

Security and Reliability Evaluation of Countermeasures

implemented using High-Level Synthesis

Amalia-Artemis Koufopoulou (1), Kalliopi Xevgeni (1), Athanasios Papadimitriou (1) (2), Mihalis Psarakis (1) and David Hely (3)

(1) Dept. of Informatics, University of Piraeus, Piraeus, Greece
(2) Dept. of Digital Systems, University of the Peloponnese, Greece
(3) Univ. Grenoble Alpes, Grenoble INP, LCIS, Valence, France

Abstract— As the complexity of digital circuits increases,

High-Level Synthesis (HLS) is becoming a valuable tool to in-

crease productivity and design reuse by utilizing relevant Elec-

tronic Design Automation (EDA) flows, either for Application-

Specific Integrated Circuits (ASIC) or for Field Programmable

Gate Arrays (FPGA). Side Channel Analysis (SCA) and Fault

Injection (FI) attacks are powerful hardware attacks, capable of

greatly weakening the theoretical security levels of secure imple-

mentations. Furthermore, critical applications demand high lev-

els of reliability including fault tolerance. The lack of security

and reliability driven optimizations in HLS tools makes it nec-

essary for the HLS-based designs to validate that the properties

of the algorithm and the countermeasures have not been com-

promised due to the HLS flow. In this work, we provide results

on the resilience evaluation of HLS-based FPGA implementa-

tions for the aforementioned threats. As a test case, we use mul-

tiple versions of an on-the-fly SBOX algorithm integrating dif-

ferent countermeasures (hiding and masking), written in C and

implemented using Vivado HLS. We perform extensive evalua-

tions for all the designs and their optimization scenarios. The

results provide evidence of issues arising due to HLS optimiza-

tions on the security and the reliability of cryptographic imple-

mentations. Furthermore, the results put HLS algorithms to the

test of designing secure accelerators and can lead to improving

them towards the goal of increasing productivity in the domain

of secure and reliable cryptographic implementations.

Keywords—High-Level Synthesis (HLS), SBOX, FPGA, Side

Channel Analysis, Reliability, Countermeasures

I. INTRODUCTION

High-Level Synthesis (HLS) tools can effectively enhance
the productivity for the design of complex digital circuits by
automatically creating Register Transfer Level (RTL) descrip-
tions given high-level algorithms as input [1]. This productiv-
ity enhancement stems from the fact that the designers do not
need to worry about the details of the comparatively cumber-
some and potentially error-prone RTL design phase. HLS
tools are nowadays capable of efficiently synthesizing the
high-level code in an optimized fashion for key constraints,
such as power consumption, area and timing [2]. Furthermore,
it is very efficient for the designers to perform a design space
exploration so as to obtain an RTL design that fits the demands
of their project [3]. Additionally, such tools require consider-
ably less effort for the design to be verified and the verification
can start very early in the design flow [4].

The advantages of HLS can though become a major draw-
back when traditional constraints are not the only ones of in-
terest [5]. Furthermore, when key design objectives cannot be
described at the high level of abstraction that HLS tools accept
as inputs, it can potentially be a recipe for failure [6]. To make
things worse, the designers may not be able to easily monitor
such issues at the generated RTL due to its complexity [7]. For
all the aforementioned reasons, HLS designers need to be
careful that HLS optimizations do not compromise quality.

Nowadays, digital circuits used in safety-critical applica-
tions require high levels of security [8]. One of the strengths
of using HLS to design secure circuits is that it is easy to inte-
grate security functions such as crypto accelerators [9] to more
complex circuits. When secure hardware components are in-
tegrated into digital circuits, implemented either as ASICs or
FPGAs, each with its own development considerations, hard-
ware security and reliability are major concerns [10,11].

Electronic devices are susceptible to naturally occurring
faults from their operating environment which may affect their
reliability [12]. Furthermore, faults may be deliberately in-
duced by adversaries to extract secret information [13,14].
Side Channel Analysis (SCA) attacks are another category of
hardware attacks which may reduce or even cancel the secu-
rity levels of secure hardware components [15]. In order to
protect against such threats, cryptographic algorithms need to
employ appropriate countermeasures and mitigation tech-
niques depending on the necessary level of resilience.

Most countermeasures tackling those issues utilize tech-
niques that may be introduced in several different abstraction
levels of the design flow depending on their architecture
(High-Level Language (HLL), RTL, Gate-level, physical de-
sign). Considering an HLS design flow, in order to maintain
the productivity, scalability and design reuse, the protection
techniques need to be integrated at the highest level of abstrac-
tion [16]. Nevertheless, if the HLS tool neglects to address op-
timization goals compatible with secure and reliable circuits,
then such a design flow may become not only inefficient but
potentially even dangerous [17,18]. Therefore, for HLS tools
to be part of a productive design flow for secure and reliable
hardware design, they need to optimize such protection tech-
niques in order to guarantee security and reliability levels [18].

