
Error Modeling for Image Processing Filters
accelerated onto SRAM-based FPGAs

Cristiana Bolchini, Luca Cassano, Andrea Mazzeo, Antonio Miele
Dip. Elettronica, Informazione e Bioingegneria – Politecnico di Milano – Italy

{first name.last name}@polimi.it

Abstract—Image processing is today employed in a variety
of application fields, including safety- and mission-critical ones.
In these scenarios it is vital to carefully analyse the reliability
of the designed system before deployment and, if necessary,
to adopt specific hardening techniques. Two are the techniques
generally employed: circuit-level fault injection and application-
level functional error simulation. In this paper we present a set
of functional error models specific for a number of convolution-
based filters that are the basic building blocks for a wide
range of image processing applications. The presented error
models, derived through a number of circuit-level fault injection
experiments, may be integrated into application-level functional
error simulators, bridging the gap between the two strategies. The
presented error models are the first step towards combining the
accuracy of fault injection and the flexibility of error simulation
into a widely adopted reliability analysis tool.

Index Terms—Error Modeling, Error Simulation, Fault Injec-
tion, Fault Tolerance, Image Processing, Reliability Analysis

I. INTRODUCTION

Image processing is today employed in a variety of safety-
and mission-critical scenarios, where digital systems have
to meet reliability requirements [1]. As an example let us
consider a satellite hosting payload applications accelerated
onto an FPGA; such a system operates in a harsh environment,
where radiations may induce faults, e.g., Single Event Upset
(SEU), in the circuitry that may lead to a failure of the running
application [2]. This quest for reliability is exacerbated by
the recent trend/near-future interest in integrating autonomous
driving mechanisms in automotive or unmanned flying vehi-
cles [3]. Indeed, such systems rely on the perception func-
tionality; it processes images of the surrounding environment
taken from cameras to extract features that are then transmitted
to the control application to take driving decisions [4].

Image processing applications are generally highly data
and compute intensive tasks. Therefore, classical redundancy-
based fault detection and mitigation techniques, such as Du-
plication with Comparison (DWC) or Triple Modular Redun-
dancy (TMR), may not be affordable due to the excessive
overhead in terms of area occupation, performance degradation
or power consumption increase [5]. On the other hand, these
applications may expose an intrinsic degree of fault tolerance
due to several reasons: i) they may deal with noisy inputs
(e.g., sensors), ii) their outputs may be probabilistic estimates,
or iii) produced images may be used by a human, whose
perceptual limitations provide resiliency to a certain level of
inexactness [6]. It is therefore possible not to analyse the effect

of the faults at the circuit-level, but at the application-level, by
observing how faults (and their effect on the produced output)
affect the ability of the end-user application to carry out its
task [7]. This information may be exploited to specifically
tailor the hardening process and to reduce the implementation
costs. To do so, it is necessary first to accurately assess the
intrinsic resiliency of the application and then to finely tune the
hardening mechanisms so that the application-level reliability
requirements are met at a limited cost [7].

To pursue such strategy, it is necessary to analyze the
effects of the faults occurring in the underlying hardware
platform on the behaviour of the application itself. The current
best practice, based on circuit-level fault injection, allows
for an accurate reliability analysis, but it requires the overall
system to be fully implemented and deployed on an FPGA
device [8]–[11]. This represents a relevant limitation due to
the time to design a hardware component, thus not allowing
to provide a fast and early feedback to the hardening process
before the final implementation and deployment on the FPGA
device. Moreover, assessing the resiliency of the application by
analysing the results produced through fault injection may be
a complex and time-demanding task. When injecting a fault,
based on the inputs it may produce no error or it can be
masked, or again it may produce an intermediate incorrect data
that is later absorbed by the application. On the other hand,
error simulation, performed by injecting corrupted data in the
application, allows to perform an early and low cost reliability
analysis [12], [13]. Therefore, it is possible to perform a
reliability analysis at functional level, thus offering valuable
information to the hardening process without the need of time-
expensive iterations between the design and implementation
phases. Moreover, in every experiment the application will
be fed with actually corrupted data, not incurring in fault
activation and masking issues. The underlying hypothesis is
that the corrupted data artificially created well represents the
effects of a real possible fault, i.e., that the image error model
is accurate. As a matter of fact, the adoption of application-
level error simulation tools depends on the availability of
accurate and validated error models.

