
Lightweight Protection of Cryptographic Hardware
Accelerators against Differential Fault Analysis
Ana Lasheras, Ramon Canal, Eva Rodrı́guez

Departament d’Arquitectura de Computadors
Universitat Politecnica de Catalunya, Barcelona, Spain
ana.lasheras@est.fib.upc.edu, {rcanal,evar}@ac.upc.edu

Luca Cassano
Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano, Italy
luca.cassano@polimi.it

Abstract—Hardware acceleration circuits for cryptographic
algorithms are largely deployed in a wide range of products.
The HW implementations of such algorithms often suffer from a
number of vulnerabilities that expose systems to several attacks,
e.g., differential fault analysis (DFA). The challenge for designers
is to protect cryptographic accelerators in a cost-effective and
power-efficient way. In this paper, we propose a lightweight tech-
nique for protecting hardware accelerators implementing AES
and SHA-2 (which are two widely used NIST standards) against
DFA. The proposed technique exploits partial redundancy to first
detect the occurrence of a fault and then to react to the attack
by obfuscating the output values. An experimental campaign
demonstrated that the overhead introduced is 8.32% for AES
and 3.88% for SHA-2 in terms of area, 0.81% for AES and
12.31% for SHA-2 in terms of power with no working frequency
reduction. Moreover, a comparative analysis showed that our
proposal outperforms the most recent related countermeasures.

Index Terms—AES, Attack Resistance, Cryptographic Cores,
Differential Fault Analysis, Hardware Security, SHA-2

I. INTRODUCTION AND RELATED WORK

Hardware accelerators implementing cryptographic algo-
rithms are nowadays employed in an wide range of products,
such as smart phones and smart cards. These systems not only
expose performance and cost requirements but also security
ones. Mathematically speaking, modern cryptographic algo-
rithms are robust [1]. Yet, their implementations may suffer
from security flaws. In the last years, several cryptographic
hardware accelerators demonstrated to be prone to a number
of attacks, among which differential fault analysis (DFA) [2].
As a result, the deployed systems may be vulnerable although
featuring security-dedicated modules.

DFA consists in: i) injecting faults into the circuit while it
is performing encryptions/decryptions, ii) collectin+g incorrect
outputs, and iii) analysing the collected outputs to infer secret
information. DFA attacks rely on the ability to select the
erroneous values to inject or the points of the circuit where
to inject them (or even both). This makes the amount of data
required to infer the secret information particularly small, thus
allowing the attacker to achieve its goal in a reduced time [2].

Several approaches exist to protect cryptographic circuits
against DFA. As a general solution, independent of the specific
algorithm, it is possible to make the circuit physically inac-
cessible, e.g., through tamper-proof boxes and on-chip sensors,
as for the high-end crypto-core IBM 4764 [3]. This approach
is effective but very costly, since it relies on non-standard

technologies. Algorithm-specific countermeasures exist and
are less costly. In this paper, we focus on AES and SHA-2
(which are two widely used NIST standards).

When looking at AES-specific protection techniques, several
proposals exist where time or spatial redundancy [4], [5] or
error detection codes [6], [7] is applied. The main issue in
these solutions is the area or working frequency overhead.
More recent proposals have been presented in [8], [9]. In [8],
the computation of each AES round is duplicated and results
are compared. In [9], the AES original input is encoded into
two different polynomial residue number system (which is not
the residue checking referred in the current paper). Then, one
nominal AES works on the original input while two replicas
work on the encoded inputs. The results produced by the three
replicas are then compared to detect the occurrence of a fault.

In the very last years, also SHA (in particular its keyed
employment for authentication purposes) received attention
from the security community and several protection mecha-
nisms have been proposed [10]–[12]. In [10] parity-checking
is employed to detect the occurrence of faults. In [11] the
output of each round is rotated by a random number before the
subsequent round, and then shifted back, so that the results do
not change. Finally, in [12] two replicas are employed and the
outputs of each round are scrambled between the two replicas.

