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Abstract—Homomorphic encryption (HE) enables calculating
on encrypted data, which makes it possible to perform privacy-
preserving neural network inference. One disadvantage of this
technique is that it is several orders of magnitudes slower than
calculation on unencrypted data. Neural networks are commonly
trained using floating-point, while most homomorphic encryption
libraries calculate on integers, thus requiring a quantisation of the
neural network. A straightforward approach would be to quantise
to large integer sizes (e.g. 32 bit) to avoid large quantisation errors.
In this work, we reduce the integer sizes of the networks, using
quantisation-aware training, to allow more efficient computations.
For the targeted MNIST architecture proposed by Badawi et al.
[1], we reduce the integer sizes by 33% without significant loss
of accuracy, while for the CIFAR architecture, we can reduce the
integer sizes by 43%. Implementing the resulting networks under
the BFV homomorphic encryption scheme using SEAL, we could
reduce the execution time of an MNIST neural network by 80%
and by 40% for a CIFAR neural network.

Index Terms—convolutional neural networks, quantisation,
privacy-preserving machine learning, fully homomorphic encryption

I. INTRODUCTION

Homomorphic encryption (HE) allows performing calculations
on encrypted data. This technique enables applications where
data is processed in untrusted environments (e.g. a cloud
environment) while ensuring that this environment does not
learn anything about the data itself. As such, it is a promising
technique to make privacy-preserving machine learning possible.

A downside of HE is that it significantly increases the size of
encrypted data. As a result, encrypted operations are typically
several orders of magnitude slower than their unencrypted coun-
terparts. This work tries to accelerate neural network inference
under homomorphic encryption by using quantisation techniques
to reduce the data size and, thus, the computational cost.

Neural network frameworks generally use a floating-point
representation to represent network parameters and intermediate
variables. However, HE systems like BFV [2] encode only
integers, requiring an additional conversion step to convert
the floating-point neural network parameters to the integer HE
variables. While it is possible to design neural networks that
work solely with integer representations, previous works have
only studied such networks in a non-HE related context [3, 4, 5].
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In addition, this conversion is an essential step before porting
it to hardware. For instance, a plaintext 32 bit floating-point
addition is 30× more energy-consuming 1 than an 8 bit integer
equivalent [6]. Using the conversion, we can select smaller
HE parameters that lead to limited resource use and better
management of corner cases. Therefore, making the behaviour
of the system faster and more predictable in general.

As calculations in these non-HE integer-only networks are
performed, the sizes of the integer variables increase. The
intermediate values are commonly scaled down to a smaller
number after each layer to keep these integer-only networks
manageable. This means the most significant bits are held after
each operation, while the least significant are discarded.

Unfortunately, these reduction operations are based on division
or shift operations, which natively are not supported in HE
schemes, so downscaling cannot easily be performed. Therefore,
in neural network HE inferences, the intermediate values will
grow throughout the inference and the final calculations will
need to operate on very large integers. For instance, when all
of the weights of a neural network are converted to 32 bit, a
10-layer CIFAR network will produce integers with bit-sizes up
to 614 bit. The maximum bit-length of these output integers will
be denoted as the ‘final integer width’ (FIW), and we will show
that this value significantly affects the overall computation cost.

Gilad-Bachrach et al. [7] implemented the first artificial
feedforward neural network under homomorphic encryption
using the HE scheme YASHE [8]. Note that an attack proposed
by Albrecht et al. [9] reduced the security level of this scheme and
is therefore considered broken in practice. Gilad-Bachrach et al.
[7] proposed a specialised, HE-focussed CryptoNets architecture
for the MNIST dataset [10].

One of the downsides of the CPU implementations of
CryptoNets is the high latency of 250 sec for an MNIST
image. It was improved by Brutzkus et al. [11] with the
Low-Latency CryptoNets (LoLa) architecture. Using the BFV
scheme, optimisations in the underlying HE library SEAL and a
different approach to representing the ciphertext data, a latency
of 0.29 sec was reached, an improvement of 93× relative to
CryptoNets. In addition, Brutzkus et al. [11] proposes variants
of the LoLa network for processing the CIFAR-10 dataset [12].
They report an accuracy of 74.1% and a latency of 730 sec.