The main contribution of this paper is the definition of
functional error models for the basic operations of the image
processing field, to be exploited in error simulators. These
are the first steps for the definition of a functional framework
for the reliability analysis of complex image processing ap-
plications in the early phases of the design flow. Image error

models have been defined by observing the effects of faults
injected at the circuit-level in the hardware implementations
of the considered image processing filters. The considered
scenario consists of a set of convolutional filters, widely-used
basic image processing operators, implemented onto SRAM-
based FPGA; the adopted fault model is the SEU. The result
of the proposed analysis is an experimentally validated set of
13 error models. The obtained models are generic enough to
be integrated in an error simulation engine specific for image
processing applications; we show how the error models are
independent of the specific filter, of the input image and of the
injection time. Preliminary results shows a 30x improvement
of the analysis time w.r.t. the classical fault injection.

The rest of the paper is organized as follows. Next section
discusses the related work and Section III presents the consid-
ered image filters. Then, Section IV describes the framework
and the setup used the experimental campaign performed to
define the image error models, commented in the subsequent
Section V. Section VI discusses how such error models
can be exploited to speed-up the reliability analysis. Finally,
Section VII draws the conclusions and presents future work.

II. RELATED WORK

Several fault injection frameworks have been proposed in
the last decades; recent examples, compliant with modern
device families are [8]–[11]. Their architecture is pretty stan-
dard; it is based on the FPGA internal memory configuration
interface that is exploited to emulate an SEUs, directly ac-
cessed by custom modules or by the Xilinx SEM Intellectual
Property (IP), and a controller to coordinate the execution of
the fault injection campaign on a Design Under Test (DUT).
These fault injectors are employed to evaluate the robustness
of image processing applications (or part of them), such
as a Convolutional Neural Network (CNN) [9], an image
compression algorithm [10] or a K-means image clustering
one [11]. In the reported experiments, outputs are analyzed in
a more advanced way than the classical taxonomy (no-effect,
crash/timeout, silent data corruption) by using image quality
metrics (such as the SSIM in [10], [11]). In fact, the aim of
these approaches is to accurately analyze how disruptive the
fault is on the produced output. However, these frameworks
present several drawbacks, starting from the fact that the
final implementation of the system needs to be available and
integrated in the fault injection framework, waiving also an
early-stage evaluation of the system resiliency.

As an alternative to fault injection, error simulation can be
adopted. In error simulation, a prototype of the system under
analysis is exercised with emulated faults, i.e., corrupted data
are injected into the application. In [12], [13] two different
frameworks for error simulation in CNNs have been proposed;
they integrate the injection facilities in popular machine learn-
ing development frameworks, i.e., Caffee and TensorFlow,
respectively. However, the supported error models have not
been validated (especially in [12]), and may be arbitrary or not
represent a realistic effect due to a fault, such as, for instance,
the error modeling a bitflip in the same position of all values

of a tensor. Indeed, error simulation may incur in two risks:
simulating errors that do not correspond to the effects of any
real fault and, ignoring effects of statistically relevant faults.

Our contribution proposes a set of generic, validated and
algorithmically reproducible error models, that are the ob-
servable effects of faults injected in the hardware platform.
The final goal is to provide a library of such models for the
implementation of easy-to-use, fast, flexible but also accurate
error simulation engines for image processing applications.

