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Abstract—This paper focuses on optimal and automatic cal-
ibration of the propagation model of Received Signal Strength
(RSS) based localization algorithms. Conventional RSS-based lo-
calization algorithms assume that optimal calibration is static and
identical for all nodes, which limits its use to static environments.
However realistic environments are dynamic, where each node
should estimate its own optimal propagation model settings de-
pendent on the node’s hardware and location. We call this process
Self-Adaptive Localization (SAL). SAL algorithms estimate the
parameter settings from available localization measurements. We
show that existing SAL algorithms significantly decrease the
localization accuracy and stability. Our main contribution is
that we determine the conditions under which SAL algorithms
provide optimal results, that are shown to be constraints on
the localization surface. Since the antenna orientation has a
significant impact on RSS and thus optimal propagation model
settings, we evaluated SAL in an environment with unknown
and thus dynamic antenna orientations. Our measurements and
simulations show that these constraints increase the accuracy
by ∼ 45% and the stability by ∼ 70% in static and dynamic
environments.

I. INTRODUCTION

RSS-based localization in wireless networks describes the
process of obtaining a physical location in an automated
manner using wireless communication. This wireless commu-
nication can be based on acoustic waves or electromagnetic
waves. In range-based localization, the position estimate shows
up as a parameter in the propagation model. These propagation
models are mathematical representations of far-field solutions
to the respective Navier-Stokes or Maxwell equations. Math-
ematically, localization then reduces to calculating the field
energies at the unknown location of the receiving antenna
radiated from an antenna array at known positions. When
the antenna array is large enough and the propagation model
adequately represents the environment, localization reduces
to a set of non-linear equations for the position estimates
and possible other parameters used in the propagation model.
These other parameters are aimed to account for reflection,
refraction, diffraction, and absorption effects in the envi-
ronment. RSS-based localization usually employs the Log-
Normal-Shadowing model as the propagation model ([1]).

We distinguish the following four RSS-based localiza-
tion methods: fingerprinting (e.g. [3]), range-based (e.g. [4]),
range-free (e.g. [5]) and proximity-based (e.g. [10]) local-
ization. Recent studies show that range-based localization

outperforms other RSS-based localization methods in static
environments ([18]), and provides similar results in dynamic
environments. However, the current calibration approach can-
not deal with dynamic environments ([17]). This paper aims
to resolve that shortcoming.

A. Problem Description

This paper deals with the general challenge of RSS-based
localization estimators to properly account for the dynamic
influence of the changing environment on the signal strength.
Propagation models used by RSS-based localization estimators
introduce parameters to capture environmental influences. The
performance of localization estimators depends on how well
such parameters are able to capture these environmental influ-
ences both locally and over time. Several practical examples
that show evidence of this influence on the propagation model
are:
• Antenna orientation: [17] reports that the received signal

strength may vary a factor 32 under different antenna
orientations (16 dBm).

• Elevation from ground: [14] reports that the signal
strength may decay 17% faster at different elevated levels
from the floor (6 to 30 cm elevation).

• Materials in environment: [14] reports that the signal
strength may decay 32% faster with higher grass (6 to
30 cm grass).

Other examples that influence the signal strength are reflec-
tions, moving obstacles, temperature and humidity. Propaga-
tion models used by RSS-based localization estimators intro-
duce parameters to capture these environmental influences.
The performance of these localization estimators depends on
how well these parameters are able to capture these environ-
mental influences both locally and over time. In this paper, we
focus on capturing the influence of an unknown and dynamic
antenna orientation. We expect that other dynamic influences,
as mentioned in [14], can be captured in a similar matter.

In general, it is difficult to estimate the optimal param-
eter settings in an automated way. The reality is that the
optimal values of these parameters depend on the locally
varying electromagnetic permittivity of the localization space.
In other words, the propagation model needs to account for
local and temporal differences in the localization environment.
Conventional RSS-based localization estimators assume that
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Fig. 1. Conventional Localization Approach
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Fig. 2. SAL Approach

there exists one optimal propagation model that is static and
identical for all nodes. In principle, a static propagation model
cannot account properly for local and temporal differences
within the localization environment. In a more realistic model,
each node should estimate its own optimal parameter settings
dependent on the node’s hardware and location. We call this
process Self-Adaptive Localization. SAL applies multivariate
propagation models so that it adapts better to the locally chang-
ing environment. This paper reviews and improves several new
and existing distributed Self-Adaptive Localization estimators.