In this work, our goal is to evaluate the impact of an HLS-
based design flow on the security and reliability of unpro-
tected and protected cryptographic functions implemented us-
ing modern FPGA devices against SCA and Fault Injection
(FI) attacks. To this end, we have implemented an evaluation
platform capable of performing SCA and FI evaluations on
HLS-generated RTL cryptographic circuits. To the best of our
knowledge, so far, only a few works try to evaluate the capa-
bility of HLS tools to maintain security properties of counter-
measures protecting against SCA attacks, as detailed in the
Related Work. Furthermore, most works on SCA focus their
analysis on the effects of HLS optimizations to the memory
elements storing the result of an algorithm, such as the AES
SBOX output [19, 20, 21]. Concerning the impact of faults on
the behavior of countermeasures added at the HLL of an HLS
flow for cryptographic implementations, some early steps
have been made towards hardening the generated circuits [22,
23]. In this work, we analyze the results of FI campaigns on
countermeasures synthesized using an HLS flow. This way we
show results on the effects of various HLS optimizations on
the effectiveness and resiliency of the countermeasures.

Our goal is to provide evidence of issues arising due to
HLS optimizations on the security and the reliability of cryp-
tographic implementations. We believe that such an analysis
can be useful to HLS designers who are not necessarily hard-
ware security experts or low-level hardware designers so as to
avoid dangerous effects of HLS on secure implementations.
Furthermore, the presented results put HLS algorithms to the
test of designing secure accelerators and can lead to improving
them towards the goal of increasing productivity in the domain
of secure and reliable cryptographic implementations.

II. RELATED WORK

To protect cryptographic implementations from SCA at-
tacks, designers resort to the integration of countermeasures,
which include numerous protection techniques [15, 18], but
are mainly categorized as hiding- or masking-based [24].
Regarding security against such threats when HLS is used,
literature presents a limited number of works. In [18], the fact
that the modern HLS tools disregard security concerns is
highlighted, but at the same time, it is pointed out that their
workflow can assist in the integration of secure mechanisms.
In [25], by comparing a manually developed RTL design with
an HLS-generated one, regarding an FPGA crypto core, the
authors show that HLS can be efficiently used when the target
architecture is taken into account in the developing stage. A
similar view and results are presented in [21]. In addition, the
concept of resource diversification and parallelism is
presented, as a way to limit SCA leakage. This falls into the
category of hiding countermeasures. In [26], the authors
propose a Boolean masking scheme that can be used from
HLS. All their designs focus on Look-Up-Table (LUT)-based
implementations, and therefore, their SCA evaluations
concern the memory elements in which the outputs of the
cryptographic algorithms are stored. Apart from that, they
explain that their masking scheme does not apply well in
cryptographic mechanisms of higher complexity due to the
presence of glitches. In [19] the authors compare SCA re-
sistance of various components developed either at RTL or us-
ing an HLS flow. They execute SCA evaluations to multiple
LUT-based implementations of the AES SBOX. Specifically,
they perform the attacks to the output of the SBOX, and thus
their HLS optimizations under investigation are limited to the
storage elements used for the SBOX outputs. Even though the
authors claim that some HLS implementations are less
vulnerable, they still leak secret information. The same au-
thors had previously examined in [20] the security of different
memory elements, by performing HLS resource pragma ex-
ploration. They provide similar results while focusing again
on the SCA leakage of the output of the SBOX.

Fault analysis attacks have become a prominent subject in
literature [11,13,14], with new attacks constantly emerging
[27]. In any case, the effect of (even unintended) soft errors
that could tamper with the functionality of a design should al-
ways be a consideration for hardware developers, especially
when cryptographic applications are of interest [28,29]. To
improve the fault-tolerance, multiple mitigation techniques
and countermeasures have been proposed [30,31,32]. It is cru-
cial thus, to understand and evaluate the behavior of a design
from early development stages. For that reason, simulation or
emulation-based evaluations at the RTL are important [33].

Reliable HLS methodologies, such as the one proposed in
[34], introduce the concept of reliability as a design metric,
and present a theoretical approach to quantify it. Integration
of such a metric in HLS could allow for the design exploration

of reliable applications, with respect to area and latency limi-
tations. In [35], the authors extend this idea by introducing an
automated approach for the synthesis of reliable designs based
on genetic algorithms. In [36], the authors suggest that the
core operations of HLS flow, scheduling and binding, could
be modified in order to satisfy a given threshold of reliability.
In [37], the lifetime of variables within the circuit is examined,
which appears to be related to their vulnerability. The aim is
to minimize it through reliability-aware HLS operations.

Few works evaluate their results with the use of FI
campaigns. For instance, the authors in [22] work inside the
HLS flow to incorporate an encoding scheme for arithmetic
operations, whereas in [23], the authors aim to insert redun-
dancy from C-code variable specifications. To the best of our
knowledge, there are no related works that study the effects of
HLS optimizations on the robustness of protected or unpro-
tected cryptographic implementations under the malicious or
unindented injection or the inherent occurrence of faults.