In this paper, we propose a novel and lightweight protec-
tion technique based on partial selective replication against
DFA attacks for hardware accelerators implementing the AES
and SHA-2 algorithms. More in details, the conventional
implementations of AES and SHA-2 are paired with replicas
(dubbed the n-AES, and n-SHA, respectively). The input values
fed into the replica circuit are a n-bit subset of the input
values fed into the conventional circuit. At the end of the
execution, the output of the replica circuit is compared with
the corresponding n-bits of the output of the conventional
circuit. In case a fault perturbated the processing of the
conventional circuit, this check will fail; thus, identifying a
possible fault attack. Otherwise, the check will pass. When a
fault is detected, a (pseudo-)random output value is produced
in order to make differential fault analysis unfeasible.

The remainder of this paper is organized as follows: Sec-
tion II describes the basics of AES and SHA-2 and then
surveys the existing AES- and SHA-specific DFA attacks;
Sections III and IV introduce the details of our protection



technique; Section V reports about a set of experiments carried
out to measure the effectiveness of the proposed solution and
the introduced overhead also presenting a comparison with a
set of related solutions; Section VI discusses the limitations
of our proposal; Section VII concludes the paper.

II. THE AES AND SHA-2 ALGORITHMS AND ATTACKS

We introduce the basics of AES and SHA-2; and then, we
survey the available DFA attacks. We do not discuss general
attacks not specifically addressing HW implementations.

A. The AES Algorithm and DFA Attacks to AES

The AES (Advance Encryption Standard), presented in [13],
is the most widely adopted symmetric-key encryption algo-
rithm. AES is based on the substitution–permutation network
(SP-network) design principle which employs a network of
substitution boxes (S-boxes) and permutation boxes (P-boxes).
Substitution and permutation are used to make the relation be-
tween the input plaintext and the output ciphertext difficult to
understand (confidentiality property). Such SP-network takes
the plaintext and the 128-, 192-, or 256-bit key as inputs, and
applies 10, 12, or 14 rounds (depending on the key size) of
S-boxes and P-boxes to produce the ciphertext. The output of
each round is called the state. Generally speaking, an S-box
(generally implemented as a lookup table) takes m input bits
and transforms them into n output bits. P-boxes are then used
to spread the output bits of an S-box through the input bits of
the subsequent S-box. At the end of each round the round key
(obtained from the overall key) is combined with the state by
using XOR operations (key addition). Decryption is performed
by reversing the process: using the inverses of the S-boxes and
P-boxes and applying the round keys in reversed order.
Attacks to AES: A simple attack to AES has been proposed
in [14]. It changes a single bit after the first key addition. The
objective is to reset a single bit in the output state of the first
round and to observe whether the value of the ciphertext has
changed: if yes, the attacker infers that the original value of
the bit in the state was 1 (because of the XOR operation),
otherwise it was 0. With this attack it is possible to recover
one bit of the key, and thus, by changing the injection location,
the entire key can be retrieved, one bit at a time. This attack
has been demonstrated to be practically infeasible due to the
very precise timing required of the fault injection to exactly
inject into the output state of the first round.

The advanced version of the previous attack has been
proposed in [15], where the injection happens during the
last round and causes a single-byte corruption in the output
ciphertext. The attacker collects a pair of correct and corrupted
ciphertexts, c and c̃, respectively. In this way the attacker can
reduce the number of possible bytes of the key that have been
employed to encrypt the corrupted byte of c̃ by inverting the
effect of the last round. By performing several injections in the
same byte of the input state the attacker can infer exactly the
byte of the key used to encrypt the corrupted byte of c̃ and
then, by extending the procedure to remaining bytes of the
input state the attacker can infer the entire key. This attack

has been extended in [16] where the same procedure can be
applied to any round (instead of the last round), thus making
the attack much simpler to be deployed.

A different attack involves the complete blanking or
the manipulation of the S-Box lookup tables, achievable
through resetting or reconfiguring the memory where they
are stored [17], [18]. In this way the attacker is able to
immediately recover the last round key. This attack has been
proved to be feasible on a number of microcontrollers where
the S-Box was stored in the internal flash memory or where
the AES algorithm was accelerated on an FPGA device.

