that of
the equivalent checksum-based method. Thus, our proposal
can be used in distributed systems and unreliable processor
hardware, or safety-critical applications, where robustness
against fail-stop failures becomes a necessity.

Index Terms—linear operations, sum-of-products,
algorithm-based fault tolerance, fail-stop failure, numerical
entanglement

I. I NTRODUCTION

T HE INCREASE of integration density [1] and
aggressive voltage/frequency scaling in processor

and custom-hardware designs [2], along with the ever-
increasing tendency to use commercial off-the-shelf pro-
cessors to create vast computing clusters, have decreased
the mean-time-to-failure of modern computing systems.
Therefore, it is now becoming imperative for distributed
computing systems to provide for fail-stop failure miti-
gation [3], i.e., recover from cases where one of their
processor cores becomes unresponsive or does not return
the results within a predetermined deadline. Applications
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that are particularly prone to fail-stop failures include
distributed systems like grid computing [4], sensor-network
[5], webpage, or multimedia retrieval and object or face
recognition in images [6], financial computing [7], etc. The
compute- and memory-intensive parts of these applications
comprise linear, sesquilinear (also known as “one-and-half
linear”) and bijective operations, collectively called LSB
operations in this paper. These operations are typically
performed using single or double-precision floating-point
inputs or, for systems requiring exact reproducibility and/or
reduced hardware complexity, 32-bit or 64-bit integer or
fixed-point inputs. Thus, ensuring robust recovery from
fail-stop failures for applications comprising integer LSB
operations is of paramount importance.

A. Summary of Prior Work

Existing techniques that can ensure recovery from fail-
stop failures comprise two categories:(i) roll-back via
checkpointing and recomputation [8], [9], i.e., methods that
periodically save the state of all running processes, such
that the execution can be rolled back to a “safe state” in case
of failures; (ii) roll-forward methods producing additional
“checksum” inputs/outputs [9]–[11] such that the missing
results from a core failure can be recovered from the
remaining cores without recomputation. Examples of roll-
forward methods include algorithm-based fault-tolerance
(ABFT) and modular redundancy (MR) methods [9]–[16].
Although no recomputation is required in roll-forward
methods (thereby ensuring quick recovery from a failure
occurrence), checksum-based methods can incur significant
computational and energy-consumption overhead because
of the additional checksum-generation and redundant com-
putations required [17].

B. Contribution

We propose a new roll-forward failure-mitigation method
for linear, sesquilinear (also known as one-and-half linear)
or bijective operations performed in integer data streams.
Examples of such operations are element-by-element addi-
tions and multiplications, inner and outer vector products,
sum-of-squares and permutation operations. They are the
building blocks of algorithms of foundational importance,
such as: matrix multiplication [12], [18], convolution/cross-
correlation [19], template matching for search algorithms
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[20], covariance calculations [6], integer-to-integer trans-
forms [21] and permutation-based encoding systems [22],
which form the core of the applications discussed ear-
lier. Because our method performs linear superpositions
of input streams onto each other, it “entangles” input
streams together and we term it asnumerical entanglement.
Our approach guarantees recovery from any single stream-
processing failure without requiring recomputation. Impor-
tantly, numerical entanglement does not generate additional
“checksum” or duplicate streams and does not depend on
the specifics of the LSB operation performed. It is therefore
found to be extremely efficient in comparison to checksum-
based methods that incur overhead proportional to the
complexity of the operation performed.

C. Paper Organization

In Section II, we introduce checksum based methods
and MR for fail-stop failure recovery in numerical stream
processing. In Section III we introduce the notion of
numerical entanglement and demonstrate its inherent re-
liability for LSB processing of integer streams. Section IV
presents the complexity of numerical entanglements within
integer linear or sesquilinear operations. Section V presents
experimental comparisons and Section VI presents some
concluding remarks.

