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Failure Mitigation in Linear, Sesquilinear and
Bijective Operations On Integer Data Streams Via
Numerical Entanglement
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Abstract—A new roll-forward technique is proposed that that are particularly prone to fail-stop failures include
recovers from any singlefail-stop failure in 1 integer data distributed systems like grid computirid [4], sensor-nekwvo
streams (M > 3) when undergoing linear, sesquilinear or bijec- [5], webpage, or multimedia retrieval and object or face

tive (LSB) operations, such as: scaling, additions/subtietions, ition in i S$T61. fi ial i 7 etc. Th
inner or outer vector products and permutations. In the pro- recognition in images [6], financial computirig [7], etc. The

posed approach, thel input integer data streams are linearly COmpute- and memory-intensive parts of these applications
superimposed to form M numerically entangled integer data comprise linear, sesquilinear (also known as “one-anfl-hal

streams that are stored in-place of the original inputs. A sees  |inear”) and bijective operations, collectively called RS
of LSB operations can then be performed directly using these operations in this paper. These operations are typically

entangled data streams. The output results can be extracted . . L . .
from any M — 1 entangled output streams by additions and performed using single or double-precision floating-point

arithmetic shifts, thereby guaranteeing robustness to a fie  INputs or, for systems requiring exact reproducibility &md
stop failure in any single stream computation. Importantly, reduced hardware complexity, 32-bit or 64-bit integer or

unlike other methods, the number of operations required ﬁxed-point inputs_ Thus, ensuring robust recovery from

for the entanglement, extraction and recovery of the resul i ; ot i
is linearly related to the number of the inputs and does fail st?_p fall_urefs for appllc?yons fomprlsmg integer &S
not depend on the complexity of the performed LSB oper- operations 1S Or paramount importance.

ations. We have validated our proposal in an Intel processor

(Haswell architecture with AVX2 support) via convolution .

operations. Our analysis and experiments reveal that the A. Summary of Prior Work

proposed approach incurs only 1.8% to 2.8% reduction in Existing techniques that can ensure recovery from fail-

processing throughput in comparison to the failure-intoleant . . L .
approach. This overhead is 9 to 14 times smaller than that of stop failures comprise two categorie§) roll-back via

the equivalent checksum-based method. Thus, our proposal checkpointing and recomputation [8]] [9], i.e., methodst th
can be used in distributed systems and unreliable processor periodically save the state of all running processes, such

hardware, or safety-critical applications, where robustress that the execution can be rolled back to a “safe state” in case
against fail-stop failures becomes a necessity. of failures; (ii) roll-forward methods producing additional
Index Terms—linear  operations,  sum-of-products, “checksum” inputs/outputs [9]=[11] such that the missing
algorithm-based fault tolerance, fail-stop failure, numeical results from a core failure can be recovered from the
entanglement remaining cores without recomputation. Examples of roll-
forward methods include algorithm-based fault-tolerance
I. INTRODUCTION (ABFT) and modular redundancy (MR) methods [9]Z[16].
. , ) Although no recomputation is required in roll-forward
HE INCREASE of integration density[[1] andmethods (thereby ensuring quick recovery from a failure
aggressive voltage/frequency scaling in processggcrrence), checksum-based methods can incur significant
and custom-hardware desigris [2], along with the evetpmpytational and energy-consumption overhead because

increasing tendency to use commercial off-the-shelf prgs e additional checksum-generation and redundant com-
cessors to create vast computing clusters, have decre tions required [17].

the mean-time-to-failure of modern computing systems.
Therefore, it is now becoming imperative for distributed
computing systems to provide for fail-stop failure miti-B. Contribution

gation [3], i.e., recover from cases where one of their \ye nropose a new roll-forward failure-mitigation method
processor cores becomes unresponsive or does not reffNinear, sesquilinear (also known as one-and-half fjpea
the results within a predetermined deadline. Applicationg pijective operations performed in integer data streams.

