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Abstract— Recently, the usage of on-chip embedded 

instruments (EIs) to ensure dependable safety-critical systems is 
becoming inevitable. These EIs can help to provide self-awareness, 
and their feedback can be used in different applications, e.g. end-
of-lifetime (EOL) predictions. However, inaccuracies present in 
data from these EIs, due to their resolution limitations, self-aging 
and quantization errors during digitization, can lead to an 
inaccurate EOL assessment. To address this challenge, a machine 
learning-based system-level approach for determining the EOL of 
a many-processor system-on-chip (MPSoC) is discussed. It is based 
on the synchronous data capture of different IJTAG compatible 
EIs. To this end, two different data fusion techniques have been 
used for enhancing the accuracy of lifetime prognostics of multiple 
EIs; use is made of Independent Component Analysis (ICA) and 
the auto-encoder (AE). Different combinations of fused EIs (based 
on ICA and AE) along with standalone EIs for four different 
critical paths (CPs) have been investigated. For lifetime prediction 
based on different EIs/fused EIs, a data-driven degradation model 
was derived, and nonlinear regression has been employed for 
parameter estimation. Results show that data fusion of different 
EIs helps in obtaining better estimation of the EOL as compared 
to using a standalone EI.  

Keywords— Dependability, Reliability, MPSoC, Embedded 
Instruments (EIs), Data Fusion, Data-driven, Lifetime prediction, 
EOL, Machine Learning  

I. INTRODUCTION 

With the technological advancements in CMOS processes, 
the exploitation of MPSoC is an increasingly popular choice in 
safety-critical systems. This results from the increased number 
of transistors per square millimeter (mm2) offering more 
functionality, which makes these systems more efficient in terms 
of area and power consumption. Unfortunately, this increased 
functionality comes with a cost in terms of reduced 
dependability. This reduced dependability is mainly because of 
the aging phenomena that are becoming more dominant as the 
channel lengths of NMOS and PMOS transistors are decreasing. 
These aging processes include biased temperature instability 
(BTI), hot carrier injection (HCI) and electromigration (EM); 
they result in shorter lifespans of these advance nodes, as 
compared to older technology nodes (90nm and above) [1].  

For safety-critical applications, like the automotive and 
space industry, it is essential to know the end-of-lifetime (EOL). 
To address this challenge, and to ensure dependable safety-

critical systems, an on-chip hardware architecture just like a 
functional architecture should be incorporated that can give self-
awareness capabilities, which is the focus of this paper. 
Recently, the use of on-chip embedded instruments (EIs) has 
become a popular choice to monitor several on-chip parameters 
to ensure self-awareness [2]. On the other hand, the deployment 
of different machine learning techniques have received more 
attention by making failures predictable in order to take 
maintenance actions before these failures occur.  

Despite many efforts on designing EIs [3]-[5], they have to 
deal with resolution limits to measure the respective quantity; 
and they also loose accuracy during the digital conversion, either 
by using time-to-digital (TDC) or analogue-to-digital (ADC) 
conversion circuits. These inaccuracies in the data can lead to a 
less accurate EOL estimation if not accounted for. In this paper, 
by considering EI inaccuracies we present different machine-
learning techniques to investigate a multiple EI platform for 
EOL prediction. The main contributions of this paper are the 
following: 

1. A new IJTAG compatible set of embedded instruments 
and processor infrastructure for EOL estimation have 
been proposed. 

2. Machine-learning techniques like Independent 
Component Analysis (ICA) along with auto-encoder (AE) 
based data fusion for different combinations of EIs have 
been used with a data-driven degradation model for the 
EOL calculations.  

3. A case study to demonstrate the different behaviour of 
different types of critical paths (CPs), in the presence of 
EI inaccuracies, has been conducted. 

This paper is organized in the following manner. In section 
II, the complete system-level architecture that uses different 
types of EIs to determine the local variations in the selected CPs 
is discussed. Section III discusses the details on data generated 
from these EIs to build a database for a selected environmental 
condition. It also discusses a SPICE golden reference generation 
for the EOL that can help to evaluate the proposed machine-
learning approach. In section IV, the proposed data-fusion 
procedures, i.e. Independent Component Analysis (ICA) and the 
auto-encoder (AE) algorithms, are described in detail. In the 
following section V, the results from the proposed methodology 
are presented, whereas section VI concludes the paper. 
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II. SYSTEM LEVEL ARCHITECTURE  