III. DESIGN UNDER EVALUATION AND COUNTERMEASURES

We have used the Canright SBOX algorithm [38] as a
well-known security test case. Two countermeasures against
SCA attacks have been integrated in the high-level algorithm:
a) a hiding-based scheme that also supports fault detection and
b) a masking-based protection scheme. Furthermore, the un-
protected version and the two protected versions of the Can-
right algorithm have been synthesized through the Xilinx Vi-
vado HLS flow using three different sets of directives to test
the effects of commonly used synthesis settings to reach typi-
cal design optimization goals. To evaluate all these designs in
terms of performance, security and reliability, we have fully
implemented them in FPGA and developed two experimental
evaluation flows: the first one performs SCA attacks on the
Canright implementations in an FPGA board and the second
performs FI campaigns on the RTL designs produced by the
HLS tool. As the Canright algorithm computes the SBOX of
a given input on-the-fly, it was necessary to evaluate the secu-
rity of the entire algorithm by considering, besides the final
output of the SBOX (which is usually considered), all the in-
termediate values of the Canright algorithm. Therefore, our
analysis evaluates the effects of the HLS to the entire SBOX,
including all internal functions and their optimizations.

Even though more optimized SBOX implementations ex-
ist in the literature [39], we chose to use Canright’s SBOX.
This is because our goal was to show the effects of HLS on
countermeasures and thus, in our view, it was more appropri-
ate to demonstrate our methodology on a well-established im-
plementation than the state-of-the-art solution. Furthermore,
we decided to focus our analysis on the SBOX module instead
of a complete cryptographic algorithm (such as AES) in order
to simplify the complexity of the algorithm and enhance the
understanding of the issues arising due to HLS optimizations.

The design is capable of performing the SBOX computa-
tions on-the-fly, through the use of tower-field representation.
Instead of performing the 7th-degree polynomial inversion re-
quired for SBOX, the data are transformed to be represented
in isomorphic, lower-degree fields, where the inversion is eas-
ier. Specifically, the inversion of a 1st-degree polynomial (a
two-bits value) corresponds to a bit swap. The countermeas-
ures presented below were developed over this concept.

In the following subsections, we shortly describe the coun-
termeasures that we have added to the SBOX algorithm,
named hereafter as “Unprotected HLS” implementation or
“UHLS” in abbreviation.

A. Correlated Noise Generation (CNG)

This countermeasure is based on the addition of correlated
noise to the computation of the SBOX by duplicating it and
using the same data and a fake key in parallel to the true secret
key computation [40]. The fact that the data are the same be-
tween the two parallel computations helps to hide the leakage
of the true secret key [41]. The CNG countermeasure parallel-
izes the computation of the two bytes by concatenating them
into a single 16-bit variable. The datapath of the SBOX has
been extended by changing the data type of the algorithm’s
variables from uint8_t to int, as shown in Fig. 1. This way the
least significant byte is used for the computations of the true
key and the second byte for the fake key. This CNG technique
has been chosen as a typical hiding-based SCA countermeas-
ure, but since it uses redundancy it can also be considered as
a duplication-based fault detection countermeasure.

B. Masking

Masking countermeasures attempt to de-correlate the

power traces and the secret key by using random values to

mask the data. When the computations are completed the

masks are removed from the SBOX output and the correct re-

sults are obtained. Our masking scheme has been previously

presented in [42] and adopts the tower-field approach. An 8-

bit input mask is randomly generated and XOR-ed with the

input data. Three additional random masks are also generated

as shown in Fig. 2. Along with two consecutively transformed

values of the input mask, -(input mask)’ and output mask-,

they are able to conceal the intermediate SBOX results. Their

size corresponds to the representation field they are applied to

– two 8-bit masks for GF(28), two 4-bit masks for GF(24),

and one 2-bit mask for GF(22). The result is generated carry-

ing the output mask, and can be removed by applying the out-

put mask with an XOR operation. It is known that this mask-

ing countermeasure is vulnerable in the presence of glitches

and other physical defaults [43]. This is useful for our analy-

sis since it can show the degree to which specific HLS opti-

mizations will lead to RTL designs (later on synthesized by

low-level FPGA tools) with different amounts of glitches and

physical defaults that may weaken the countermeasure.

C. HLS Optimizations & Directives

 In order to put under test the HLS optimization effects on
the security of our countermeasures, we have selected three
meaningful sets of directives supported by the Vivado HLS
tool, leading to three solutions (Sol) for each design. For all
the design-solution combinations, we have set the timing con-
straints to 20ns. Sol1 is the default optimization strategy and
serves as a reference. It concerns minimal optimizations, such
as small functions’ inlining, small loops’ unrolling and use of
registers for small arrays’ elements. Sol2 performs a full loop
unrolling to the design and targets the lowest possible latency.

Sol3 turns inlining off for all the Canright SBOX functions,
hence preserving all function sub-modules without flattening
them. Furthermore, it enables the use of BRAM resources to
store the change of basis arrays as well as the output of the
function responsible for the change of basis (G256_nb).

D. FPGA resources utilization

Table I presents the programmable resource utilization for
each design and solution. By “UHLS” we denote the original
open-source C-version Canright SBOX and by “Verilog” the
original Verilog version, while the remaining designs are the
protected versions. “Design Resources” column presents the
utilized programmable resources in terms of BRAMs, FFs and
LUTs as well as the maximum latency (in clock cycles) for the
synthesis of each design and solution. “Overheads vs UHLS”
column presents the improvement in resource utilization with
respect to the UHLS solutions. It should be noted that the uti-
lization statistics, except for the Verilog implementation, were
derived from the Vivado HLS synthesized designs, hence they
are estimates of the actual statistics.