. . . , . Examples of such operations are element-by-element addi-
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tional On-Line Testing Symposium (IOLTS 2015) and was sugggbby SUCH as. matrix multiplication []_21, (18], ConV0|Uti0nﬂ5§'
EPSRC, project EP/M00113X/1. correlation [[19], template matching for search algorithms
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[20], covariance calculations[6], integer-to-integeants- sequential index sefl to index set® corresponding to
forms [21] and permutation-based encoding systems [22], and circular convolution or cross-correlation wigh
which form the core of the applications discussed eaBeyond the single LSB operator indicated [d (2), we can
lier. Because our method performs linear superpositioatso assumseriesof such operators applied consecutively
of input streams onto each other, it “entangles” inpuh order to realize higher-level algorithmic processing, e
streams together and we term itmamerical entanglement multiple consecutive additions, subtractions and scaling
Our approach guarantees recovery from any single streamperations with pre-established kernels followed by dacu
processing failure without requiring recomputation. Impo convolutions and permutation operations. Conversely, the
tantly, numerical entanglement does not generate addltiomput data streams can also be left in their native state (i.e
“checksum” or duplicate streams and does not depend stored in memory), if op {x} andg = 1.

the specifics of the LSB operation performed. It is therefore

found to be extremely efficient in comparison to checksumy checksum-based Methods

based methods that incur overhead proportional to the

complexity of the operation performed. In their original (or “pure”) form, the input data streams

of (@) are uncorrelated and one input or output element
cannot be used for the recovery of another without inserting
C. Paper Organization some form of coding or redundancy. This is conventionally

In Section[dl, we introduce checksum based metho@§hieved via checksum-based methaods [9]) [10], [12}-[15],
and MR for fail-stop failure recovery in numerical streanf23]. Specifically, oneadditional input stream is created,
processing. In Sectiofi ]Il we introduce the notion ohich comprisechecksumsf the original inputs:
numerical entanglement and demonstrate its inherent re-
liability for LSB processing of integer streams. Section 1V r= [7’0 TNm—l]’ 3)
present; the complexitly of numericgl entanglements withm, using, for example, the sum of groups 8f input
|ntege_r linear or sesqwllnear operations. Sedfibn V mesamples [14] 5] at position in each strean) < n < Nin:
experimental comparisons and Sectlod VI presents some
concluding remarks. M1

Vn:r, = Z Crmn- 4)
Il. CHECKSUM/MR-BASED METHODS VERSUS "

Then the processing is performed in all input streams
NUMERICAL ENTANGLEMENT

co,-.-,cp—-1 and in the checksum input strearn(each
Consider a series o/ input streams of integers, eachyunning on a different core) by:

comprisingNi, sampled (M > 3):

do Co
Cp = [Cm,o ... cm7Nin—1:| ,0<m< M. (1) 3 _ : opg, (5)
. dar-1 cM-1
These may be the elements 8f rows of a matrix of e r

integers, or a set ofi/ input integer streams of data to

be operated upon with an integer kergelThis operation Any S”?g'e fail-stop core failure in the group of+1 cores
is performed by: executing [(b) can be recovered from using the remaining

M output streams. As discussed in partitioning schemes
for checksum-based methods and ABETI[14],1[15], the
recovery capability can be increased by using additional

ope{+,—,x,(_,_),®,( 035 )’*} @ weighted checksums.

with d,, the mth vector of output results (containing
Nout Values) and op any LSB operator such as element-Numerical entanglement mixes the inputs prior to pro-
by-element addition/subtraction/multiplication, infrerter cessing using linear superposition, and ensures the sesult
product, permutati(E"l (i.e., bijective mapping from the can be recovered via a mixture of shift-add operations.
Specifically, consideringy/ (M > 3) input streamsc,,,
INotations: Boldface uppercase and lowercase lettersdtaimatrices () < m < M (each (;omprising\/'in integer samples), each

and vectors, respectively; the corresponding italicizedercase indicate
their individual elements, e.@\ andam, »; d denotes the recovered valueelement of themth entangled stream denoted by, ,,

of d after disentanglement; all indices are integers. Opesatperscript (0 < n < Nin), comprises the superposition of two input
T denotes transpositiorju | is the largest integer that is smaller or equaelementsc, , and¢, ,, from different input streams and

to a (floor operation);[a] is the smallest integer that is larger or equal tg,, ; < ; ;
a (ceil operation);a < b anda > b indicate left and right arithmetic shift Oy’ .e.,0<z,y <M andz #y. The LSB operation op with

of integera by b bits with truncation occurring at the most-significantK€rmelg is Carr_ied out withM/ ir_1dependent cores Uti"?ing
or least significant bit, respectivelyymodb = a - | £ |b is the modulo the entangled input streams directly, thereby producieg th
operation. entangled output streands, (each comprisin integer
2We remark that we consider LSB operations that am data- |g Thp b$nd(' | % Vout gh final
dependent, e.g., permutations according to fixed index agtin the samp es). ese can be disentangled to recover the fina