A last family of attacks to AES targets the key schedule
that is the process executed to generate round keys from the
user supplied key [15], [19]. These attacks exploit the regular
structure of the key schedule to infer bytes of the key through
corrupting one or more bytes during the generation of the
last round key. Although effective when the key schedule is
precomputed and its results are stored in some permanent
memory, this attack is not feasible when the generation of
the round keys is performed on the fly.

Our technique represents an effective and lightweight coun-
termeasure against fault attacks targeting the round logic of
AES. Fault attacks targeting the content of the S-boxes are
not covered by our proposal.

B. The SHA-2 Algorithm and DFA Attacks to SHA-2

SHA-2 (Secure Hash Algorithm 2) is a widely employed
hash function still largely suggested by NIST [20]. SHA-2
is built upon the Davies–Meyer structure: the input message
m is split into fixed-length blocks mi (applying padding if
necessary) and goes through a number of rounds. At each ith

round, block message mi is fed into a block-cypher as the
round key, while hi−1, which is the output of the previous
round, is fed in the block cypher as the input message. Each
round produces the cyphertext ci that is then x-ored with hi−1
to obtain the round output hi. In the first round, when there is
no previous output value, a constant pre-specified initial value
h0 is employed. SHA-2 ensures by construction that given
two messages m1 and m2, the corresponding digests d1 and
d2 are the same if and only if m1 and m2 are the same. For this
reason, SHA-2 is employed to ensure integrity (no malicious
manipulation) of transmitted/received data. Moreover, in case
a secret key is added to the input message of SHA-2 (keyed
has function), not only integrity of the message is ensured, but
also authentication of the sender of the message.
Attacks to SHA-2: Given the relatively short time from its
publication, few works presenting fault attacks to SHA-2 have
been yet published. Given a message m, a secret key k and
digest d obtained by processing m + k with SHA-2, the
goal of the attacker is to modify m into m′ and generating
the corresponding d′ without knowing k so that m′ will be
accepted as an authentic message from the receiver.

The very first DFA-based attack to SHA-2 has been pro-
posed in [21] where random single faults are injected in the
same round of the algorithm during the computation of the
digest associated with a given message. All the “corrupted”



digests, together with the nominal one, are then used to infer
the internal state of the sponge at the injected round, thus
retrieving the secret key. This attack has been extended in [22]
where up to 16 bits are corrupted.

More recently fault attacks have been combined with SAT
problem formulation in the so called Algebraic Fault Analy-
sis [23], [24]. These approaches, still based on the injection of
faults during the execution of the algorithm, allow to retrieve
the secret key requiring a significantly reduced amount of
corrupted digests, thus speeding-up the attack.

The protection technique here presented represents an effec-
tive and lightweight countermeasure against all the discussed
fault attacks families against SHA-2.

C. Threat Model

In this paper, we assume that the attacker knows the
functionality implemented by the circuit and has a high-level
knowledge of the architecture of the circuit. On the other hand,
we assume that the attacker has no detailed knowledge of the
circuit layout, e.g., position of the flip-flops. We assume single
bit-flip attacks because this represents the worst case scenario
for our detection methodology. Should the attacker be able to
carry out a multiple bit-flips attack, the proposed methodology
would increase (or at least maintain) the detection capabilities.
Thus, the analysis in Section V only reports results from such
worst-case single bit-flip injection scenario.

III. APPLYING PARTIAL REPLICATION IN AES

As we previously discussed, AES performs a set of logical
operations for a given number of round iterations. Some of
the values used within the loop (the state) are rotated in
between each loop iteration. These loop logic operations can
be replicated either fully or partially. As a consequence, if
partial replication is adopted, only a subset of n-bits of the
state are replicated. Since all the operations involved in the
loop are logical operations, the n-bits selected for replication
do not depend on the remaining bits.