III. THE CONSIDERED IMAGE FILTERS

Image processing applications receive one or more input
images either to produce an enhanced image or to extract
features. Such applications are organized as a pipeline of
processing steps, where each step implements a specific image
processing operation, generally called filter. A filter takes
in input an image, or other data structures (e.g., a heatmap
or a feature map) and produces a output image (or, again,
a data structure). Filters may perform operations spanning
from pixel-wise manipulations (e.g., the RGB to gray scale
conversion) up to advanced Machine Learning-based activities
(e.g., Neural Networks devoted to the classification of the
image or part of it). In this paper we focus on a widely used
class of the convolutional filters.

A convolution is a mathematical operation that is applied
on an input image i with the use of a kernel (or filter), a
2D matrix f , having dimensions N × M . The convolution
operation slides the kernel on the matrix of pixels of the input
image, to produce an output image o where the value in each
position x, y is computed as the dot product between the kernel
and the corresponding values on the input:

o(x, y) =

N/2∑
i=−N/2

M/2∑
j=−M/2

f(i, j) · i(x− i, y − j) (1)

The above processing is applied separately on the three chan-
nels for RGB images. Moreover, specific padding strategies
are applied to compute the pixels on the borders.

Based on the weights specified in the kernel, the convolution
operation produces different output images and extract specific
features. In this work we consider the following filters:

• Gaussian: removes the noise and details from the input
image. The kernel has decreasing weights from the central
position to the borders, so to provide a blur effect
preserving the edges.

• Mean: similar to the Gaussian filter; all weights in
the kernel are equal, thus providing a slightly different
smoothing result.

• Median: another denoising filter; it replaces each pixel
value with the median value of the neighbouring pixels. It
is a non-linear filter because it does not apply Equation 1.

• Sobel: an edge detection filter. It highlights the regions
of an image that have a clear change in intensity or
colour. This filter computes the gradient of the brightness
for each pixel and it detects the edges by analyzing the
direction and the velocity of the light variations.

Processor

AXI BUS

SEM

AXI Interface

BRAM 0
AXI Interface

DUT controller

AXI Interface

BRAM 1
AXI Interface

DUT

UARTHost machine

FPGA

Figure 1: The fault injection framework.

• Laplacian: another edge detection filter based on the
application of a 2D isotropic measure of the second
spatial derivative of an image.

• Sharpen: emphasizes the details and enhances the edges
of all the objects in the image.

IV. FAULT INJECTION FRAMEWORK

To run the experimental campaigns we implemented the
fault injection framework depicted in Figure 1 onto a Xilinx
FPGA device. We exploited the standard fault injection archi-
tecture; the DUT, i.e., the filter under analysis is connected to
two different BRAM blocks, to read from and save to the input
image and the produced results, respectively. A custom control
module is used to drive the clock, reset and start signals and
to monitor the done output of the DUT. Fault emulation is
performed by means of the Xilinx SEM IP which injects
bit-flips in the configuration memory. All the components
are connected through the AXI bus to a microprocessor in
charge of controlling and managing the overall fault injection
campaign, and communicating with the host machine through
a serial port. A prototype of the system has been synthesized
on a Xilinx Virtex-7 FPGA VC707 Evaluation Board (and it
is also compliant with any Series-7 device).

The software layer of the fault injection framework is
organized in a host subsystem and an FPGA subsystem.
The former performs a preliminary analysis of the bitstream
to select configuration bits to be flipped, based on Xilinx
SEM guidelines and consequently plans the fault injection
campaign, in terms of list of fault locations and injection
clock cycles. The fault injection list together with the input
image and the golden output are sent to the FPGA, which
runs in sequence all the fault injection experiments. For each
experiment, at the required injection time, the DUT clock is
frozen to perform the injection, and the experiment is resumed
to receive the final result. Results are preliminarily filtered by
the FPGA to discard non-corrupted outputs thus forwarding to
the host machine only the corrupted output images.