Burrows-Wheeler transform [22]. resultsd,,,. Any single fail-stop failure in thé// processor

VYm: d;, =c,, 0pg

B. Proposed Numerical Entanglement



cores can be recovered from the results of the remaining

M -1 cores utilizing additions and shift operations. Vm: 6, = (€, 0Pg) . 9)
The complexity of entanglement, disentanglement (ex-

traction) and recovery does not depend on the complexfiyconceptual illustration of the entangled outputs aftgr (6

of the operator op, or on the length of the kernel (operan@fd [3) is given in Fid.]1. Our description until this point in

g. The entangled inputs can be written in-place and no adgicates a key aspedtbits of dynamic range are usedthin

tional storage or additional operations are needed duniag €ach entangled input/output in order to achieve recovery

execution of the actual operation. The entire process ¢ af§om one fail-stop failure occurring in the computation of

suitable for stream processors with entanglement applié: 01.n OF d2... As a practical instantiation of{(6), we

as data within each input stream is being read. Unli@n Setw =32, [ =11 andk =10 in a signed 32-bit integer

checksum or MR methods, numerical entanglement dgenfiguration.

not use additional processor cores, and the only detriment

is that the dynamic range of the entangled inpeys is k bits (M — 1)l bits
somewhat increased in comparison to the original inputs e kE—
c.,. However, as it will be demonstrated in the next section, P b ! :
this increase depends on the number of jointly-entangled i's'l{'d::} """""" 3
inputs, M, i.e., the desired failure recovery capability. 5 . p
Therefore, one can be traded for the other. S N D I TEEEE =
: £77 =
I1l. NUMERICAL ENTANGLEMENT FORFAIL-STOP :rSZ{dO,n} \\\‘
RELIABILITY IN LSB OPERATIONS Ot :"- ----- LT
We first illustrate our approach via its simplest instanti- i \
ation, i.e., entanglement dff = 3 inputs, and then present ! ‘.<< I
its general application and discuss its properties. :‘Sz {dl,n |
byt P
| I A . S——
1

A. Numerical Entanglement in Groups &f = 3 Inputs

1) Entanglementin the simplest form of entanglementrigure 1.  lilustration of three entangled outputs aftereger LSB
(M = 3), each triplet of input samples of the three integerocessing. The solid arrows indicate the maximum attéénalynamic

- range of each outpudy ., d1,, anddsz . The dotted rectangles and
< . , , , >
Streams’co'“’ Cln a”fj 627"’_ 0 <m < N, prOduceS the arrows illustrate that the contents of entangled output are contained
following entangled triplet via the superposition opesas: ithin the two other entangled outputs.

We now describe the disentanglement and recovery pro-

on = Stican}+con cess. The reader can also consult Elg. 1.
€in = Si{cont+ein (6) 2) Disentanglement and RecoverWe can disentangle
€2n = Si{cin}tcan the outputs by (< n < Now):
where:
) d, = Oan—-S{01n
S| (e itix0 - temp = 020 = 51 {010}
=0 e (-D)], if1<0 da = S-aw-1) {Soquw-1) {dremp}}

is the left or right arithmetic shift of by I bits. If we dopn = S-au{=(dtemp=da.n)} (10)

assume that the utilized integer representation comprises din = 012-8 {CZo,n}
w bits, thel-bit left-shift operations of[{6) must be upper-

bounded byw to avoid overflow. Therefore, if the dynamicThe f|rstt tthree. partsdo;‘[:(llt(r)]) zflstsu.me %'b'tt. Integer th
range of the input streams,, ¢y, ¢, is [+ k bits: representation is used for the interim operations, as the

temporary variablediemp is Stored in2w-bit integer rep-
91+ <w (8) resentation. However, all recovered outpuks,,, d; ,, and
da,,, require onlyw bits.
in order to ensure no overflow happens from the arithmetic Explanation of [ID)—see also Fi@l 1: The first part
shifts of [6). The values fot and k are chosen such thatcreates a composite number comprisifig, in the I + &
I+ k is maximum within the constraint of(8) anél< I. most-significant bits ands,_,, in the 2! least-significant bits
Via the application of LSB operations, eaeh, entangled (therefore,diemp requires3i + k bits). In the second part,
input stream @ < m < M) is converted to the entangledd, ,, is extracted by:(i) discarding the(2w - 2/) most-
output streaffi §,, (which containsNo,, values): significant bits;(ii) arithmetically shifting the output down

to the correct range. The third part ¢f110) usés, to
3For the particular cases of: @p{+, -}, g must also be entangled with g P ) !