Sol1 involves the largest amount of design resources
among all cases, while Sol2 greatly reduces the FFs and in-
creases the LUTs due to loop unrolling. As expected, it pro-
duces designs with the lowest latency scores. Sol3 achieves
lower resource utilization concerning FFs and LUTs than
Sol1. The use of BRAMs is also noted. This optimization
strategy achieves latency scores slightly increased compared
to Sol1. Lastly, the manually designed Verilog implementa-
tion achieves a latency score of one clock cycle and has by far
the lowest resource utilization of all HLS implementations
studied in our work.

Figure 2. Masked SBOX architecture

Figure 1. UHLS (top) and CNG architecture (bottom)

Table I. Programmable resource utilization estimates and over-

heads compared to UHLS designs (Latency: in clock cycles)

Design Resources Overheads vs UHLS

Sol1 Sol2 Sol3 Sol1 Sol2 Sol3

U
H

L
S

 BRAM_18K 0 0 3 0 0 0

FF 293 18 109 0 0 0

LUT 599 446 446 0 0 0

Latency 34 1 37 0 0 0

C
N

G
 BRAM_18K 0 0 3 0 0 0

FF 212 50 207 -81 32 98

LUT 1607 1930 1386 1008 1484 940

Latency 36 3 38 2 2 1

M
a

sk
e
d

 BRAM_18K 0 0 3 0 0 3

FF 583 169 373 293 18 109

LUT 1206 1312 1226 599 446 446

Latency 59 4 59 0 0 0

V
e
r
il

o
g

BRAM_18K 0 -

FF 111 -

LUT 152 -

Latency 1 -

IV. EVALUATION FLOW

A. SCA Experimental Setup

We used the ChipWhisperer CW305 FPGA evaluation
board employing an Artix7 Xilinx FPGA (XC7A100T-
2FTG256) to evaluate our designs against SCA. To acquire
the power traces, we used the ChipWhisperer differential am-
plifier for power analysis and an oscilloscope involving a
maximum sampling rate of 2GSPS and 350MHz bandwidth.
To perform the data acquisition, we have developed a Matlab
software, which provides the input to the SBOX residing in
the FPGA and records the results for further processing. At the
same time, the acquisition software collects for each SBOX
computation the power traces through the oscilloscope.

B. SCA Evaluation Flow

Οur evaluation platform performs SCA on all the interme-
diate operations (C-code operations) of a given C algorithm as
well as the Welch t-test. This way, it can connect the leakage
of a Correlation Power Analysis (CPA) attack to the interme-
diate operation and analyse the entire computation. The
evaluation flow is based on the standard CPA using Pearson’s
formula to compute the correlation coefficients between the
power traces and the intermediate results of the SBOX
algorithm for all key hypotheses under a power model. In our
case, the software supports both Hamming Weight (HW) and
Hamming Distance (HD) power models. Additionally, we
have developed a tool capable of producing the intermediate
values for which we will perform the CPA attacks. Instead of
performing the attacks only against the output of the SBOX
algorithm, our tool reads the HLS C code and creates one
internal intermediate value for each SBOX operation. For the
Canright SBOX algorithm, our tool generated 338 different
internal intermediate values. Therefore, instead of performing
a single CPA attack, we perform 338 attacks for each power
model (HW and HD) and each design and solution under
evaluation. Therefore, our attack model considers that the
attacker has concluded that the Canright SBOX is a candidate
for the implementation under attack and uses the open-source
C code to generate any possible internal intermediate value.

By attacking all the operations of the design under evalu-
ation, we can monitor the effects of the HLS optimizations for
each design in greater detail. Thus, we can also use this higher
resolution to evaluate internal optimizations of the SBOX in-
stead of only memory-related optimizations already per-
formed in previous approaches as described in the Related
Work. Furthermore, this approach can directly measure the
side-channel leakage of each operation. Additionally, we ap-
ply to all designs an evaluation based on Welch’s t-test [44],
which examines whether two sets of data, consisting of the
traces derived for different inputs, can be distinguished. If so,
it means that the leakage is strongly related to the input, and
also to the cryptographic key. The degree of distinguishability
is given by the value t, calculated for each set’s mean μ, vari-
ance s2 and number of elements n:

𝑡 =
𝜇0 − 𝜇1

ට
𝑠0

2

𝑛0
+

𝑠1
2

𝑛1

Two sets of data were used, one consisting of 100,000
traces generated for random data inputs, and one consisting of
100,000 traces generated for a constant input. It is assumed
that a t-value |t| greater than 4.5 indicates a side channel leak-
age capable of exposing the secret key.