For each of the six considered filters we have designed
a hardware accelerator by means of the commercial Xilinx
Vivado HLS tool, starting from an algorithmic description in C
language. More precisely, a basic sequential implementation of
the algorithm has been obtained. Future work will be devoted
at investigating how different implementation choices may af-

fect the identified error models. For each one of the considered
filters, we defined a campaign of 10,000 random fault injection
experiments. Since SEUs in the FPGA configuration memory
have permanent effects, we wanted to analyse faults’ effects at
the steady state; so injection time has been initially set to 0 for
all the experiments. Then, we also analyzed the effect of faults
injected at random time. We considered a dataset of 1,000
satellite images downloaded from Microsoft Bing Maps [14]
and converted in gray scale at a resolution of 290x204 pixels.

V. ERROR MODELING

For each filter, we executed the planned experimental cam-
paign; the corrupted output images have been collected and
visually inspected. The fault injection campaign produced
about 5791 corrupted images for the 60,000 injected faults.
The goal of this phase is the identification of recurrent visual
patterns of the corrupted images, which can then be used to
define error models whenever they are data independent. Every
time a visual pattern is statistically relevant, data independent
and can be implemented by means of an algorithm, it leads to
the definition of an image error model.

We partially automated this activity by highlighting the
areas of each image presenting differences w.r.t. the golden
counterpart; however, the actual identification of the visual
patters of the errors has been manually performed. The final
result of this modeling activity is the description of the
identified error models in terms of an algorithm to reproduce
their effects and their relevant aspects, that are occurrence
probability and error intensity. This detailed information is
at the basis of the library of error models to support the error
simulation frameworks.

A. Visual Error Patterns

The analysis of the recurring visual error patters of the
corrupted output images caused by the injected faults led to
the definition of the following 15 classes:

• Horizontal noise (label: H Noise). It is characterized by a
constant width noise placed on a regular distance between
the rows. This noise produces an alteration of colours,
with a final effect of both darkening and brightening the
pixels.

• Vertical noise (V Noise). It is characterized by a constant
width noise placed on a regular distance between the
columns. The effect is the same one as the H noise.

• Oblique noise (O Noise). It is a similar effect of colour
alteration, affecting oblique lines rather than horizon-
tal/vertical lines.

• Horizontal shift (H Shift). A different kind of horizontal
noise, but in this case, the effect is an image shift. For
this specific error model, the shift is horizontal.

• Vertical shift (V Shift). Similar to the “Horizontal shift”
but in the vertical direction.

• Oblique shift (O Shift). Similar to the “Horizontal shift”
but with an oblique direction.

• Corrupted colors (Colors). It is characterized by an
alteration of the colors and it can involve the whole image
or a portion of it.

• Few corrupted pixels (Pixels). It is characterized by
a small number of pixels that have a different value,
either clustered in a region to define a regular pattern,
or scattered in random positions, as the case of the salt
& pepper noise.

• Corrupted borders (Borders). It is characterized by an
alteration of the image borders, due to a corruption of the
zero-padding.

• Flattened image (Flattened). It is characterized by the
fact that the output is flattened so fitting only part of the
entire image; the remaining part of the output is either
black (the 0-initialized BRAM content not overwritten
by the computed output) or it contains part of the image
processed in the previous run.

• Points texture (Texture). It is characterized by a point-
like texture overlay of the image, either for the entire
image or for areas of it.

• Corrupted patches (Patches). It is characterized by por-
tions of the image that are either black (the 0-initialized
BRAM content not overwritten by the computed output)
or other parts of the image erroneously repeated, affected
a limited portion of the entire image.

• Mix of models (Mix). Two or more of the previous
patterns can be identified on the same image, with a
combination of effects.

• Disruptive (Disruptive). It is characterized by a relevant
part of the image that differs from what expected. The
impact is disruptive and no single pattern actually pre-
vails. The common aspect is the high number of corrupted
pixels in the output.

• Other (Other). It includes all visual patterns that are
either not easily identifiable and reproducible in an al-
gorithmic way, or are statistically not relevant because
only a limited number of fault/input/time combinations
can produce such error.

The complete list of the identified classes of visual error
patterns is reported in Table I, together with their frequency
of occurrence for each filter, to show their statistical relevance.