itself via: gn < S;{gn} + gn, in order to retain the homomorphism of recoverdpm and, in the fourth part Of:aO)ioyn is used to
the performed operation. recoverdlm.



Remark 1 (operations withim bits): To facilitate our

exposition, the first three parts ¢f {10) are presented under L0 0§
the assumption of &w-bit integer representation. However, S Lo 00
it is straightforward to implement them via-bit integer €= (14)
operations by separatingemp into two parts ofw bits and O - & 10
performing the operations separately within these parts 0 0 & 1l

Remark 2 (recovery without the use &f,): Notice that with £ the circulant matrix operator comprising cyclic
(I0) does not uséy,,. This is a crucial element of our permutations of the x M vector[l 0o - 0 Sl].

approach: sincel ., Jl,n and cigm were derived without  As before, in the generalized entanglement in groups of
using do,, full recovery of all outputs takes place evenV/ streams, the values fdrand k& are chosen such that
with the loss of one entangled stream. We are able to dle k£ is maximum within the constraint of (1.2) ard< I.
this because, for every, 0 < n < Now, 61, andds,, Moreover, the exact same principle applies, i.e., pairs of
containcio_,n and d}yn, which suffice to recreatg, ,, if the inputs are entangled together (with one of the two shifted
latter is not available due to a fail-stop failure. This liisk by [ bits) to create each entangled input stream of data. Any
pictorially illustrated in Fig[dL. Since the entangled patt LSB operation is then performed directly on these input
is cyclically-symmetric, it is straightforward to demorage  streams an@ny single fail-stop failure will be recoverable
that recovery from loss of any single out the three outputithin each group ofA/ outputs. For every input stream
streams is possible following the same approach. positionn, 0 < n < Ni,, the entanglement vector performing
Remark 3 (dynamic rangeBit [ + k& within each re- the linear superposition of pairs out af inputs is now
covered outputly ., d; ,, andd,,, represents its sign bit. formed by:
Given that:(i) each entangled output comprises the addition
of two outputs (with one of them left-shifted ldybits); (ii) T T
the entangled outputs must not exceédk bits, we deduce [0 ] =€ {[CO’" eM-1n] } - (15)
that the outputs of the LSB operations must not exceed theAfter the application of[(9), we can disentangle every
range output stream elemens,, ,,, 0 < n < Noy, as follows. We
first identify the unavailable entangled output stream
(with 0 < r < M) due the single core failure. Then, we
Vn: don, di g, do, € {— (28777 = 20) 2R 2ol produce the2w-bit temporary variablelemp by:
(11)
Therefore, [(Il) comprises the range permissible for the M=2
LSB operations of[{9) with the entangled representation of demp= Y. (=1)" S(ar-2-m) {0(r+10m)motrs,n } - (16)
(6). Thus, we conclude that, for integer outputs produced m=0
by the LSB operations of{9) with range bounded byl (11)Notice that [IB) does not usk.. We can then extract the
the extraction mechanism &f{10)riecessary and sufficientvalue ofd,., andd(,...ar-1ymoan,n directly from diemp
for the recovery ofiny single stream iy ,,, 61,5, 02, fOr

all stream positions:, 0 < 7 < Nou d(r+1\1—1)m0d1\1.,n = S_[2w-(M-1)I] {SQw—(I\J—l)l {dtemp}}

17)

B. Generalized Entanglement in Groupsidfinputs (M >
3)

dr,n = Sf(Mfl)l {(—1)M (dtemp— dM—l,n)} . (18)
We extend the proposed entanglement process to usiﬂge other outputs can now be disentangled by (m <
M inputs and providingV/ entangled descriptions, eachM_2)_
comprising the linear superposition of two inputs. This '
ensures that, for every (0 < n < Noi), anysingle failure
will be recoverable within each group 8f output samples. Vm : J(Hm)mode = O(r+m)mod,n — S {d(ﬂm_l)mowm}.