C. Fault Injection Evaluation Flow

We have implemented a FI platform based on the Xilinx
Vivado tool that uses commands of the Vivado simulator. The
potential fault sites of our FI campaigns are the Flip-Flops of
the elaborated RTL netlist generated by HLS synthesis with-
out any further optimizations. Our fault model assumes bit flip
in one flip-flop (Single Bit-Flip, SBF) or bit flips in more than
one flip-flop (Multiple Bit-Flip, MBF) for a specific clock cy-
cle. Our FI campaigns include exhaustive SBF experiments
(i.e., faults in all the Flip-Flops and all clock cycles) as well as
statistical MBF experiments for different multiplicities. In or-
der to generate the fault sites (flip-flop) and the injection times
(clock cycle), we use the statistical approach proposed in [33].

V. RESULTS

A. SCA Evaluation Results

Table II presents the results of the SCA in all the protected
and unprotected designs. The first column presents all the tar-
get designs including the Verilog implementation and all the
combinations of the HLS optimization (Sol1, Sol2, Sol3) and
the SBOX scheme (UHLS, CNG and Masked). The designs
are in this order to facilitate the discussion on the results.
UHLS is the unprotected HLS implementation; CNG is the
HLS-based version of the CNG countermeasure; Masked de-
sign is the HLS-based masked SBOX. Sol1, Sol2 an Sol3 are
the three HLS optimization settings described in Section III.C.
The values shown in the table depict the number of successful
attacks, i.e., attacks that expose the secret cryptographic key.

For each evaluation, we have used 100,000 power traces.
Therefore, each table cell shows the number of internal SBOX
operations (intermediate values) that expose the secret key us-
ing the HW or the HD power model (HW and HD results are
added). Column “Total” provides the total number of SBOX
operations leaking the secret key, while the other columns cat-
egorize them according to which function of the Canright
SBOX the corresponding operations belong to. The Verilog
implementation leaks the secret key only in 7 different opera-
tions, which shows that it is much more secure against SCA
attacks than the unprotected HLS implementation and most
protected designs. Concerning Sol1, it is apparent that the un-
protected HLS (UHLS) is the weakest design involving 51
leaking operations. Then, we observe that by adding the coun-
termeasures while using Sol1, we can gradually achieve
higher protection reducing the leaking operations to 19 for the
CNG and 9 for the Masked design. Regarding Sol2, the results

Table II. Number of successful attacks (HW and HD) in different SBOX operations per design.

 Total Sbox G256_nb G256_inv G16_sq_scl G16_mul G16_inv G4_scl_N G4_scl_N2 G4_mul G4_sq

Verilog 7 2 0 0 0 0 0 3 0 0 2

so
l1

 UHLS 51 4 31 4 0 1 0 3 0 8 0

CNG 19 0 10 2 0 1 1 0 0 5 0

Masked 9 1 1 1 0 0 2 0 0 4 0

so
l2

 UHLS 32 1 18 4 0 9 0 0 0 0 0

CNG 58 0 0 2 0 15 10 4 0 27 0

Masked 56 0 0 3 0 29 7 0 0 15 2

so
l3

 UHLS 87 6 43 10 0 20 0 6 0 2 0

CNG 28 0 11 3 0 2 1 0 0 11 0

Masked 2 1 1 0 0 0 0 0 0 0 0

are not so straightforward as the UHLS design leaks the key
in less operations (32 in total) than the protected designs (58
for the CNG and 56 for the Masked design). As the main char-
acteristic of this optimization directive (Sol2) is the loop un-
rolling, we can see that the heavier the optimization is, the
worst is the security of the countermeasures. Therefore, heavy
HLS optimizations, which are unsupervised by the designer,
may lead to a less secure design than the unprotected imple-
mentation, even if a countermeasure is included. Sol3 further
increases the number of leaking operations for all the designs
besides the Masked one. This fact can be attributed to the use
of BRAM since it is the only major difference with the default
optimization option (Sol1). By examining the RTL, we deter-
mined that the default inlining performed in Sol1 has no effect
in the Masked scheme, since it would only concern simple
functions. From the other Sol3 designs, “UHLS” reaches 87
leaky operations. Similar to Sol1, in Sol3 we can also observe
that the addition of countermeasures improves the security of
the algorithm. CNG reduces the leaky operations to 28, while
the Masked design achieves the lowest number of successful
attacks amongst all designs and optimization cases.

Α significant result is that even powerful countermeasures
can be greatly impacted by HLS optimizations. The Masked
design highlights greatly this point. It is important to empha-
size that the masked SBOX theoretically should be 100% pro-
tected against first-order CPA attacks. Our results show that
the Masked design contains multiple operations which leak
the secret key even against a first-order CPA attack. Further-
more, we can observe that the Masked countermeasure works
better with the BRAM optimization (Sol3), where it leaks the
key only in 2 operations. The most strong hypothesis for this
result is that when using the BRAM for the masked design,
there is a reduction in glitches existing in the operation of this
implementation. As described in [44], glitches are a big con-
cern for masked implementations. Therefore, for such designs,
it is essential for HLS designers to be careful with the HLS
optimizations they use so as not to increase the likelihood of
generating glitches in the design. In Fig.3, we show the eval-
uation results for the Masked-Sol3 implementation. The tool
generated 338 figures including the correlation at each sam-
pling point for all key hypotheses. Using the tools, we can de-
termine that the two operations that leak the secret key belong
to the G256_inv and G16_inv functions.