II. CHECKSUM/MR-BASED METHODS VERSUS

NUMERICAL ENTANGLEMENT

Consider a series ofM input streams of integers, each
comprisingNin samples1 (M ≥ 3):

cm = [cm,0 . . . cm,Nin−1] , 0 ≤m <M. (1)

These may be the elements ofM rows of a matrix of
integers, or a set ofM input integer streams of data to
be operated upon with an integer kernelg. This operation
is performed by:

∀m ∶ dm = cm opg

op ∈ {+, − , × , ⟨ , ⟩ ,⊗,( I

G
) ,⋆} (2)

with dm the mth vector of output results (containing
Nout values) and op any LSB operator such as element-
by-element addition/subtraction/multiplication, inner/outer
product, permutation2 (i.e., bijective mapping from the

1Notations: Boldface uppercase and lowercase letters indicate matrices
and vectors, respectively; the corresponding italicized lowercase indicate
their individual elements, e.g.A andam,n; d̂ denotes the recovered value
of d after disentanglement; all indices are integers. Operators: superscript
T denotes transposition;⌊a⌋ is the largest integer that is smaller or equal
to a (floor operation);⌈a⌉ is the smallest integer that is larger or equal to
a (ceil operation);a≪ b anda≫ b indicate left and right arithmetic shift
of integer a by b bits with truncation occurring at the most-significant
or least significant bit, respectively;amodb = a − ⌊a

b
⌋ b is the modulo

operation.
2We remark that we consider LSB operations that arenot data-

dependent, e.g., permutations according to fixed index setsas in the
Burrows-Wheeler transform [22].

sequential index setI to index setG corresponding to
g) and circular convolution or cross-correlation withg.
Beyond the single LSB operator indicated in (2), we can
also assumeseriesof such operators applied consecutively
in order to realize higher-level algorithmic processing, e.g.,
multiple consecutive additions, subtractions and scaling
operations with pre-established kernels followed by circular
convolutions and permutation operations. Conversely, the
input data streams can also be left in their native state (i.e.,
stored in memory), if op= {×} andg = 1.

A. Checksum-based Methods

In their original (or “pure”) form, the input data streams
of (1) are uncorrelated and one input or output element
cannot be used for the recovery of another without inserting
some form of coding or redundancy. This is conventionally
achieved via checksum-based methods [9], [10], [12]–[15],
[23]. Specifically, oneadditional input stream is created,
which compriseschecksumsof the original inputs:

r = [r0 . . . rNin−1] , (3)

by using, for example, the sum of groups ofM input
samples [14], [15] at positionn in each stream,0 ≤ n < Nin:

∀n ∶ rn = M−1∑
m=0

cm,n. (4)

Then the processing is performed in all input streams
c0, . . . ,cM−1 and in the checksum input streamr (each
running on a different core) by:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

d0⋮
dM−1

e

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

c0⋮
cM−1
r

⎤⎥⎥⎥⎥⎥⎥⎥⎦
opg, (5)

Any single fail-stop core failure in the group ofM+1 cores
executing (5) can be recovered from using the remaining
M output streams. As discussed in partitioning schemes
for checksum-based methods and ABFT [14], [15], the
recovery capability can be increased by using additional
weighted checksums.

B. Proposed Numerical Entanglement

Numerical entanglement mixes the inputs prior to pro-
cessing using linear superposition, and ensures the results
can be recovered via a mixture of shift-add operations.
Specifically, consideringM (M ≥ 3) input streamscm,
0 ≤ m < M (each comprisingNin integer samples), each
element of themth entangled stream denoted byǫm,n

(0 ≤ n < Nin), comprises the superposition of two input
elementscx,n andcy,n from different input streamsx and
y, i.e.,0 ≤ x, y <M andx ≠ y. The LSB operation op with
kernelg is carried out withM independent cores utilizing
the entangled input streams directly, thereby producing the
entangled output streamsδm (each comprisingNout integer
samples). These can be disentangled to recover the final
resultsd̂m. Any single fail-stop failure in theM processor
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cores can be recovered from the results of the remaining
M − 1 cores utilizing additions and shift operations.

The complexity of entanglement, disentanglement (ex-
traction) and recovery does not depend on the complexity
of the operator op, or on the length of the kernel (operand)
g. The entangled inputs can be written in-place and no addi-
tional storage or additional operations are needed during the
execution of the actual operation. The entire process is also
suitable for stream processors with entanglement applied
as data within each input stream is being read. Unlike
checksum or MR methods, numerical entanglement does
not use additional processor cores, and the only detriment
is that the dynamic range of the entangled inputsǫm is
somewhat increased in comparison to the original inputs
cm. However, as it will be demonstrated in the next section,
this increase depends on the number of jointly-entangled
inputs, M , i.e., the desired failure recovery capability.
Therefore, one can be traded for the other.