One of the most essential features of a dependable digital 
system is to ensure that critical paths meet their timing-
constraints set by the operational frequency. However, due to the 
various aging phenomena, the propagation delays of these 
critical paths increases and eventually can result in a functional 
failure. Therefore, it is essential to monitor the slack-time of 
critical paths such that appropriate actions can be taken before 
this failure occurs. However, the slack-time can vary because of 
environmental conditions, like voltage droop and temperature 
too [2]. Therefore, to ensure correctness, a set of EIs have been 
used together to determine the aging profile of a critical path, 
independent of these environmental variations. Fig. 1(a) shows 
the system level hardware architecture of the proposed work. An 
embedded processor can be used to access data from these EIs 
(shown as Dataset 1, Dataset 2, and Dataset 3 in Fig. 1) via an 
IJTAG network [6], to estimate the end-of-lifetime (EOL). 
Details of these EIs are discussed hereafter.  

A. Performance-related Embedded Instruments 

Two performance-related EIs have been used in the proposed 
architecture, i.e. slack-delay EI and transient current (IDDT) EI. 
These EIs can be used to determine the workload-dependent 
aging profile of a system [7]. In this paper, IJTAG compatible 
slack-delay EI and IDDT EI have been used [3], [4]. The slack-
delay EI has three modes of operation, being off mode, infield-
calibration mode, and monitoring mode. Due to its fast 
calibration time it can detect slack-delay variations even in the 
case of fast environmental changes like voltage droop and 
temperature as well as for slow variations like aging. These 
characteristics make this design, an ideal candidate to be used 
for EOL calculations. However, this design has resolution limits 
of 13ps for 40nm technology [3], which can introduce 
inaccuracies in the EOL estimations.  

B. Environmentally-related Embedded Instruments 

It is very important to know the environmental conditions 
like temperature and operating supply-voltage to determine the 
change in slack-time because of aging. To measure these 
environmental quantities, IJTAG compatible temperature and 
voltage EIs have been presented in [4] and [5] respectively. The 

presented time-to-digital (TDC) based voltage EI can determine 
the average voltage droop over a clock-period, which is more 
relatable to the slack-time as compared to measuring the 
instantaneous voltage. It has a resolution of 10mV. The 
temperature EI has a resolution of 0.3°C (for a 10-bit ADC). This 
shows that the considered EIs can determine environmental 
changes with high accuracy. 

C. Process-related Embedded Instruments 

Ring Oscillators (ROs) have been used intensively in the 
literature to determine the workload-independent aging profile 
of a technology node. In this study, to determine the output 
frequency of the RO, a RO design was used together with a 
counter, where the latter can be controlled with a FSM. 

D. The IJTAG Network 

The IEEE 1687 standard (IJTAG) optimizes the access to EIs 
[6]. There are two parts of the IJTAG standard; one defines the 
hardware architecture while the other defines the software part. 
The IJTAG interface is serial, therefore it takes several clock 
cycles during shift operations to configure or read an EI. 
However, applications like EOL estimation require mainly fast 
capturing of the physical data by the EIs. Once the data is 
captured at the right moment (coherency) by the EIs; despite the 
slow interface of IJTAG, it does not affect the overall outcome 
as these applications do not require data at every clock cycle and 
they are executed only once in a while. 

III. PROCESS OF DATA GENERATION 

As shown in Fig. 1(a), four different CPs are employed for 
simulation (using 40nm LP technology) with the aging model 
[8], to collect the database for EOL calculations at an operating 
voltage VDD = 1.1V and temperature T = 125°C (accelerated 
case). The considered CPs are an inverter chain, NOR chain, 
NAND chain and a critical path from an ALU of a 16-bit 
OpenCore processor (openMSP430) which is an adder circuit. 
The total propagation delay of each CP, being the propagation 
delay of a signal-transition between a launching FF and 
capturing FF, was matched to 5ns by carefully selecting the W/L 
ratios of these logic gates for the above-mentioned 
environmental conditions. Due to the different number of 
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 Fig. 1. (a) System level hardware architecture (b) Validation flow for the proposed machine-learning based EOL prediction. 
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NMOS and PMOS transistors present between the supply 
voltage (VDD) and ground (GND) in these CPs, the NBTI and 
PBTI have different proportions in their aging profile. For all 
these CPs, the functional boundary (i.e. operating frequency) is 
set to be 190 MHz.  