In Fig. 4, Welch’s t-test verifies multiple CPA results dis-
cussed above. Sol3 is vulnerable for all designs while the most
secure design is the Masked one. On the other hand, for t-test
the unprotected UHLS and the CNG designs are all vulnerable
for all optimization scenarios. This is also due to the fact that
the CPA is performed on the unprotected SBOX intermediate
values and that CNG is a hiding-based countermeasure.

B. Fault Injection Results

Based on the FI experiments, we assess the reliability and
the security of the selected designs. Since we have used a sin-
gle SBOX, all fault injections which lead to capturing errors
at the outputs are candidates for successful fault attacks (e.g.

by using single-bit or single-byte Differential Fault Analysis)
[11,13]. Concerning reliability, all errors at the outputs of the
SBOX may completely change the entire AES output depend-
ing on the round that the fault be injected. Fig. 5 presents the
results of the FI campaigns. Our fault mode includes exhaus-
tive SBFs and statistical MBFs with multiplicities of 2, 3, 4
and 5 (denoted as m2, m3, m4 and m5, respectively). We have
selected the number of samples for each experiment so as to
achieve a margin of error of 1% with a confidence level of
99%. In the cases where the SBOX is unprotected against FI
attacks (e.g., masked and UHLS), each fault is characterized
as Silent (i.e., no errors are captured at the SBOX output),
Critical (i.e., leads to an erroneous output) and Hang (i.e., does
not allow the completion of the computation). For the CNG,
which integrates a fault detection scheme, we further charac-
terize the faults as detected (i.e., the fault results in different
outputs for the two redundant computations).

The first column presents the results for the designs syn-
thesized using the default HLS optimization (Sol1) goals.
UHLS involves the higher critical error rates between the three
designs; they range from 4.36% for SBFs to 16.16% for
MBFs-m5. The results for the CNG countermeasure show a
drastic reduction of critical error rates compared to UHLS and
Masked. We should note that CNG manages to detect all SBFs
leading to critical errors. Additionally, we notice a gradual in-
crease in the corresponding detection rates as the fault multi-
plicities increase. On the other hand, this design involves the
largest hang rates among all designs for the Sol1 case. The
Masked implementation involves critical errors ranging be-
tween 1.81% for SBFs to 7.66% for MBFs-m5. The second
column presents the results for the optimization solutions in-
volving complete loop unrolling (Sol2). For the UHLS design,
the critical faults increase drastically to 50% for the SBF cam-
paign while they reach 68.46% for larger multiplicities. This
drastic deterioration is due to the fact that complete loop un-
rolling results to a circuit including just 18 flip flops and a la-

Figure 4. 2-point (Welch’s) t-test results

Figure 3. Evaluation results on the Masked- Sol3 design

tency of one clock cycle. When CNG is implemented by en-
forcing complete loop unrolling, critical error rates vary from
0% for SBFs to 0.78% for MBFs-m5. Once again we can see
that CNG manages to detect all SBFs leading to critical errors.
Similarly Masked SBOX yields smaller critical error rates
than UHLS. The larger amount of silent errors in the cases of
CNG and Masked designs is due to the higher number of 50
flip flops and latency than the unprotected design. The third
column presents the results for Sol3. The main property of this
strategy is that unlike Sol1 it does not allow inlining of the
design’s functions. The results for UHLS show that in com-
parison to Sol1 and Sol3, it has slightly higher critical error
rates. The CNG design, when synthesized without inlining
(Sol3), yields the lowest critical error rates, 0% for SBFs up
to 0.14% for MBFs-m5. This is expected as not allowing to
perform optimizations across functions reduces resource shar-
ing. The Masked implementation for Sol3 shows less critical
error rates compared to UHLS and the other Masked solutions.

For all the CNG solutions, we can notice that the critical
rates increase with the fault multiplicity. For a perfectly dupli-
cated design, we would expect that SBFs would result in one
of the two redundant modules to fail, and thus, it would theo-
retically yield very high rates of detection. This means that the
HLS implementations of CNG avoid resource sharing and
manage to keep the two redundant computations unaffected
for all solutions. The Masked implementation is the most com-
plex design. This translates to a difficulty of the HLS tool to
optimize the benefits of inlining towards greater resource
sharing. Thus, for all the Masked versions, the less efficient
inlining contributes to less resource sharing leading to a ten-
dency for less critical error rates than UHLS. Globally, we re-
mark that HLS optimizations affect the resilience of either
protected or unprotected designs against SCA or FI attacks.