The condition for ensuring that overflow is avoided is (19)

Given that for every output positianwe are able to recover
(M-1)l+k<w (12)  all results of all M streams without using,.,, in (18)-[19),
the proposed method is able to recover from a single fail-
and the dynamic range supported for all outputs/igi(n):  stop failure in one of thél/ entangled streams.
Remark 4 (dynamic range of generalized entanglement
and equivalence to checksum methodS}amples for the
i € { -2k (9171 1) o(M=8)lek (o171 _ 1)} maximum bitwidth achievable for different cases bf
(13) are given in Tabl€ll assuming a 32-bit representation. We
We now define the following operator that generalizes ttedso present the dynamic range permitted by the equiva-
proposed numerical entanglement process: lent checksum-based methodl[(8}~(9)] in order to ensure



that its checksum stream does not overflow under a 3ad recovery per output sample. For example, ignoring
bit representation. Evidently, foM < 10, the proposed all arithmetic-shifting operations (which take a negligib
approach incurs loss of to 9 bits of dynamic range amount of time), based on the description of Sedtidn Il the
against the checksum-based method, while it allows fapper bound of the operations for numerical entanglement,
higher dynamic range than the checksum-based methedraction and recovery iSCheconv = 2M N. Similarly

for M > 11. At the same time, our proposal does noas before, for the special case of the GEMM operation
require the overhead of applying the LSB operations to arsing M subblocks of NV x N integers, the upper bound
additional stream, as it “overlays” the information of eacbf the overhead of numerical entanglement of all inputs is:
input onto another input via the numerical entanglemette cemm= 2M N2. For all values forV and M of practical

of pairs of inputs. Beyond this important differerdur relevance (e.g.J00 < N < 1000 and 3 < M < 32) and
approacthoffers the exactequivalentto checksummethods sesquilinear operations like matrix products, convohutio
of @)-(8) for integerinputs. Therefore, equivalently toand cross-correlation, it can easily be calculated from the
checksum methods, beyond recovery from single fail-stoptios C”ZE;:”AM gczenjz“mve and g"e‘fm that the relative overhead
failures, our proposal can also be used for the detectionaffnumerical entanglement, extraction and recovery ingerm
silent data corruptions (SDCs) in any input stream, as long arithmetic operations is belo®.3%. Most importantly,

as such SDCs do not occur in coinciding output stream
positions. We plan to explore this aspect in future work.

11 Che,GEMM -k Cre,conv - lim Cre,conv -0

- - -~ — )

N—oo CGEMM N—oo Cconv,time N—oo Cconv,freq
Table | (20)

EXAMPLES OFl AND k VALUES AND BITWIDTH SUPPORTED FORTHE  |.e., the relative overhead of the proposed approach ap-

OUTPUT DATA UNDERw = 32 BITS AND: (i) DIFFERENT NUMBERS OF proaches0% as the dimension of the LSB processing
ENTANGLEMENTS; (i) CHECKSUM-BASED METHOD OF(3)—-[d). ANY

FAILURE IN 1 OUT OF M STREAMS IS GUARANTEED TO BE increases.
RECOVERABLE UNDER BOTH FRAMEWORKS On the other hand, the overhead of checksum-

NaiGT Biwa Suppored By t_)ased m_ethod§ in terms of operat_ions count (addi-

anEe Proposed: | Checksum-based t|ons/mult|pl|cat|ons) for each case is represented by
(M-2)l+k w - [logy M1 Cc's GEMM = 2MN? + _CGEMMy Ccsconvtlme = 2MN +

i 181 180 gi gg Cconvume and Ces convfreq= 2M N + i Cconvfreq- As ex-

5714 5 55 pected the relative overhead of checksum methods con-

8 | 4 | 4 28 29 verges toﬁl—l x100% as the dimension of the LSB processing

111312 29 28 operations increases, i.e.,

6] 2| 2 30 28

32 1 1 31 27 lim Ccs,GEMM _ lim Ccs,conv,time (21)

N—oo CgemmMm N—oo  Ceony,time

li Cc's,conv,freq

(22)