Furthermore, to evaluate the end-of-lifetime (EOL) results 
produced by the machine learning algorithms, SPICE level EOL 
simulations were carried out for all CPs using our in-house aging 
model [8]. Fig 1(b) shows the validation flow. These SPICE 
simulations provided the golden reference for EOL of each 
critical path. This golden EOL for each CP, has been used as a 
benchmark to evaluate machine-learning techniques (discussed 
in the next sections). 

IV. DIMENSIONALITY REDUCTION OF THE DIFFERENT EMPLOYED 

EMBEDDED INSTRUMENTS 

To manage the different datasets (Dataset1,2 and 3 in Fig. 
1(b)) of these different EIs (data-fusion issue) different machine-
learning techniques have been used; an ICA-based and AE-
based fusion techniques have been applied. 

A. ICA-based  EI fusion approach 

For multi-sensory platforms (here including SD, RO and 
IDDT EIs), ICA as a widely used statistical approach proven to be 
useful as dimensionality reduction paradigm [9]. ICA strives to 
create components as independent as possible via minimizing 
dependencies in the given data. Independent components (ICs) 
have been calculated using the joint approximate diagonalization 
of Eigen matrices. It is based on the diagonalization of cumulant 
matrices [10]. By choosing the number of ICs from n out of m 
(m number of sensors, first dimension and n number of new 
space in which n ≤ m), new space will be generated. The new 
reduced space with the transformed variables (components) 
represents new fused data which covers the more relevant 
information from the EIs. This fused EI is known as latent 
variable. Here ICA has been applied to the three EIs as well as 
different combinations of two EIs, to capture the latent variable 
as new representation of data for EOL prognostics. 

B. Auto-encoder based EI fusion approach  

The second approach is using an AE-based fusion technique 
for generating a new representation [11]. An AE is an 
unsupervised type of machine-learning technique, used to learn 
efficient data coding. A typical architecture of an AE can be 
built using three layers (input layer, output layer and a hidden 
layer) very similar to the multilayer perceptron (MLP). 
However, the learning objectives are different in each algorithm 
[11], [12]. The learning procedure of an AE network consists of 
two parts: the encoder and the decoder part. An encoder 
transforms the input into more abstract feature vectors, and a 
decoder reconstructs the input from the feature vectors as 
closely as possible by minimizing a loss function. If the 
dimension in the hidden layer is less than the input layer, then 
the AE learns a compressed representation of the input, which 
captures the correlations and interactions between the various 
variables. The AE networks which are considered here, 
employing three EIs as well as different combinations of two 
EIs, result in one neuron in the hidden layer to capture the latent 

variable as new representation of data for EOL prognostics. 
After preparation of the data-fusion workflow, the calculation of 
the EOL will be conducted (Fig. 1(b)). 

V. EOL CALCULATION FROM THE EXPERIMENTAL RESULTS 

 In order to perform an EOL calculation, a data-driven 
degradation model has been employed [13]. To this end a 
nonlinear poly-nominal equation proves a minimum RMSE for 
data points and a degradation equation. To find the parameters 
of the degradation model, the nonlinear regression (Levenberg-
Marquardt method [14]) has been used [15]. In the next step, the 
EOL is calculated via extrapolating the model until it reaches the 
threshold. These parameters of the model have been updated for 
each and every EI/fused EIs [13].  

 As mentioned in the previous section, the threshold point 
(functional boundary) is defined based on the frequency limits.  
Table I presents the calculated EOL for different standalone and 
fused EIs by proposed approaches for four different CPs (CP1, 
CP2, CP3 and CP4) at VDD= 1.1V and T = 125°C. The numbers 
after the ICA and AE indicate the EIs involved: SD (1), RO (2) 
and IDDT (3). For example the EOL of CP1 based on fused EIs, 
ICA,2,3 (data fusion of Ro and IDDT based on ICA approach) is 
5.21 years while based on the standalone SD-EI, the EOL is 5.05 
years.  In the next step, the calculated EOLs have been validated, 
based on the Equation (1). In equation 1, is the golden EOL 
calculated for each CP. These golden EOL calculations are based 
on the SPICE level aging simulations, performed for a given 
threshold (functional boundary). These aging simulations are 
performed using Cadence Virtuoso tool.  To validate the ML 
based EOL predictions, the difference of the golden EOL with 
respect to the EOL of an EI/fused EI has been determined first; 
then the root-mean-square-error (RMSE) of this difference has 
been calculated for each CP. = ( 	 	 	 	 	 		 	− / 	 	 	 	 )  