An example of these visual effects for the Sharpen filter is
shown in Figure 2. Figure 2a is the golden output of the filter,
in a fault free condition, the remaining images are the collected
corrupted outputs resulting from the fault injection campaign,
one for each one of the listed classified visual effects.

B. Error model definition

As mentioned, the image error models need be generic,
input independent and statistically relevant, and finally they
must be defined in terms of an algorithmic implementation, so
that they can be included in an error simulation framework.
Therefore, the first thirteen classes of visual error patterns have
been used to define the image error models, implemented in
terms of an algorithm capable at applying the identified visual
pattern to the output of a filter. Although the Disruptive error

Table I: Visual pattern frequencies (10,000 injected faults,
1,000 input images)

Patterns Gaussian Mean Median Sobel Laplacian Sharpen
H Noise 0.76% 0.88% 2.94% 2.84% 2.4% 4.44%
V Noise 0.38% 0.88% 4.12% 4.32% 2% 1.83%
O Noise 6.29% 0.75% 1.18% 0.62% 0.6% 2.6%
H Shift 0.38% 1% 2.35% 6.6% 1.7% 2.41%
V Shift 0% 0% 1.18% 0.99% 0.7% 1.64%
O Shift 1.9% 0% 0.88% 0.56% 0.8% 1.64%
Colors 46.48% 72.56% 39.71% 25.19% 49.2% 26.85%
Pixels 4.76% 3.76% 5.88% 1.85% 2.1% 3.95%
Texture 9.71% 6.02% 5% 0.74% 0.9% 4.23%
Borders 0.38% 0% 0.59% 0% 0% 0.38%
Patches 0.76% 0.13% 3.53% 6.36% 1.3% 3.27%
Flattened 0% 0.13% 1.76% 0.99% 0.2% 0.19%
Mix 6.86% 2.01% 6.47% 7.1% 3.39% 5.49%
Disruptive 7.62% 5.01% 14.41% 30.55% 25.75% 31.28%
Other 13.52% 6.89% 10% 8.52% 8.98% 8.37%
samples 583 799 688 1620 1002 1089

patterns are not statistically irrelevant for some filters, it is not
possible to identify the effect of the fault and to reproduce it
with an algorithm. However this is not an issue, in our opinion,
since the actual output is completely “destroyed”. Therefore,
a functional analysis of the effects of this error in a complete
application pipeline would cause an “unusable” final output.

As far as the Other class of visual error patterns is con-
cerned, it includes a number of cases that is below 10%. This
allows us to state that the relevance of an error simulation
campaign based on the sole error models is relevant of an early
and accurate analysis of the reliability of the application.

The different frequencies of occurrence of the various error
patterns allow to state that the identified set of models is a
superset, and for some filters some models do not apply, as for
instance the Borders model for the Mean and Sobel filters. For
other filters, the statistical relevance might be limited. Indeed,
the additional information on the frequency of occurrence
allows us to support the implementation of a library of error
models that are general and can be extended in the future.

We already commented on the generality of the error
models w.r.t. the specific filter, supported by the frequency
of occurrence of each visual pattern. The selected classes
can support the definition of proper and general error models
provided they are independent of the fault injection campaign,
that is i) the input image, and ii) the injection time. To this
end, we re-run all the fault injection campaigns used to collect
the visual error patterns by changing the input image in a first
campaign and injection time in a second one. In the former
experiment 1,000 new input images have been used; in 98%
of the experiments we observe the occurrence of the same
error models. In the latter we randomly selected the injection
time; results confirm that in 99% of the cases the error model
does not change. Finally, we also defined a completely new
campaign for each filter, injecting 120,000 new random faults,
leading to the same results with an error below 1%.

As a conclusion, we argue that the effect of a fault and the
consequent error model depend only on the specific location
of the FPGA configuration memory where the fault is injected.