Badawi et al. [1] implemented the BFV scheme on GPUs.
They propose two architectures, one smaller for MNIST and one
more extensive for CIFAR. Accordingly, their CIFAR network
boasts an accuracy of 77.55% and a latency of 304.43 sec.

1Energy consumption using a 45nm CMOS technology.979-8-3503-4135-5/23/$31.00 ©2023 IEEE
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In this work, we improve upon the state-of-the-art HE neural
networks by considering advanced neural network quantisation
techniques. We first investigate post-training quantisation, a
method typically used in the state-of-the-art, and show that there
is a limit to how many intermediate variables can be scaled
down without significantly affecting accuracy. We then show that
quantisation-aware training can indeed be used to substantially
scale down these intermediate variables without a similar
accuracy penalty. In the end, we reduced the final integer width
with 33% for MNIST and 43% for CIFAR, allowing a speedup
with factors 80% and 40%, respectively, over typical 8-bit post-
training quantisation networks as used in the state-of-the-art.

II. PRELIMINARIES

A. Homomorphic encryption

Homomorphic encryption enables the performing of arithmetic
operations on encrypted data. Take the following example: con-
sider an asymmetric encryption system with two integer numbers
x and y. They can be encrypted by the using encryption key pk to
cx=Enc(pk,x) and cy=Enc(pk,y). These two ciphertexts are
sent to a server that cannot be trusted. The server can perform an
operation ⋄ on both ciphertext cxy=cx⋄cy , which is the equiva-
lent of doing an addition on the plaintexts. The result of this oper-
ation is then sent back to the user, who can decrypt this message.
Using the decryption key sk, the resulting plaintext message z is
obtained by z=Dec(sk,cxy). The message z will have a value of
z=x+y. Altogether, the server does not obtain any information
about the integers x and y while possessing the unencrypted data.

A limitation of this form of encryption is that it only
allows certain operations, i.e. addition or multiplication of
two ciphertexts. Execution of non-linear functions is normally
performed using a polynomial approximation that uses only
addition, subtraction, and multiplication. Moreover, a division
in the HE schemes CKKS and BFV is theoretically possible,
but it is costly and thus avoided in practice [13].

The biggest problem with the lack of a division operation
is that variables will grow during computation. For example,
when multiplying two 8 bit integers, the result becomes roughly
16 bit. In unencrypted neural network implementations, this
variable can be divided with a power of two to get back to
8 bit, making it more manageable for the next layer. However,
such an operation is not possible in encrypted neural network
inference. This leads to large intermediate and output integers.
The maximum bit-length of these output integers will be
denoted as the ‘final integer width’ (FIW).

The HE scheme must be instantiated with more extensive
parameters to accommodate these larger variables, which comes
at a significant cost. Once a specific variable size is reached,
additional techniques are required to allow large representations.
More specifically, to ensure a correct representation in the
plaintext space during inference, a residue numeral system
(RNS), following the Chinese remainder theorem, is used to
divide the large numbers into several smaller numbers. This
leads to several smaller HE instances that could be run in
parallel. Since each instance consumes computing resources,
decreasing the variable sizes can significantly reduce the number
of RNS instances and, thus, the computational cost.

B. Neural network

A neural network is a machine learning technique consisting
of a network of small interconnected computation units called
neurons. These neurons can be adapted, which enables the net-
work to ‘learn’ a specific, human-like task such as classifications
of images. A neuron will take a number of inputs, perform a
weighted sum over these inputs, and output a function of the result
of this sum. Neurons are grouped to form layers, and different
behaviour can be obtained depending on their configuration.

Since a typical division or non-linear function cannot be
executed trivially under FHE, we use a slightly adapted version
of the classical neural network layers. A dense or convolutional
layer is representable under FHE. However, the activation
function is approximated by a f(x) = x2 square function,
resulting in a Square layer. Moreover, the scaled average
pooling layer is replaced by an equivalent where the inputs are
summed, but the division is omitted.