VI. CONCLUSIONS

In the current work, we have studied the impact of using
an HLS flow on the security of protected and unprotected
cryptographic implementations against SCA attacks. We have
implemented the Canright SBOX and two protected versions
of the same algorithm integrating hiding and masking coun-
termeasures using Vivado HLS. We have used three different
HLS optimization strategies to achieve various design goals.
Additionally, we have evaluated all the designs and optimiza-
tion strategies in terms of security and reliability performing
SCA and FI experiments. Our results highlight the fact that
secure circuit designers should be careful when using an HLS
flow to integrate SCA countermeasures. Globally, we remark
that HLS optimizations affect the resilience of either protected
or unprotected designs against SCA or FI attacks. An im-
portant result is that the HLS tools manage to maintain the
properties of the implemented countermeasures to some ex-
tent. Concerning SCA, the theoretically stronger masked im-
plementation achieves the best evaluation results among the
tested designs besides when loop unrolling took place. Our re-
sults also show that, even though masking achieves higher
protection, it breaks after 100,000 traces. Similarly, under FI
evaluations, the duplication-based CNG countermeasure
maintains its theoretical ability to detect all single bit flips for
all tested constraints. Our results show that designers can
exploit the HLS tools to greatly improve productivity at the
cost of extra care that has to be taken when security and
reliability are important goals. Additionally, we show that
there is a need for further research and development to en-
hance HLS algorithms in order to transparently take into
account the need for secure and reliable hardware accelerators.

Figure 5. Fault injection effects over the designs under examination

REFERENCES

[1] Coussy, Philippe, et al. "An introduction to high-level synthesis." IEEE
Design & Test of Computers 26.4 (2009): 8-17.

[2] Nane, Razvan, et al. "A survey and evaluation of FPGA high-level
synthesis tools." IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 35.10 (2015): 1591-1604.

[3] Choi, Young-kyu, and Jason Cong. "HLS-based optimization and
design space exploration for applications with variable loop
bounds." 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2018.

[4] Takach, Andres. "Design and verification using high-level
synthesis." 2016 21st Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 2016.

[5] Zhang, Lu, et al. "Machine-learning-based side-channel leakage
detection in electronic system-level synthesis." IEEE Network 34.3
(2020): 44-49.

[6] Elliott, John P. Understanding behavioral synthesis: a practical guide
to high-level design. Springer Science & Business Media, 1999.

[7] Bailey, Donald G. "The advantages and limitations of high level
synthesis for FPGA based image processing." Proceedings of the 9th
International Conference on Distributed Smart Cameras. 2015.

[8] Acosta, Antonio J., Tommaso Addabbo, and Erica Tena‐Sánchez.
"Embedded electronic circuits for cryptography, hardware security and
true random number generation: an overview." International Journal
of Circuit Theory and Applications 45.2 (2017): 145-169.

[9] Chang, Jed Kao-Tung, et al. "Hardware-assisted security mechanism:
The acceleration of cryptographic operations with low hardware
cost." International Performance Computing and Communications
Conference. IEEE, 2010.

[10] Mukhopadhyay, Debdeep, and Rajat Subhra Chakraborty. Hardware
security: design, threats, and safeguards. CRC Press, 2014.

[11] Joye, Marc, and Michael Tunstall, eds. Fault analysis in cryptography.
Vol. 147. Heidelberg: Springer, 2012.

[12] Kastensmidt, Fernanda Lima, Luigi Carro, and Ricardo Augusto da
Luz Reis. Fault-tolerance techniques for SRAM-based FPGAs. Vol. 1.
Dordrecht: Springer, 2006.

[13] Biham, Eli, and Adi Shamir. "Differential fault analysis of secret key
cryptosystems." Annual international cryptology conference. Springer,
Berlin, Heidelberg, 1997.

[14] Bar-El, Hagai, et al. "The sorcerer's apprentice guide to fault
attacks." Proceedings of the IEEE 94.2 (2006): 370-382..

[15] Thillard, Adrian, Emmanuel Prouff, and Thomas Roche. "Success
through confidence: Evaluating the effectiveness of a side-channel
attack." International Conference on Cryptographic Hardware and
Embedded Systems. Springer, Berlin, Heidelberg, 2013.

[16] Sadhukhan, Rajat, Sayandeep Saha, and Debdeep Mukhopadhyay.
"Shortest Path to Secured Hardware: Domain Oriented Masking with
High-Level-Synthesis." 2021 58th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2021.

[17] K. Tiri, "Side-Channel Attack Pitfalls," 2007 44th ACM/IEEE Design
Automation Conference, 2007, pp. 15-20.

[18] Pilato, Christian, Siddharth Garg, Kaijie Wu, Ramesh Karri, and
Francesco Regazzoni. "Securing hardware accelerators: A new
challenge for high-level synthesis." IEEE Embedded Systems Letters
10, no. 3 (2017): 77-80.

[19] Zhang, Lu, Dejun Mu, Wei Hu, Yu Tai, Jeremy Blackstone, and Ryan
Kastner. "Memory-based high-level synthesis optimizations security
exploration on the power side-channel." IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 39, no. 10
(2019): 2124-2137.

[20] Zhang, Lu, Wei Hu, Armaiti Ardeshiricham, Yu Tai, Jeremy
Blackstone, Dejun Mu, and Ryan Kastner. "Examining the
consequences of high-level synthesis optimizations on power side-
channel." In 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1167-1170. IEEE, 2018.

[21] Silitonga, Arthur, et al. "Hls-based performance and resource
optimization of cryptographic modules." 2018 IEEE Intl Conf on
Parallel & Distributed Processing with Applications, Ubiquitous
Computing & Communications, Big Data & Cloud Computing, Social
Computing & Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom). IEEE, 2018.