IV. COMPLEXITY IN LSB OPERATIONS WITH N C
- conv,freq
1

NUMERICAL ENTANGLEMENT

ConsiderM input integer data streams, each comprising RV
several samples and consider that an LSB operation
with kernel g is applied on each stream. The operatio
count (additions/multiplications) for stream-by-stresimm-
of-products between a matrix comprisidg subblocks of
N x N integers and a matrix kernel comprising x N
integers (see [9][[18]( [24].[25] for example instaniisis)
is: Ceemm = M N3. For sesquilinear operations like convo-
lution and cross-correlation dff input integer data streams
(each comprisingV samples) with kerneg [see Fig. V. EXPERIMENTAL VALIDATION
[Di(a)], depending on the utilized realization, the number of All our results were obtained using an Intel Core i7-
operations can range from (MNQ) for direct algorithms 4700MQ 2.40GHz processor (Haswell architecture with
(e.g., time-domain convolution) 10 (M N log, N) for fast AVX2 support, Windows 8 64-bit system, Microsoft Visual
algorithms (e.g., FFT-based convolution)|[19]. For examplStudio 2013 compiler). Entanglement, disentanglement and
for convolution or cross-correlation under these settangs  fail-stop recovery mechanisms were realized using thé Inte
an overlap-save realization for consecutive block prece#®/X2 SIMD instruction set for faster processing. For
ing, the number of operations (additions/multiplicatipnsall cases, we also present comparisons with checksum-
is [L9]: Ceonviime = 4M N? for time domain processing based recovery, the checksum elements of which were also
and Ceonvireq = M [(45N +15)log, (3N +1)+3N +1] generated using AVX2 SIMD instructions.
for frequency-domain processing. We consider the case of convolution operations of integer

As described in Section]ll, numerical entanglement aftreams. We used Intel’s Integrated Performance Primsitive
M input integer data streams (df samples each) re- (IPP) 7.0 [26] convolution routind ppsConv_64f that
quiresO (M N) operations for the entanglement, extractionan handle the dynamic range required under convolutions

‘?Herefore the checksum-based method for fail-stop mitiga
"fon leads to substantial overhead (abavé&r) when high
reliability is pursued, i.e., whed/ < 8. Finally, even for
the low reliability regime (i.e., whed/ > 8), checksum-
based methods will incur more thaf overhead in terms
of arithmetic operations.
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Figure 2. Throughout results for convolution df integer streams. “Conventional” refers to conventionallfe-intolerant) convolution realization
using the state-of-the-art Intel IPP 7.0 library and it iedigs a benchmark under; (& = 3; (b) M = 8.

with 32-bit integer inputs. We experimented with: input
size of Ni, = 10 samples, several kernel sizes between
Neemel € [100, 4500] samples. Representative results aré!!
given in Fig.[2 under two settings for the number of
input streamsM, and without the occurrence of failures,
i.e., when operating under normal conditihnEhe results o
demonstrate that the proposed approach incurs substaH-
tially smaller overhead for a single fail-stop mitigatiom i
comparison to the checksum-based method. Specificall
the decrease in throughput for the proposed approach
comparison to the failure-intolerant case is only8%

to 2.8%, while checksum-based method incuré.1% to
37.8% throughput loss for the same test. As expecte
by the theoretical calculations of Sectign] IV, this is an
order-of-magnitude higher than the overhead of numerical
entanglement. g

VI. CONCLUSIONS 6]
We propose a new approach to fail-stop failure recovery
in linear, sesquilinear and bijective (LSB) processing of7
integer data streams that is based on the novel concept of

numerical entanglement. Undaf input streams i/ > 3),
the proposed approach provides f@):guaranteed recovery g
from any single fail-stop failure{ii) complexity overhead
that depends only oM and not on the complexity of the
performed LSB operations, thus, quickly becoming neglirg
gible as the complexity of the LSB operations increases.
These two features demonstrate that the proposed solution
forms athird family of recovery from fail-stop failures [10
(i.e., beyond the well-known and widely-used checksum-
based methods and modular redundancy) and offers unique
advantages. As such, it is envisaged that it will find usag]él]
in a multitude of systems that require enhanced reliability
against core failures in hardware with very low implemeri12]
tation overhead.
[13]

4Under the occurrence of one fail-stop failure, the perfaroeaof the
proposed approach remains the same as the results areadiiedt as
soon as (any)\/ — 1 output streams become available. On the other hanfl4]
the performance of the checksum-based approach will deerslightly

under a fail-stop failure, since results will need to be weced from the
checksum stream.
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