C. Architectures

This work uses the two architectures developed by Badawi
et al. [1] for homomorphic inference. These networks are
used as test cases to research the effect of quantisation on
homomorphic encryption inference. Both architectures omit the
last (Sigmoid) activation function since it only maps the output
to the unit interval. For a detailed description of the network,
we refer the reader to the paper of Badawi et al. [1].

The first architecture used in this paper focuses on the
MNIST dataset [10]. It is based on the HCNN [1] and consists
of two convolutional, two square activation and one dense layer.
The authors stated an accuracy of 99% for this architecture.

The second architecture is designed to classify the more
complex CIFAR-10 dataset [12]. The 10-layered network
especially uses the scaled average pooling and square layer. The
proposed initial HCNN architecture was slightly modified in
our implementation by not using padding, as this only results in
reduced accuracy: our floating-point model obtains an accuracy
of 73.28%, while the original HCNN reports 77.8%.

III. POST-TRAINING QUANTISATION (PTQ)

Usually, floating-point numbers with single or double
precision are used to represent the weights and biases of a
network. However, it is possible to convert these numbers to
8 bit integers without a notable reduction in accuracy [14].
A further reduction in the representation might have a more
detrimental effect on the neural network accuracy. Converting
an existing (floating-point) neural network into a quantised
(integer) version is called post-training quantisation (PTQ).

During PTQ quantisation, a real value r∈ [α,β] is converted
to a b-bit integer q. The process is determined by two factors: the
zero-point Z and the scale factor S, using the following formula:

q=
⌊ r
S
+Z

⌉
. (1)

Dequantisation can be done through the formula r=S(q−Z),
where the quantised value is converted back to its original scale.

The scale factor S determines the quantisation step size. The
zero-point Z is the quantised value q corresponding to the real



value r=0 and positions the range of representable numbers
optimally.

When Z ̸=0, we say the quantisation is asymmetric or affine.
This quantisation explicitly uses the zero point, often set at
Z = −α · (2b − 1)/(β−α). A second option is a symmetric
quantisation, which reduces the overhead of dealing with the zero
point by setting it to zero. Commonly, the values are mapped to
a signed symmetric interval [α,β]=[−2b−1,2b−1−1], although
an unsigned interval is also possible. Symmetric quantisation
is a more limited but easier-to-handle quantisation technique.

To evaluate the effect of quantisation, we first determined
the distribution of the parameters of both MNIST and CIFAR
networks, plotted in Figure 1. Since both networks possess
a symmetric distribution, the mean of the values is zero, and
thus symmetric quantisation is the best candidate to convert
the signed real numbers for both networks. To determine the
ideal scale factor for the weights, three candidates are tested.

The first scale factor S=1/(2b−1−1) only considers the bit
width. No account is taken of the size or distribution of the real
numbers. The second scaling factor S=max(|W |)/(2b−1−1)
considers the largest absolute value that can be represented in
the quantised interval, and extreme values that are outside the
quantisation range are quantised to the edges of the quantisation
interval. The third factor S = (β − α)/(2b−1 − 1), uses the
length of the interval. This way, the length of the real interval
is divided by the length of the quantised interval. This form
is typically used for asymmetric quantisation.

To understand the influence of these different scale factors
on the network, we build a Python framework that evaluates
the effect of post-training quantisation on the accuracy and FIW.
The framework takes a neural network, converts each of the
weights to an integer representation and then executes a neural
network inference. We process each of the 10 000 images in
the test set for these experiments to determine the accuracy
and FIW. The maximum of all individual final integer widths
and corresponding accuracies are reported in Table I.

Furthermore, we also reduce the sizes of the input coefficients.
This way, we can obtain an even lower final integer width.
In all the experiments, the MNIST data is scaled down from
its typical 8 bit to 2 bit. However, since CIFAR images are
more complex, the same reduction could lead to unacceptable
accuracies. Therefore we chose not to reduce the CIFAR dataset.