(a) Golden reference (b) Horizontal noise (c) Vertical noise (d) Oblique noise

(e) Horizontal shift (f) Vertical shift (g) Oblique shift (h) Corrupted colors

(i) Few corrupted pixels (j) Points Texture (k) Corrupted borders (l) Corrupted patches

(m) Flattened image (n) Mix of models (o) Disruptive (p) Other

Figure 2: Visual patterns for the corrupted images when executing the Sharpen filter.

C. Error Model Parametrization

When analysing all the corrupted output images belonging
to the same class, the same pattern may present variable
intensities. As an example, Figure 3 depicts several output
images corrupted by the Vertical Noise effect, for the output
of the Sharpen filter. The number of bars and their width vary
from one thin black line up to several thin lines and large bars.
These aspects can be exploited to parametrize the error model,
to make it more flexible, and to allow its integration in an error
simulation engine. Table II lists the final list of defined error
models and the associated parameters when available.

VI. EXPLOITATION OF THE ERROR MODELS

The identified image error models and their parameters
are implemented in terms of an algorithmic description. The
designer may pre-characterize a repository of error models
specific for the classes of filters to be employed in the appli-
cation being developed and for the target hardware platform.

Table II: Error model parameters

Error model Parameters
H Noise # bands, band width, band color, corrupted region coords.
V Noise # bands, band width, band color, corrupted region coords.
O Noise # bands, band width, band color, corrupted region coords.
H Shift # bands, band width, shift offset, corrupted region coords.
V Shift # bands, band width, shift offset, corrupted region coords.
O Shift # bands, band width, shift offset, corrupted region coords.
Colors color intensity
Pixels # pixels
Texture texture color
Borders –
Patches corrupted region coords, corruption type: black/repetition
Flattened corruption type: black/repetition
Mix selected models

Such models can then be used for an early reliability analysis
of overall application through error simulation.

More precisely, given an image processing application such
as the one in the upper part of Figure 4, the error simula-

(a) (b) (c) (d) (e)

Figure 3: Several intensity values for the vertical noise error model on the output of the Sharpen filter.

Filter 1
Input
image

Filter 2 Filter N…
Output
image

Filter
output

Corrupted
filter output

Error
models

Saboteur
M=selectRndError(filter1);
randomizeParameters(M);
corr_img=applyError(img, M);

Figure 4: Error simulation framework.

tion framework exploits the defined library of error models
as follows. Error simulation is performed by means of the
saboteur mechanism, inserted at the output of each filter. The
saboteur, when activated, selects an error model applicable to
the filter, according to the occurrence probabilities (Table I)
and randomly sets the available parameters (Table II), if any.
The output is a corrupted image, used by the subsequent filter
in the application pipeline.

To preliminary quantify the benefits of this simulation-
based fault injection exploiting error models derived from the
circuit-level fault injection, we can compare the effectiveness
w.r.t. the amount of test data. More precisely, for the circuit-
level campaigns, for each filter we injected 10,000 faults;
on average, out of the 60,000 faults 6,000 actually produced
a corrupted output, in about 30 hours. The generation of
6,000 corrupted images with the proposed error simulation
framework required 1 hour. These numbers become even more
relevant when considering a real experimental campaign for
assessing the robustness of a technique/solution, where the
size of test sets typically reaches 60,000 items (e.g., [7]).

VII. CONCLUSIONS

The paper introduces a rich set of validated error models for
convolutional filters implemented on SRAM-based FPGAs in
relation to SEUs. We have investigated a set of filters typically
adopted in image processing applications and have analyzed
the effects of faults on their processed output, by means of
circuit-level fault injection campaigns. The analysis of the
corrupted outputs in relation to the visual error patterns led to
the definition of thirteen error models that can be exploited in a
simulation-based fault injection approach, to save time without
compromising accuracy. The defined image error models are
general, as they are independent of the specific filter and of
the input data. The next step is the development of a specific
application-level functional error simulation engine tailored for

image processing applications, that exploits these error models
to support platform/application-related robustness analyses.