III. N UMERICAL ENTANGLEMENT FOR FAIL -STOP

RELIABILITY IN LSB OPERATIONS

We first illustrate our approach via its simplest instanti-
ation, i.e., entanglement ofM = 3 inputs, and then present
its general application and discuss its properties.

A. Numerical Entanglement in Groups ofM = 3 Inputs

1) Entanglement:In the simplest form of entanglement
(M = 3), each triplet of input samples of the three integer
streams,c0,n, c1,n and c2,n, 0 ≤ n < Nin, produces the
following entangled triplet via the superposition operations:

ǫ0,n = Sl {c2,n} + c0,n
ǫ1,n = Sl {c0,n} + c1,n (6)

ǫ2,n = Sl {c1,n} + c2,n
where:

Sl {c} ≡ { (c≪ l) , if l ≥ 0[c≫ (−l)] , if l < 0 (7)

is the left or right arithmetic shift ofc by l bits. If we
assume that the utilized integer representation comprises
w bits, thel-bit left-shift operations of (6) must be upper-
bounded byw to avoid overflow. Therefore, if the dynamic
range of the input streamsc0, c1, c2 is l + k bits:

2l + k ≤ w (8)

in order to ensure no overflow happens from the arithmetic
shifts of (6). The values forl andk are chosen such that
l + k is maximum within the constraint of (8) andk ≤ l.
Via the application of LSB operations, eachǫm entangled
input stream (0 ≤ m < M ) is converted to the entangled
output stream3 δm (which containsNout values):

3For the particular cases of: op∈ {+,−}, g must also be entangled with
itself via: gn ← Sl {gn} + gn, in order to retain the homomorphism of
the performed operation.

∀m ∶ δm = (ǫm opg) . (9)

A conceptual illustration of the entangled outputs after (6)
and (9) is given in Fig. 1. Our description until this point in-
dicates a key aspect:l bits of dynamic range are usedwithin
each entangled input/output in order to achieve recovery
from one fail-stop failure occurring in the computation of
δ0,n, δ1,n or δ2,n. As a practical instantiation of (6), we
can setw = 32, l = 11 andk = 10 in a signed 32-bit integer
configuration.

llk

{ }0,l n
dS�

{ }2,l n
dS�

0,n
d

{ }1,l n
dS

2,n
d

1,n
d

0,
:

n
δ

1,
:

n
δ

2,
:

n
δ

( 1)M l−k

k

l≪

bits bits

Figure 1. Illustration of three entangled outputs after integer LSB
processing. The solid arrows indicate the maximum attainable dynamic
range of each outputd0,n, d1,n and d2,n. The dotted rectangles and
arrows illustrate that the contents of entangled outputδ0,n are contained
within the two other entangled outputs.

We now describe the disentanglement and recovery pro-
cess. The reader can also consult Fig. 1.

2) Disentanglement and Recovery:We can disentangle
the outputs by (0 ≤ n < Nout):

dtemp = δ2,n − Sl {δ1,n}
d̂2,n = S−2(w−l) {S2(w−l) {dtemp}}
d̂0,n = S−2l {−(dtemp− d̂2,n)} (10)

d̂1,n = δ1,n − Sl {d̂0,n}
The first three parts of (10) assume a2w-bit integer
representation is used for the interim operations, as the
temporary variabledtemp is stored in2w-bit integer rep-
resentation. However, all recovered outputs,d̂0,n, d̂1,n and
d̂2,n, require onlyw bits.

Explanation of (10)—see also Fig. 1: The first part
creates a composite number comprisingd̂0,n in the l + k
most-significant bits and̂d2,n in the2l least-significant bits
(therefore,dtemp requires3l + k bits). In the second part,
d̂2,n is extracted by:(i) discarding the(2w − 2l) most-
significant bits;(ii) arithmetically shifting the output down
to the correct range. The third part of (10) usesd̂2,n to
recoverd̂0,n and, in the fourth part of (10),̂d0,n is used to
recoverd̂1,n.
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Remark 1 (operations withinw bits): To facilitate our
exposition, the first three parts of (10) are presented under
the assumption of a2w-bit integer representation. However,
it is straightforward to implement them viaw-bit integer
operations by separatingdtemp into two parts ofw bits and
performing the operations separately within these parts.