The results in Table I show that for both networks, we can
quantise until 8 bit without an accuracy drop. When we want to
use lower quantisation, the accuracy starts to drop. One of the
reasons is that in these cases, many of the weights are quantised
to zero, which causes much of the information to ‘disappear’
and results in a diminished FIW.

IV. QUANTISATION-AWARE TRAINING (QAT)
In the previous section, we showed that neural networks could

be quantised to 8 bit integers, but the accuracy reduces for a
more drastic quantisation. To reduce the bit width of the network
further, we can make the network aware of the quantisation during
its training. Before training is started, the quantisation technique
and parameters are chosen and introduced into the training graphs
as ‘fake quantisation’ nodes, which simulate the low-precision
behaviour of the quantisation. These nodes quantise a real input
using Equation 1 and perform a dequantisation immediately
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Fig. 1: Overview of the weight distribution of the MNIST and
CIFAR architecture.

afterwards, thus injecting an error that the quantisation would
cause. Depending on the quantisation used, this method can
result in a network with approximately the same accuracy as
a full-precision network while using low-precision parameters.

Using Brevitas [15], we trained the same networks as in the
post-training quantisation experiments of the previous section.
Brevitas is a library to develop and train quantisation-aware
hardware-ready networks. We used its ‘weights-only quantisation
process’, in which a quantisation error is exclusively injected
in the weights.

The results can be seen on the right in Table I. For lower
bit widths, the accuracy of the QAT is significantly better than
the PTQ case, remaining approximately the same as the full
precision network. One of the reasons is that quantisation-aware
training will prevent parameter sparsity and ensure that each
parameter is used correctly.

Table II compares our QAT network to earlier works. Notable
is that the CryptoNets and HCNN implementations use PTQ
techniques, but no QAT techniques. Using QAT, we can quantise
the weights to as low as 2 bit, giving the network a much
lower FIW with minimal to no drop in accuracy. Compared to
a full precision network, i.e. quantising the parameters to 32 bit
integers, the FIW is reduced with a factor of 8.2 for the MNIST
network and a factor of 5 for the CIFAR network. Compared to
the numbers presented by HCNN, our smallest networks have
a 33% and 43% smaller final integer width for MNIST and
CIFAR, respectively, while boasting similar accuracy.

V. EVALUATION

In this section, we evaluate our newly developed quantised
neural networks by implementing them using the Pyfhel [16]
library, which is a software package that provides python-
bindings for Microsoft’s SEAL library [17]. An encrypted
inference is executed using the integer-based BFV scheme. All
of our tests are run using Python 3.9.13, Brevitas 0.7.1, Pyfhel
3.3.1 (using SEAL 3.7) on an Intel Xeon Silver 4208 CPU.

One of the most compelling optimisations in certain HE
schemes was the introduction of batching or packing, as
described by Smart and Vercauteren [18]. It provides a way
to pack multiple plaintext messages into a single ciphertext as
if it were a vector of plaintexts. In our implementation, we use
batching to pack each input channel into a single ciphertext. A
single ciphertext is used for a (black-and-white) MNIST image,
and three ciphertexts are needed for an (RGB) CIFAR image.



TABLE I: Results of the quantised model using Brevitas and post-training quantisation with different scale factors for the
architectures for both MNIST and CIFAR.

PTQ – S=
max(|W |)
2b−1−1

PTQ – S= β−α
2b−1−1

PTQ – S= 1
2b−1−1

QAT

Dataset Quantisation Acc [%] FIW [bit] Acc [%] FIW [bit] Acc [%] FIW [bit] Acc [%] FIW [bit]

32bit 98.43 237 98.43 231 98.43 233 98.6 238

MNIST 8bit 98.41 69 98.44 63 98.44 64 98.51 70
3bit 94.39 32 44.03 26 79.04 27 98.3 38
2bit 14.4 20 11.35 3 11.53 6 98.46 29

32bit 73.09 583 73.09 571 73.09 570 73.28 614
CIFAR 8bit 73.0 202 73.18 187 73.09 186 73.04 205

4bit 52.24 135 18.67 123 9.96 128 72.49 153

TABLE II: Results of the quantisation-aware training and
homomorphic inference.