Not all AES internal operations can be protected without
adding a big overhead to the original design. For this reason,
these operations are not duplicated on our protection mech-
anism. One unprotected operation in our implementation of
AES is the subBytes operation. This operation is not protected
as it needs a lookup table to do the substitution of bytes and
we do not want to replicate all this table. The other operation
is the initial addRoundKey phase. It cannot be protected as it
directly uses the input key and the state of the main module
(i.e. aes 128). For this reason, we, hereby, use the term partial
replication as we are not replicating the full AES circuitry.

The shiftRows operation is used in the nine rounds of the
algorithm plus the final round. It is performed along with
the mixColumns operations and the addRoundKey operation.
Therefore, as these three operations are executed at the same
time, they are protected together. The protection of these
operations is performed through n-bit replicas of the original
signals and replicating the XOR operation of the last three
rows with a constant as the pseudo-code in listing 1 shows.

1 // Partial copy of the state columns
2 s0_rc = state_in[(96 + MOD_SIZE - 1)..96]
3 s1_rc = state_in[(64 + MOD_SIZE - 1)..64]
4 s2_rc = state_in[(32 + MOD_SIZE - 1)..32]
5 s3_rc = state_in[(MOD_SIZE - 1)..0]
6
7 // Divide output of the subBytes operations by cells
8 p = {p00, p01, p02, p03}
9 {p10, p11, p12, p13}
10 {p20, p21, p22, p23}
11 {p30, p31, p32, p33}
12
13 // Perform shiftRows and mixColumns to compute the
14 // state_out signal
15 z0_rc = p00 XOR p11 XOR p22 XOR p33 XOR k0_rx
16 z1_rc = p03 XOR p10 XOR p21 XOR p32 XOR k1_rc
17 z2_rc = p02 XOR p13 XOR p20 XOR p31 XOR k2_rc
18 z3_rc = p01 XOR p12 XOR p23 XOR p30 XOR k3_rc

Listing 1. Protected mixColumns

At the end of the each iteration of the algorithm, the output
of the conventional AES circuit is compared with the partial
replica. If they do not match, there has been -at least- a fault
(flip-flops, wires, logic) in one of the two circuits. In this
case, the circuit continues execution and, at the end of the
encryption/decryption, a (pseudo-) random text is forwarded
to the output of the circuit to make both differential fault
analysis and side-channel attacks unfeasible. This forwarding
(selection) logic needs to be carefully designed and protected,
e.g., through obfuscation, not to become a weakness.

IV. APPLYING PARTIAL REPLICATION IN SHA-2
In our implementation of SHA-2, there are four sets of

rounds (20 iterations per round) that perform logical operations
over the values. At the end of each round, the values for
the next round are computed. Consequently, we apply partial
replication at the iteration level. We cannot apply it at the
round level as left rotation operations are used (and the replica
does not have all the bits).

Listing 2 shows a pseudo-code of the protected operations
for SHA-2 where the replicated signals are denoted as the
name of the original signals concatenated with the suffix rc
(for replica circuit). We are able to replicate from 1 to 32
bits (being 32 the width used in the original circuit)

A. Rotary mechanism for higher fault coverage in SHA-2

Partial replication, as we will see in short, has a detection
capability proportional to the number of bits replicated. In
this section, we introduce a rotary mechanism so that every
arbitrary number of iterations, we stop protecting the lower
order n-bits and we protect (i.e. replicate) the next n-bit.

From the example in Figure1, we can see that the rotary
mechanism rotates taking n-bits to the left in each rotation,
where n is the number of bits to protect. The mechanism
implemented does not loop around when reaching the highest
order bit (i.e. it does not operate with a chunk of the high-
order bits and a chunk of the low-order bits). This has been
done because it is a considerable overhead for the replica to
correctly operate non-consecutive bits. For this reason, the
rotary mechanism protects all the possible chunks of n bits