[22] Campbell, Keith A., et al. "High-level synthesis of error detecting cores
through low-cost modulo-3 shadow datapaths." 2015 52nd ACM/
EDAC/IEEE Design Automation Conference (DAC). IEEE, 2015.

[23] Lojda, Jakub, et al. "Data types and operations modifications: A
practical approach to fault tolerance in HLS." 2017 IEEE East-West
Design & Test Symposium (EWDTS). IEEE, 2017.

[24] Mangard, Stefan, Elisabeth Oswald, and Thomas Popp. Power analysis
attacks: Revealing the secrets of smart cards. Vol. 31. Springer Science
& Business Media, 2008.

[25] Homsirikamol, Ekawat, and Kris Gaj. "Can high-level synthesis
compete against a hand-written code in the cryptographic domain? A
case study." In 2014 International Conference on ReConFigurable
Computing and FPGAs (ReConFig14), pp. 1-8. IEEE, 2014.

[26] Socha, Petr, Vojtěch Miškovský, and Martin Novotný. "High-level
synthesis, cryptography, and side-channel countermeasures: A
comprehensive evaluation." Microprocessors and Microsystems 85
(2021): 104311.

[27] Dobraunig, Christoph, et al. "SIFA: exploiting ineffective fault
inductions on symmetric cryptography." IACR Transactions on
Cryptographic Hardware and Embedded Systems (2018): 547-572.

[28] Bandeira, Vitor, et al. "Impact of radiation-induced soft error on
embedded cryptography algorithms." Microelectronics Reliability 126
(2021): 114349.

[29] Sheikhpour, Saeide, Ali Mahani, and Nasour Bagheri. "Practical fault
resilient hardware implementations of AES." IET Circuits, Devices &
Systems 13.5 (2019): 596-606.

[30] Karaklajić, Duško, Jörn-Marc Schmidt, and Ingrid Verbauwhede.
"Hardware designer's guide to fault attacks." IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 21.12 (2013): 2295-2306.

[31] Maistri, Paolo, et al. "Countermeasures against EM analysis for a
secured FPGA-based AES implementation." International Conference
on Reconfigurable Computing and FPGAs (ReConFig). IEEE, 2013.

[32] Baksi, Anubhab, et al. "A Survey On Fault Attacks On Symmetric Key
Cryptosystems." ACM Computing Surveys (CSUR) (2022).

[33] Leveugle, Régis, et al. "Statistical fault injection: Quantified error and
confidence." 2009 Design, Automation & Test in Europe Conference
& Exhibition. IEEE, 2009.

[34] Tosun, Suleyman, et al. "Reliability-centric high-level
synthesis." Design, Automation and Test in Europe. IEEE, 2005.

[35] Taher, Farah Naz, Mostafa Kishani, and Benjamin Carrion Schafer.
"Design and optimization of reliable hardware accelerators:
Leveraging the advantages of high-level synthesis." 2018 IEEE 24th
International Symposium on On-Line Testing And Robust System
Design (IOLTS). IEEE, 2018.

[36] Shastri, Aniruddha, Greg Stitt, and Eduardo Riccio. "A scheduling and
binding heuristic for high-level synthesis of fault-tolerant FPGA
applications." IEEE 26th International Conference on Application-
specific Systems, Architectures and Processors (ASAP). IEEE, 2015

[37] Chen, Liang, Mojtaba Ebrahimi, and Mehdi B. Tahoori. "Reliability-
aware resource allocation and binding in high-level synthesis." ACM
Transactions on Design Automation of Electronic Systems
(TODAES) 21.2 (2016): 1-27.

[38] Canright, David. "A very compact S-box for AES." International
Workshop on Cryptographic Hardware and Embedded Systems.
Springer, Berlin, Heidelberg, 2005.

[39] Reyhani-Masoleh, Arash, Mostafa Taha, and Doaa Ashmawy.
"Smashing the implementation records of AES S-box." IACR
Transactions on Cryptographic Hardware and Embedded
Systems (2018): 298-336.

[40] Kamoun, Najeh, Lilian Bossuet, and Adel Ghazel. "Correlated power
noise generator as a low cost DPA countermeasures to secure hardware
AES cipher." 2009 3rd International Conference on Signals, Circuits
and Systems (SCS). IEEE, 2009.

[41] Aerabi, Ehsan, Athanasios Papadimitriou, and David Hely. "On a side
channel and fault attack concurrent countermeasure methodology for
MCU-based byte-sliced cipher implementations." 2019 IEEE 25th
International Symposium on On-Line Testing and Robust System
Design (IOLTS). IEEE, 2019.

[42] Canright, David, and Lejla Batina. "A very compact “perfectly
masked” S-box for AES." International Conference on Applied
Cryptography and Network Security. Springer, Berlin, 2008.

[43] Schneider, Tobias, and Amir Moradi. "Leakage assessment
methodology." International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, Berlin, Heidelberg, 2015.

[44] Barthe, Gilles, et al. "maskverif: Automated verification of higher-
order masking in presence of physical defaults." European Symposium
on Research in Computer Security. Springer, Cham, 2019.