Network Quant Acc.
[%]

FIW
[bit]

Seq.
time
[min.]

No. of
inst.

CryptoNets [7] 5-10bit 99 80 - 2

M
N

IS
T

HCNN [1] 4bit 99 43 - 1

Our Work 32bit 98.6 238 98.45 7
Our Work 8bit 98.51 70 41.63 3
Our Work 4bit 98.65 45 12.2 1
Our Work 2bit 98.46 29 8.78 1

LoLa [11] 8-9bit 74.1 93 - 4

C
IF

A
R

HCNN [1] 8bit 77.55 218 - 10

Our Work 32bit 73.28 614 12801 30
Our Work 8bit 73.04 205 4267 10
Our Work 4bit 72.49 153 3413 8
Our work 2bit 69.14 124 2560 6

Due to batching, we cannot implement a dot-based matrix-
vector multiplication since we need access to the individual ele-
ments of a ciphertext. Therefore rotation-based versions of each
neural network layer are implemented based on previous works.
Dathathri et al. [19] propose an algorithm to calculate a single
convolution kernel on a subset of the input data. We adapted the
algorithm further to enable us to apply an input kernel to a com-
plete channel simultaneously. As proposed by Juvekar et al. [20],
a rotation-based algorithm executes a matrix-vector multiplication
for the dense layer. This algorithm will perform the multiplication
using only vector addition, multiplications and rotations.

When converting to an almost binary size (2 bit), extra
sparsity is introduced, which we use to reduce the latency. We
check for a zero vector before encoding the weight during the
encrypted inference. If there is one, all the associated operations
using this vector can be omitted. This results in a speedup of
28% between a 4 bit and 2 bit network.

A. Homomorphic encryption parameter selection

To determine and select suitable HE parameters, we first
analyse the final integer width that determines whether we need
multiple instances. The SEAL library limits the maximum size
of the plaintext modulus to 60 bit for performance reasons. Due
to the outcomes of our QAT experiments, we need to represent
larger plaintext spaces and use a residue numeral system (RNS).
An overview of the used HE parameters is given in Table III.

TABLE III: Used HE parameters

Network Quantisation N logq Plaintext modulus

M
N

IS
T 8bit 214 389 35184371138561,

4bit 214 389 35184371138561
2bit 214 389 1073643521

C
IF

A
R

8bit 215 825 Same as 4bit +
8257537, 6946817

4bit 215 825 Same as 2bit +
5767169, 6750209

2bit 215 825 1376257, 1769473, 2424833,
2752513, 3604481, 3735553

B. Results
We report the sequential times for various quantisation on

the right in Table II. To account for the number of instances,
the ‘sequential time’ is given, corresponding to the total time
when each instance is executed sequentially and reflecting
the use of computing resources. For the CIFAR network, the
work of Badawi et al. [1] uses ten instances, each possessing
a plaintext size of around 21 bit. Using the same sizes, our
smallest network (2 bit) only requires six instances.

The MNIST architecture’s smallest network is 80% faster
than the best 8 bit PTQ network. This is due to the smaller FIW
and because it uses the additional sparsity of the weights. As
for the CIFAR architecture, we obtain a 40% speedup compared
to the 8 bit PTQ network, which is equal to the quantisation
used by HCNN.

VI. CONCLUSION

The absence of a division operation in some fully
homomorphic encryption schemes implies that variables keep
growing during computations. In this work, we tested two
main quantisation techniques to reduce the size of the internal
variables, which in turn affects computation cost. We first looked
at the limitations of post-training quantisation and showed that
there is a lower limit to the quantisation (in our case 8 bit) before
the accuracy significantly drops. To further reduce the variable
sizes, we developed a quantisation-aware training framework. We
reduced the final integer width with 33% for MNIST and 43%
for CIFAR, compared to the state-of-the-art HCNN architecture.
In our experiments, the quantisation aware training, allowing for
reducing the network weights up to 2 bit, boasts an 80% and 40%
speedup for the MNIST and CIFAR network, respectively, over
typical 8 bit weights obtained with post-training quantisation.
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