Remark 2 (recovery without the use ofδ0,n): Notice that
(10) does not useδ0,n. This is a crucial element of our
approach: sincêd0,n, d̂1,n and d̂2,n were derived without
using δ0,n, full recovery of all outputs takes place even
with the loss of one entangled stream. We are able to do
this because, for everyn, 0 ≤ n < Nout, δ1,n and δ2,n
containd̂0,n and d̂2,n, which suffice to recreateδ0,n if the
latter is not available due to a fail-stop failure. This linkis
pictorially illustrated in Fig. 1. Since the entangled pattern
is cyclically-symmetric, it is straightforward to demonstrate
that recovery from loss of any single out the three output
streams is possible following the same approach.

Remark 3 (dynamic range):Bit l + k within each re-
covered output̂d0,n, d̂1,n and d̂2,n represents its sign bit.
Given that:(i) each entangled output comprises the addition
of two outputs (with one of them left-shifted byl bits); (ii)
the entangled outputs must not exceed2l+k bits, we deduce
that the outputs of the LSB operations must not exceed the
range

∀n ∶ d0,n, d1,n, d2,n ∈ {−(2l+k−1 − 2l) ,2l+k−1 − 2l} .
(11)

Therefore, (11) comprises the range permissible for the
LSB operations of (9) with the entangled representation of
(6). Thus, we conclude that, for integer outputs produced
by the LSB operations of (9) with range bounded by (11),
the extraction mechanism of (10) isnecessary and sufficient
for the recovery ofany single stream inδ0,n, δ1,n, δ2,n for
all stream positionsn, 0 ≤ n < Nout.

B. Generalized Entanglement in Groups ofM Inputs (M ≥
3)

We extend the proposed entanglement process to using
M inputs and providingM entangled descriptions, each
comprising the linear superposition of two inputs. This
ensures that, for everyn (0 ≤ n < Nout), any single failure
will be recoverable within each group ofM output samples.

The condition for ensuring that overflow is avoided is

(M − 1) l + k ≤ w (12)

and the dynamic range supported for all outputs is (∀m,n):

dm,n ∈ {−2(M−3)l+k (2l−1 − 1) ,2(M−3)l+k (2l−1 − 1)}
(13)

We now define the following operator that generalizes the
proposed numerical entanglement process:

E =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0 SlSl 1 ⋯ 0 0⋱
0 ⋯ Sl 1 0

0 ⋯ 0 Sl 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦M×M
(14)

with E the circulant matrix operator comprising cyclic
permutations of the1 ×M vector[1 0 ⋯ 0 Sl].

As before, in the generalized entanglement in groups of
M streams, the values forl and k are chosen such that
l + k is maximum within the constraint of (12) andk ≤ l.
Moreover, the exact same principle applies, i.e., pairs of
inputs are entangled together (with one of the two shifted
by l bits) to create each entangled input stream of data. Any
LSB operation is then performed directly on these input
streams andany single fail-stop failure will be recoverable
within each group ofM outputs. For every input stream
positionn, 0 ≤ n < Nin, the entanglement vector performing
the linear superposition of pairs out ofM inputs is now
formed by:

[ǫ0,n ⋯ ǫM−1,n]T = E {[c0,n ⋯ cM−1,n]T} . (15)

After the application of (9), we can disentangle every
output stream elementδm,n, 0 ≤ n < Nout, as follows. We
first identify the unavailable entangled output streamδr

(with 0 ≤ r < M ) due the single core failure. Then, we
produce the2w-bit temporary variabledtemp by:

dtemp= M−2∑
m=0

(−1)m S(M−2−m)l {δ(r+1+m)modM,n} . (16)

Notice that (16) does not useδr. We can then extract the
value of d̂r,n and d̂(r+M−1)modM,n directly from dtemp:

d̂(r+M−1)modM,n = S−[2w−(M−1)l] {S2w−(M−1)l {dtemp}}
(17)

d̂r,n = S−(M−1)l {(−1)M (dtemp− d̂M−1,n)} . (18)

The other outputs can now be disentangled by (1 ≤ m <
M − 2):

∀m ∶ d̂(r+m)modM,n = δ(r+m)modM,n − Sl {d̂(r+m−1)modM,n} .
(19)

Given that for every output positionn we are able to recover
all results of allM streams without usingδr,n in (16)–(19),
the proposed method is able to recover from a single fail-
stop failure in one of theM entangled streams.

