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Introduction 
•  Laser fault injection may be used to alter a behavior of an integrated 

circuit (IC) 
•  e.g. retrieve/modify secret data in integrated circuit 

•  Sensors are used to catch and flag when a perturbation appears 

• Bulk Built-In Current Sensors (BBICS) were developed to detect the 
transient bulk currents induced in the bulk of ICs 

•  This presentation reports the experimental evaluation of a complete 
BBICS architecture, designed to simultaneously monitor PMOS and 
NMOS wells, under Photoelectric Laser Stimulation (PLS) 
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Single-Events Effects (SEE) 3 

•  Example: Laser effect on a CMOS inverter with its input at low level 
•  Photocurrent flows through the Psubstrate  
•  Sensitive junction is the Drain of NMOS which is in OFF state 

•  State of the output from ‘1’ to ‘0’ 
•  Stuck-at fault 

‘0’	
  

Sensitive junction 



Experimental validation of a BBICS for detecting laser-induced currents  
Clément Champeix 

BBICS principles 
• BBICS stands for Bulk Built-In Current Sensor 

•  Principle : The BBICS detect all single-event transient currents in a target thanks to its 
different biasing taps in a target. 
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•  Psubstrate biased thought the nBBICS 
•  nBBICS detects the photocurrent flowing in 

the sensor 

•  BBICS bias the target 
•  BBICS detect the photocurrent flowing the 

BBICS taps 

nBBICS principle Principle of the BBICS 
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Architecture of the single BBICS used in 
experiments 5 

•  Single BBICS architecture and SEE detection 
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Layout distribution and tapping 6 

•  « Hybrid tapping » on target or 50% 
•  Merge classical well tapping at power 

supply and BBICS tapping 

•  Classical well tapping 
•  Nwell tapping at 1.2V  
•  Psub tapping at 0V 

•  BBICS well taping 
•  P taps and N taps 

•  Target far from sensor 
•  Avoid perturbations in the 

BBICS itself 
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Theoretical hypothesis 7 

•  Experimental hypothesis 
•  Photocurrents flowing from VDD to GND may follow two paths 
•  Photocurrent will choose the less resistive path depending on the position 

Resistors 
VDD or GND < BBICS 

•  Less resistive path is GND/VDD path compared to BBICS taps 
•  No detection close to VDD/GND 

Laser 
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Experiments 
•  Experimental set up 

•  Wavelength: 1064 nm (near Infra Red) 
•  Spot size: ~ 1 µm 
•  Laser through silicon substrate backside 
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•  Laser power: 300 mW and 250 mW 
•  Laser pulse duration: 200 ns, 100 ns and 50 ns 
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BBICS evaluation 9 

(a) Laser pulse duration of 200 ns 

Ntap 

Gnd 
Vdd 

Gnd 
Vdd 
Ptap 

(b) Laser pulse duration of 100 ns 

Gnd 
Vdd 

(c) Laser pulse duration of 50 ns 

Ptap + Ntap 

•  BBICS sensitivity maps for a laser pulse power of 300 mW 

• Results analysis 
•  Full coverage for laser pulse duration of 200 ns  
•  Detection effective close to the N and P tap couples 
•  Low detection areas close to N or P tap alone  
•  Low detection areas close to VDD or GND taps  

BBICS detection No detection BBICS Target 

300 mW 250 mW 
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BBICS evaluation 10 

•  BBICS sensitivity maps for a laser pulse power of 250 mW 

• Results analysis 
•  Detection effective close to the N and P tap couples 
•  No detection areas close to N or P tap alone  
•  No detection areas close to VDD or GND taps  

(a) Laser pulse duration of 200 ns (b) Laser pulse duration of 100 ns 

Ptap + Ntap 

(c) Laser pulse duration of 50 ns 

BBICS detection No detection BBICS Target 

300 mW 250 mW 



Experimental validation of a BBICS for detecting laser-induced currents  
Clément Champeix 

Conclusion and perspectives 

•  The detection is effective for long laser pulse durations close to N 
and P taps couples but fail for short pulses duration 

• Detection effective close to BBICS taps couples 

• No detection everywhere because of the hybrid tapping  
•  The classical biasing (VDD and GND) hide the BBICS detection 

•  Perspectives and future works 
•  New BBICS will be designed and tested to validate other tapping (100% BBICS 

taps) 
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