1 for counter_val in 0 to 79
2 if (counter_val >= 0 AND counter_val <= 19)
3 f_rc = (b_rc and c_rc) or ((not b_rc) and d_rc)
4 k_rc = 0x5A827999 // Take last n bits
5 else if (counter_val >= 20 AND counter_val <= 39)
6 f_rc = b_rc xor c_rc xor d_rc
7 k_rc = 0x6ED9EBA1 // Take last n bits
8 else if (counter_val >= 40 AND counter_val <= 59)
9 f_rc = (b_rc and c_rc) or (b_rc and d_rc) or (c_rc

and d_rc)
10 k_rc = 0x8F1BBCDC // Take last n bits
11 else if (counter_val >= 60 AND counter_val <= 79)
12 f_rc = b_rc xor c_rc xor d_rc
13 k_rc = 0xCA62C1D6 // Take last n bits
14
15 temp_rc = (a leftrotate 5) + f_rc + e_rc + k_rc + w[i]
16 e_rc = d_rc
17 d_rc = c_rc
18 c_rc = b leftrotate 30
19 b_rc = a_rc
20 a_rc = temp

Listing 2. Protected SHA-2

going from the less significant to the most significant bit until
the next chunk is smaller than n. In this particular case, the
rotary mechanism uses the n high-order bits and it resets the
rotary mechanism to start again from bit zero. An alternative
to this implementation would be to forget about the last chunk
if it does not have n-bits. Yet, this reduces the protection
capabilities of the scheme (and specially, the high-order bits).

Figure 1 shows an example of how this rotation mechanism
would work using a replication value (n=14) value non-
multiple of the register width for the first three rounds. The
fourth round and the following are not represented as they will
copy the same behaviour (i.e. the fourth round behaves exactly
as the first round shown).

Finally, when an error is detected, the SHA-2 circuitry
applies the same procedure described for AES in section III.

V. EXPERIMENTAL RESULTS

A. Experimental Environment

We implemented the conventional AES and SHA-2 al-
gorithms; and, we extended both implementations with the
proposed protection mechanism. We implemented a VHDL-
level fault injector to measure fault detection capabilities. We
run the fault injection experiments on a server equipped with
one AMD EPYC 7401P (24-Cores) running at 3GHz with
128 GB of DDR4. To measure the overhead introduced by the
proposed protection mechanism we synthesized prototypes of
the nominal and protected AES and SHA-2 circuits using the
Virtex UltraScale+ FPGA (model: xcvu13p-fhga2104-3-e) as
a target device. We used Xilinx Vivado™as a development and
synthesis environment and we then employed the accompany-
ing Device Utilization Summary and Power Estimator tools
for area, power and time analysis.

B. Effectiveness Analysis

The first analysis we carried out aimed at measuring the
effectiveness of the proposed countermeasure in detecting
faults in the conventional AES and SHA-2 circuits and the
impact of the chosen number of protected bits on the achieved

Table I
NUMBER OF REQUIRED SIMULATIONS PER CONFIDENCE AND ERROR

MARGIN VALUE

Confidence 99% 95%
Error Margin 10% 5% 1% 10% 5% 1%
SHA-2 589 2354 58846 341 1363 34068
AES 6709 26839 670951 3885 15538 388429

fault detection capability. We considered a worst case attack
scenario, where the attacker is able to attack a single flip-flop
as this will certainly produce the most statistically significant
results for the attack. Note though, that the technique compares
the outputs of the conventional circuit with the output of the
n-bit replica. Therefore, any fault caused in the wires or any
multiple-bit fault that generates a change in the outputs will
also be detected by the proposed solution.