Remark 4 (dynamic range of generalized entanglement
and equivalence to checksum methods):Examples for the
maximum bitwidth achievable for different cases ofM

are given in Table I assuming a 32-bit representation. We
also present the dynamic range permitted by the equiva-
lent checksum-based method [(3)–(9)] in order to ensure
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that its checksum stream does not overflow under a 32-
bit representation. Evidently, forM ≤ 10, the proposed
approach incurs loss of1 to 9 bits of dynamic range
against the checksum-based method, while it allows for
higher dynamic range than the checksum-based method
for M ≥ 11. At the same time, our proposal does not
require the overhead of applying the LSB operations to an
additional stream, as it “overlays” the information of each
input onto another input via the numerical entanglement
of pairs of inputs. Beyond this important different,our
approachoffers the exactequivalentto checksummethods
of (3)–(5) for integer inputs. Therefore, equivalently to
checksum methods, beyond recovery from single fail-stop
failures, our proposal can also be used for the detection of
silent data corruptions (SDCs) in any input stream, as long
as such SDCs do not occur in coinciding output stream
positions. We plan to explore this aspect in future work.

Table I
EXAMPLES OF l AND k VALUES AND BITWIDTH SUPPORTED FOR THE

OUTPUT DATA UNDERw = 32 BITS AND: (i) DIFFERENT NUMBERS OF

ENTANGLEMENTS; (ii) CHECKSUM-BASED METHOD OF(3)–(9). ANY
FAILURE IN 1 OUT OFM STREAMS IS GUARANTEED TO BE

RECOVERABLE UNDER BOTH FRAMEWORKS.

M l k
Maximum bitwidth supported by

Proposed: Checksum-based
(M − 2) l + k w − ⌈log2 M⌉

3 11 10 21 30
4 8 8 24 30
5 7 4 25 29
8 4 4 28 29
11 3 2 29 28
16 2 2 30 28
32 1 1 31 27

IV. COMPLEXITY IN LSB OPERATIONS WITH

NUMERICAL ENTANGLEMENT

ConsiderM input integer data streams, each comprising
several samples and consider that an LSB operation op
with kernel g is applied on each stream. The operations
count (additions/multiplications) for stream-by-streamsum-
of-products between a matrix comprisingM subblocks of
N × N integers and a matrix kernel comprisingN × N

integers (see [9], [18], [24], [25] for example instantiations)
is: CGEMM =MN3. For sesquilinear operations like convo-
lution and cross-correlation ofM input integer data streams
(each comprisingN samples) with kernelg [see Fig.
1(a)], depending on the utilized realization, the number of
operations can range fromO (MN2) for direct algorithms
(e.g., time-domain convolution) toO (MN log2N) for fast
algorithms (e.g., FFT-based convolution) [19]. For example,
for convolution or cross-correlation under these settingsand
an overlap-save realization for consecutive block process-
ing, the number of operations (additions/multiplications)
is [19]: Cconv,time = 4MN2 for time domain processing
and Cconv,freq = M [(45N + 15) log2 (3N + 1) + 3N + 1]
for frequency-domain processing.

As described in Section III, numerical entanglement of
M input integer data streams (ofN samples each) re-
quiresO (MN) operations for the entanglement, extraction

and recovery per output sample. For example, ignoring
all arithmetic-shifting operations (which take a negligible
amount of time), based on the description of Section III the
upper bound of the operations for numerical entanglement,
extraction and recovery is:Cne,conv = 2MN . Similarly
as before, for the special case of the GEMM operation
using M subblocks ofN × N integers, the upper bound
of the overhead of numerical entanglement of all inputs is:
Cne,GEMM= 2MN2. For all values forN andM of practical
relevance (e.g.,100 ≤ N ≤ 1000 and 3 ≤ M ≤ 32) and
sesquilinear operations like matrix products, convolution
and cross-correlation, it can easily be calculated from the
ratios Cne,GEMM

CGEMM
, Cne,conv

Cconv,time
and Cne,conv

Cconv,freq
that the relative overhead

of numerical entanglement, extraction and recovery in terms
of arithmetic operations is below0.3%. Most importantly,

lim
N→∞

Cne,GEMM

CGEMM
= lim

N→∞

Cne,conv

Cconv,time
= lim

N→∞

Cne,conv

Cconv,freq
= 0,

(20)
i.e., the relative overhead of the proposed approach ap-
proaches0% as the dimension of the LSB processing
increases.