VIII. ACKNOWLEDGMENT

This paper has been partially supported by Intel Corporation
under the award titled ”Adaptive Application-oriented Fault
Detection for Reliable Image Processing”.

REFERENCES

[1] R. L. Davidson and C. P. Bridges, “Error Resilient GPU Accelerated
Image Processing for Space Applications,” IEEE Trans. on Parallel and
Distributed Systems, vol. 29, no. 9, pp. 1990–2003, Sep. 2018.

[2] L. Sterpone, M. Porrmann, and J. Hagemeyer, “A Novel Fault Tolerant
and Runtime Reconfigurable Platform for Satellite Payload Processing,”
IEEE Trans. on Computers, vol. 62, no. 8, pp. 1508–1525, Aug 2013.

[3] I. Yaqoob, L. U. Khan, S. M. A. Kazmi, M. Imran, N. Guizani, and
C. S. Hong, “Autonomous driving cars in smart cities: Recent advances,
requirements, and challenges,” IEEE Network, vol. 34, no. 1, pp. 174–
181, January 2020.

[4] M. Xu, C. Li, S. Zhang, and P. L. Callet, “State-of-the-Art in 360°
Video/Image Processing: Perception, Assessment and Compression,”
IEEE Journal of Selected Topics in Signal Processing, vol. 14, no. 1,
pp. 5–26, Jan 2020.

[5] A. Sánchez, L. Entrena, and F. Kastensmidt, “Approximate TMR for
selective error mitigation in FPGAs based on testability analysis,” in
Proc. NASA/ESA Conf. on Adaptive Hardware and Systems (AHS), 2018,
pp. 112–119.

[6] S. Mittal, “A Survey of Techniques for Approximate Computing,” ACM
Computing Surv., vol. 48, no. 4, pp. 62:1–62:33, 2016.

[7] M. Biasielli, C. Bolchini, L. Cassano, E. Koyuncu, and A. Miele, “A
Neural Network Based Fault Management Scheme for Reliable Image
Processing,” IEEE Trans. on Comp., vol. 69, no. 5, pp. 764–776, 2020.

[8] M. Mousavi, H. R. Pourshaghaghi, M. Tahghighi, R. Jordans, and
H. Corporaal, “A Generic Methodology to Compute Design Sensitivity
to SEU in SRAM-Based FPGA,” in Proc. Euromicro Conf. on Digital
System Design (DSD), 2018, pp. 221–228.

[9] B. Du, S. Azimi, C. Sio, L. Bozzoli, and L. Sterpone, “On the Reliability
of Convolutional Neural Network Implementation on SRAM-based
FPGA,” in Proc. Intl. Symp. on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), 2019, pp. 1–6.

[10] I. Tsounis, A. Tsigkanos, V. Vlagkoulis, M. Psarakis, N. Kranitis, and
A. Paschalis, “Analyzing the Resilience to SEUs of an Image Data
Compression Core in a COTS SRAM FPGA,” in Proc. NASA/ESA Conf.
on Adaptive Hardware and Systems (AHS), 2019, pp. 17–24.

[11] S. T. Fleming and D. Thomas, “Injecting FPGA Configuration Faults in
Parallel,” in Proc. Intl. Conf. on Field-Programmable Technology (FPT),
2018, pp. 198–205.

[12] G. Li, K. Pattabiraman, and N. DeBardeleben, “TensorFI: A Config-
urable Fault Injector for TensorFlow Applications,” in Proc. Intl. Symp.
on Software Reliability Engineering Workshops (ISSREW), 2018, pp.
313–320.

[13] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, “Understanding Error Propagation in Deep Learn-
ing Neural Network (DNN) Accelerators and Applications,” in Proc.
Intl. Conf. for High Performance Computing, Networking, Storage and
Analysis (SC), 2017, pp. 8:1–8:12.

[14] Microsoft Corporation, “Bing Maps APIs,”
https://msdn.microsoft.com/en-us/library/dd877180.aspx, 2018.