When dealing with simulation, statistically significant re-
sults are usually understood as 99% confidence level at 5%
error margin. Based on this target, the authors in [25] defined
the number of experiments (based on the input signals) needed
to reach the selected goal. Table I reports the number of
simulations (i.e. different combinations of input values and
fault location and clock cycle) needed to achieve the required
statistical significance. In this paper, we report the results
for 99% confidence and 1% error margin. Consequently, we
performed 671K simulations for each replica size (thus, 671K
* 32 in total) for the AES algorithm (which took almost 42
hours to complete in our server when using the batch mode
of Vivado™) and 60K simulations for each replica size for
SHA-2.
Critical Fault Identification: Due to logical and temporal
masking, not all faults lead to a modification of the output (i.e.
an error). Moreover, when the circuit works in the field, the
percentage of masked faults will even increase due to electrical
masking (this cannot be simulated with Vivado™). From a
differential fault analysis point of view, critical faults are only
those that eventually propagate to the output of the circuit.
By using the fault injection tool, we measured the amount of
critical faults for the considered designs1. It is worth noting
that the AES algorithm when unfolded (i.e. each round has
each own copy of the circuitry), just 10% of the faults generate
an erroneous output (as most of the faults fall in unused parts
at that precise moment). Yet, for the folded version of AES,
this number goes up to 88%. In the SHA-2 implementation
used 73.5% of the faults injected result in an erroneous output.
These faults (now errors) are the ones that have been used to
assess the effectiveness of the proposed detection technique.
Error Detection Capability Analysis: In order to analyze
the error detection capability of the proposed technique, we
implemented several versions of the protected AES and SHA-
2, each with a different number of protected bits. For each
given number of protected bits we performed a set of fault
injection experiments in which only the previously identified
errors have been considered.

1We did not inject faults in the replica circuits because this does not bring
any advantage to the DFA attacker.



Figure 1. Example of the rotary residue checker protecting 14 bits

Figure 2. Error detection w.r.t. the number of protected bits for AES

Table II
FAULT DETECTION AND OVERHEAD FOR THE AES PROTECTION

Fault Detection Overhead
Area Power Frequency

Our Approach 100.00% 8.00% 0.81% 0.00%
Mestiri [8] 85.96% 14.45% N.A. 49.02%
Chu [9] 100.00% 81.99% N.A. 0.17%

Figures 2 and 3 report the percentage of detected errors as
a function of the number of replicated bits. For both, AES and
SHA-2 the detection capability is proportional to the number
of replicated bits. It reaches 100% when replicating all the bits

In the case of SHA-2, Figure 3 also plots the detection
capabilities of the rotary mechanism. In this case, the rotary
mechanism proves to be useful when the number of protected
bits is small. For example, a 50% detection capability is
achieved with 11 bits (with the rotary mechanism) but it needs
16 bits for the baseline replication mechanism. Curiously, the
baseline outperforms the rotary mechanism between 28 and 31
bits. This is caused by the alternate protection of the high-order
n-bits or low-order n-bits which leaves the high-order 32-n bits
or low-order 32-n bits unprotected at a time (whereas for the
baseline, it is always the 32-n high-order bits). Thus, the rotary
mechanism is unable to detect all faults that appear in the low-
order bits (as they will be 50% of the time unprotected) plus,
being able to protect the high-order 32-n bits 50% of the time
does not compensate it.

C. Efficiency Analysis

After assessing the error detection capability of the proposed
partial replication, we also measured the introduced overhead

Figure 3. Error detection w.r.t. the number of protected bits for SHA-2

Table III
FAULT DETECTION AND OVERHEAD FOR THE SHA-2 PROTECTION

Fault Detection Overhead
Area Power Frequency

Our Approach 100.00% 3.88% 12.31% 0.00%
Luo [10] 83.60% 27.05% 48.69% 15.62%
Bayat [11] 100.00% 4.40% N.A. N.A.
Mestiri [12] 99.99% 68.37% N.A. 1.32%

in terms of area occupation and power consumption increase
and working frequency reduction. We considered the worst-
case scenario (w.r.t. the introduced overhead) which is the case
of a complete 32-bit replication. Moreover, we compared the
results achieved by our technique with several recent related
proposals. Tables II and III report the results of this analysis
for AES and SHA-2, respectively.