On the other hand, the overhead of checksum-
based methods in terms of operations count (addi-
tions/multiplications) for each case is represented by
Ccs,GEMM = 2MN2 + 1

M
CGEMM, Ccs,conv,time = 2MN +

1

M
Cconv,time and Ccs,conv,freq= 2MN + 1

M
Cconv,freq. As ex-

pected, the relative overhead of checksum methods con-
verges to 1

M
×100% as the dimension of the LSB processing

operations increases, i.e.,

lim
N→∞

Ccs,GEMM

CGEMM
= lim

N→∞

Ccs,conv,time

Cconv,time
(21)

= lim
N→∞

Ccs,conv,freq

Cconv,freq
(22)

= 1

M
.

Therefore, the checksum-based method for fail-stop mitiga-
tion leads to substantial overhead (above10%) when high
reliability is pursued, i.e., whenM ≤ 8. Finally, even for
the low reliability regime (i.e., whenM > 8), checksum-
based methods will incur more than4% overhead in terms
of arithmetic operations.

V. EXPERIMENTAL VALIDATION

All our results were obtained using an Intel Core i7-
4700MQ 2.40GHz processor (Haswell architecture with
AVX2 support, Windows 8 64-bit system, Microsoft Visual
Studio 2013 compiler). Entanglement, disentanglement and
fail-stop recovery mechanisms were realized using the Intel
AVX2 SIMD instruction set for faster processing. For
all cases, we also present comparisons with checksum-
based recovery, the checksum elements of which were also
generated using AVX2 SIMD instructions.

We consider the case of convolution operations of integer
streams. We used Intel’s Integrated Performance Primitives
(IPP) 7.0 [26] convolution routineippsConv_64f that
can handle the dynamic range required under convolutions
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Figure 2. Throughout results for convolution ofM integer streams. “Conventional” refers to conventional (failure-intolerant) convolution realization
using the state-of-the-art Intel IPP 7.0 library and it is used as a benchmark under: (a)M = 3; (b) M = 8.

with 32-bit integer inputs. We experimented with: input
size of Nin = 106 samples, several kernel sizes between
Nkernel ∈ [100, 4500] samples. Representative results are
given in Fig. 2 under two settings for the number of
input streams,M , and without the occurrence of failures,
i.e., when operating under normal conditions4. The results
demonstrate that the proposed approach incurs substan-
tially smaller overhead for a single fail-stop mitigation in
comparison to the checksum-based method. Specifically,
the decrease in throughput for the proposed approach in
comparison to the failure-intolerant case is only1.8%
to 2.8%, while checksum-based method incurs16.1% to
37.8% throughput loss for the same test. As expected
by the theoretical calculations of Section IV, this is an
order-of-magnitude higher than the overhead of numerical
entanglement.

VI. CONCLUSIONS

We propose a new approach to fail-stop failure recovery
in linear, sesquilinear and bijective (LSB) processing of
integer data streams that is based on the novel concept of
numerical entanglement. UnderM input streams (M ≥ 3),
the proposed approach provides for:(i) guaranteed recovery
from any single fail-stop failure;(ii) complexity overhead
that depends only onM and not on the complexity of the
performed LSB operations, thus, quickly becoming negli-
gible as the complexity of the LSB operations increases.
These two features demonstrate that the proposed solution
forms a third family of recovery from fail-stop failures
(i.e., beyond the well-known and widely-used checksum-
based methods and modular redundancy) and offers unique
advantages. As such, it is envisaged that it will find usage
in a multitude of systems that require enhanced reliability
against core failures in hardware with very low implemen-
tation overhead.

4Under the occurrence of one fail-stop failure, the performance of the
proposed approach remains the same as the results are disentangled as
soon as (any)M −1 output streams become available. On the other hand,
the performance of the checksum-based approach will decrease slightly
under a fail-stop failure, since results will need to be recovered from the
checksum stream.
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