(1)

For appropriate countermeasures, the minimum values of the 
RMSE and their corresponding EOL were calculated for all CPs. 
Table II depicts the calculated RMSE value of reported EOLs 
for different CPs and different EIs/fused EIs. The minimum 
RMSE value highlighted in red (Table II). Corresponding to 
these minimum RMSE values, EOL predictions from table I are 
selected for countermeasures. For instance, for CP1, the 
minimum RMSE value depicted in red is achieved by the AE 1,2 
fused EI (RMSE=0.086 year); the corresponding EOL of this 
RMSE is 4.72 year (Table I). Similarly, the summary of EOL 
selection for all the CPs is listed in table III. For the EOL 
selection for countermeasures based on the minimum achieved 
RMSE, as Table III depicts, different CPs as well as different 
data-fusion approaches have been investigated to see the 
different behaviour of standalone/fused EIs. In terms of 
minimum RMSE, the fused EIs, including AE 1,2 for the CP1, 
ICA1,2,3 for the CP2, ICA1,3 for the CP3, and the AE 1,2, for 
the CP4  proved to be superior for EOL predictions with regard 
to standalone EIs.  
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VI. CONCLUSIONS 

In this paper, the aging profile of a functional core has been 
provided by employing different IJTAG compatible EIs. To this 
end, four different critical paths (CPs) of functional cores have 
been used for monitoring. Moreover, data fusion has been used 
to investigate the behaviour of standalone/fused EIs for the data-
driven EOL prediction. The corresponding EOL for appropriate 
counter measures must have the minimum RMSE with respect 
to the golden EOL for each CP. Two machine learning 
algorithms with different context have been employed to achieve 
the most efficient data fusion (in terms of obtaining minimum 
RMSE) for each CP; since each CP have different behaviour/ 
complexity, they show different level of correlation between 
different EIs. Hence, the data fusion algorithms show different 
results for each CP and each fused combination of EIs; in which, 
AE 1,2, ICA1,2,3, ICA1,3, and the AE 1,2, fused EIs, provide 
the minimum RMSE for CP1, CP2, CP3 and CP4, respectively. 
All in all, data fusion of EIs based on ICA/AE show a minimum 
RMSE for EOL calculations over the usage of standalone EIs.  
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Table I.  Calculated EOL (in years) of different single and fused EIs based at VDD = 1.1V and T = 125°C. 

EI/Fused EIs SD EI RO EI IDDT EI ICA 1,2,3 ICA 1,2 ICA 1,3 ICA 2,3 AE 1,2,3 AE 1,2 AE 1,3 AE 2,3 
CP1-NOT 5.05 5.41 8.50 6.07 5.21 6.44 6.70 6.07 4.72 5.84 6.65 

CP2 -NOR 0.94 1.21 1.30 1.12 1.06 1.08 1.22 1.08 1.02 1.03 1.19 

CP3 -NAND 5.28 8.51 11.91 8.23 6.65 8.02 10.54 8.06 5.92 7.28 10.47 

CP4- ADDER 3.03 3.16 3.83 3.32 3.09 3.40 3.46 3.29 2.87 3.13 3.44 

 
Table II.  Calculated RMSE of different single and fused EIs at VDD = 1.1V and T = 125°C.  

EI/Fused EIs SD EI RO EI IDDT EI ICA 1,2,3 ICA 1,2 ICA 1,3 ICA 2,3 AE 1,2,3 AE 1,2 AE 1,3 AE 2,3 
CP1-NOT 0.241 0.59 3.68 1.25 0.40 1.633 1.89 1.25 0.086 1.031 1.84 

CP2 -NOR 0.180 0.080 0.18 0.001 0.057 0.044 0.103 0.038 0.100 0.087 0.06 

CP3 -NAND 2.6 0.620 4.02 0.341 1.23 0.139 2.651 0.170 1.96 0.608 2.58 

CP4- ADDER 0.082 0.2 0.87 0.374 0.140 0.447 0.508 0.335 0.078 0.181 0.493 

Table III. Defined EOLs for countermeasures at VDD = 1.1V, T = 125°C.  

EI/Fused EIs ML-Approach EOL (years) RMSE (years) 
CP1-NOT AE 1,2 4.72 0.086 

CP2 -NOR ICA 1,2,3 1.12 0.001 

CP3 -NAND ICA 1,3 8.02 0.139 

CP4- ADDER AE 1,2 2.87 0.078 
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