The protected AES requires 7.81% more LUTs than the
unprotected design (and also 12 more CLB registers and 15
extra Bounded IOB (not included in Table II). The pseudo-
random number generator (PRNG) adds an extra 0.51% area
overhead over the unprotected AES; making the total are over-
head 8%. We measured the power consumption increase by
averaging the all the performed simulations. The unprotected
AES dynamic power consumption is about 492 mW while for
the protected AES it is 496 mW, thus resulting in a 0.82%
overall power consumption increase. The PRNG, which is
always on to avoid side-channel analysis is responsible of 50%
of the power consumption increase. Finally, the protected AES
was able to work at the same maximum frequency (136 MHz)
as the unprotected circuit, thus no working frequency reduction
is caused by our proposal.



The protected SHA-2 requires 1.85% more LUTs than the
base design, 1 more F8 MUX and 17 extra Bounded IOB
(not included in Table III). The PRNG adds an extra 2%
area overhead over the unprotected SHA-2. Moreover, we
left the rotary mechanism in place for a 32-bits protection.
Nevertheless, the rotary mechanism does not introduce any
area overhead being it a matter of wiring. The dynamic power
consumption of the unprotected SHA-2 is 195mW while it
is 207mW and 209mW for the protected SHA-2 without and
with the rotary mechanism, respectively. Therefore, the worst-
case power overhead is 12.31% (5.13% caused by replication,
1.03% by the rotary mechanism; and 6.15% by the PRNG).
Finally, the protected SHA-2 works at the same maximum
frequency (74 MHz) as the unprotected circuit.

Finally, as shown in Tables II and III, the proposed protec-
tion detects 100% of the critical fault attacks for both AES
and SHA-2 overperforming the most recent related proposals
in terms of area, power and working frequency impact.

VI. SECURITY ANALYSIS AND LIMITATIONS

Our proposal protects SHA-2 from all possible fault attacks
and AES from all the fault attacks targeting the round logic
while S-box values are not protected. In case these are com-
puted on the fly, they do not represent a threat, as discussed
in [16]. On the other hand, in case these values are pre-
computed and stored, they can be effectively exploited for
DFA. Therefore, the memory that stores these values must be
protected.

A severe threat is related to the output forwarding logic as-
sociated with our proposal. Indeed, this represents a “common-
cause of failure”: by exploiting multiple fault injections the
attacker may produce an error in the nominal algorithm and
then induce the forwarding logic to forward the corrupted
value instead of the random one. This scenario may be
solved by applying circuit obfuscation/camouflaging to the
forwarding logic, making fault injection harder.

A final hypothetical threat would be the case where the
attacker is able to inject faults in both the nominal and
replicated algorithm and then induce the two replicas to
generate the same output. In such case, our solution would
totally fail. Nevertheless, we argue that, although it is possible
for the attacker to inject faults in both replicas, is is totally
unfeasible to make them generate the same output.

VII. CONCLUSIONS

We presented a lightweight protection mechanism based on
partial redundancy to detect fault attacks in HW accelerators
implementing AES and SHA-2 (which are two widely used
NIST standards) based on partial redundancy. The presented
results demonstrated that selectively replicating portions of the
circuits allow to achieve full detection of the critical fault
attacks. The overhead introduced is 8.32% for AES and 3.88%
for SHA-2 in terms of area, 0.81% for AES and 12.31%
for SHA-2 in terms of power with no working frequency
reduction. Moreover, a comparative analysis showed that our
proposal outperforms the most recent related countermeasures.

REFERENCES

[1] J. Katz and et al., Handbook of applied cryptography. CRC press,
1996.

[2] M. Joye and et al., Fault analysis in cryptography. Springer, 2012,
vol. 147.

[3] T. W. Arnold and et al., “Ibm 4765 cryptographic coprocessor,” IBM
Journal of Research and Development, vol. 56, no. 1.2, pp. 10–1, 2012.

[4] R. Karri and et al., “Fault-based side-channel cryptanalysis tolerant
rijndael symmetric block cipher architecture,” in Proceedings 2001 IEEE
Int. Symp. on Defect and Fault Tolerance in VLSI Systems, Oct 2001,
pp. 427–435.

[5] P. Maistri and et al., “A novel double-data-rate aes architecture resistant
against fault injection,” in Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC 2007), Sep. 2007, pp. 54–61.

[6] G. Bertoni and et al., “Error analysis and detection procedures for a
hardware implementation of the advanced encryption standard,” IEEE
Trans. on Computers, vol. 52, no. 4, pp. 492–505, April 2003.

[7] G. Bertoni and et al., “An efficient hardware-based fault diagnosis
scheme for aes: performances and cost,” in 19th IEEE Int. Symp.
on Defect and Fault Tolerance in VLSI Systems, 2004. DFT 2004.
Proceedings., Oct 2004, pp. 130–138.

[8] H. Mestiri and et al., “A high-speed aes design resistant to fault injection
attacks,” Microprocessors and Microsystems, vol. 41, pp. 47–55, 2016.

[9] J. Chu and et al., “Error detecting aes using polynomial residue number
systems,” Microprocessors and Microsystems, vol. 37, no. 2, pp. 228–
234, 2013.

[10] P. Luo and et al., “Concurrent error detection for reliable sha-3 design,”
in 2016 Int. Great Lakes Symposium on VLSI (GLSVLSI). IEEE, 2016,
pp. 39–44.

[11] S. Bayat-Sarmadi and et al., “Efficient and concurrent reliable realization
of the secure cryptographic sha-3 algorithm,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 33, no. 7, pp.
1105–1109, July 2014.

[12] H. Mestiri and et al., “Efficient countermeasure for reliable keccak
architecture against fault attacks,” in 2017 2nd Int. Conf. on Anti-Cyber
Crimes (ICACC), March 2017, pp. 55–59.

[13] NIST-FIPS, “Announcing the advanced encryption standard (aes),” Fed-
eral Information Processing Standards Publication, vol. 197, no. 1-51,
pp. 3–3, 2001.

[14] J. Blömer and et al., “Fault based cryptanalysis of the advanced
encryption standard (aes),” in Int. Conf. on Financial Cryptography.
Springer, 2003, pp. 162–181.

[15] C. Giraud, “Dfa on aes,” in Int. Conf. on Advanced Encryption Standard.
Springer, 2004, pp. 27–41.

[16] A. Barenghi and et al., “Fault attack on aes with single-bit induced
faults,” in 2010 Sixth Int. Conf. on Information Assurance and Security.
IEEE, 2010, pp. 167–172.

[17] D. Ziener and et al., in 2018 Int. Conf. of BRAM-based AES Implemen-
tations on FPGAs, Dec 2018, pp. 1–7.

[18] Y. Zhang and et al., “Persistent fault injection in fpga via bram mod-
ification,” in 2019 IEEE Conf. on Dependable and Secure Computing
(DSC), Nov 2019, pp. 1–6.

[19] C.-N. Chen and et al., “Differential fault analysis on aes key sched-
ule and some countermeasures,” in Australasian Conf. on Information
Security and Privacy. Springer, 2003, pp. 118–129.

[20] NIST-FIPS, “Announcing approval of federal information processing
standard (fips) 180-2, secure hash standard; a revision of fips 180-1,”
Federal Information Processing Standards Publication, 2002.

[21] N. Bagheri and et al., “Differential fault analysis of sha-3,” in Int. Conf.
on Cryptology in India. Springer, 2015, pp. 253–269.

[22] P. Luo and et al., “Differential fault analysis of sha3-224 and sha3-256,”
in 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), Aug 2016, pp. 4–15.

[23] S. Nejati and et al., “Algebraic fault attack on sha hash functions using
programmatic sat solvers,” in Int. Conf. on Principles and Practice of
Constraint Programming. Springer, 2018, pp. 737–754.

[24] P. Luo and et al., “Algebraic fault analysis of sha-3 under relaxed fault
models,” IEEE Trans. on Information Forensics and Security, vol. 13,
no. 7, pp. 1752–1761, July 2018.

[25] “Chapter 3 - architectural vulnerability analysis,” in Architecture Design
for Soft Errors, S. Mukherjee, Ed. Burlington: Morgan Kaufmann,
2008, pp. 79 – 120.