B. Conventional Versus Self-Aadaptive Localization Approach

Conventional localization estimators estimate the optimal
values of the propagation model parameters by performing
calibration measurements (see Figure 1). The parameters
calculated from calibration measurements are usually called
”nuisance parameters” as they only serve to help estimating
the unknown positions of the blind nodes. This calibration
is said to take place in the “Conventional Calibration Ap-
proach” phase. During the second phase, the ”Conventional
Localization Approach” phase, the position of the blind node
is estimated using the nuisance parameters as well as the local-
ization measurements. The conventional localization approach
characterizes itself by the clear distinction between these two
phases. Calibration measurements are only used for calibrating
the nuisance parameters; localization measurements are only
used for estimating the position. The clear separation of these
two phases implies that:

In conventional localization approaches, the optimal
calibration settings do not change locally and over time until

the next calibration round.

Hence, the optimal calibration settings are assumed to be equal
for each node and static between calibration rounds. This only
holds in static environments.

In this paper, we propose the “Self-Adaptive Localization
(SAL) Approach” (see Figure 2) that continuously adapts to
a dynamic environment. The main difference with the “Con-
ventional Localization Approach” is that the “SAL Approach”

uses localization measurements for both estimating the “nui-
sance parameters” as well as for estimating the position of the
nodes (see “Estimate nuisance parameter values” in Figure 2).
This implies that the “SAL Approach” updates the calibration
settings every time a node estimates its position. As a result:

The SAL approach allows that the optimal calibration
settings are varying over space and time, and are assumed

to be static during the localization measurements.

The idea of estimating nuisance parameters on the basis of
localization measurements is not new in the field of RSS-based
localization using radio signals ([12] and [15]) and acoustic
signals ([9] and [16]). However, it has not been applied in
conjunction with dynamic environments. Such measurements
usually take milliseconds. Compared to the conventional ap-
proach, SAL requires less or no online/offline calibration
measurements. The broken grey line in Figure 2 indicates this.

C. Contributions

The three main contributions of this paper are:
1. This paper contains a taxonomy of existing RSS-based

conventional ([8]) and SAL algorithms ([12] and [15]).
We analyze these algorithms and show what the similar-
ities and differences are between these algorithms.

2. SAL algorithms estimate the propagation model settings
using the localization measurements. In other words,
SAL increases the number of unknowns while evaluat-
ing the same amount of measurements as conventional
algorithms. We show that this decreases the localization
accuracy and stability. In addition, we analyze the be-
havior of existing SAL algorithms to determine under
which conditions these estimators provide the best and
most reliable results. We then apply these conditions as
constraints on the estimators. These constraints limit the
boundaries of the localization surface by assuming that
the blind nodes are located within the convex hull of the
reference node positions. These constraints increase the
accuracy by ∼ 40% and the stability by ∼ 67% in static
environments.



3. We evaluate the performance of existing and our con-
strained conventional and SAL algorithms in a dynamic
and thus more realistic environment. In this paper, we
assume that the antenna orientation is unknown. These
measurements show that our constrained SAL algorithms
increase the accuracy by 64% and stability by 73% in
comparison with an optimally calibrated conventional
algorithm. In addition, our constrained SAL algorithms
increase the accuracy by 45% and stability by 72% in
comparison with existing SAL algorithms.

This paper is organized as follows. After the problem de-
scription in Section 0.2, Section 0.3 classifies the conventional
and SAL estimators. Section 0.4 describes how the constraints
significantly improves the performance of existing SAL es-
timators. In addition, Section 0.4 compares the performance
of conventional and SAL estimators in a static and dynamic
environment. Section 0.5 summarizes the results.

II. MODEL FORMULATION AND SETUP

This section first provides a formal description of the local-
ization setup. The second section describes the model of the
signal strength over distance distribution and its limitations. In
addition, it describes the measurement set-up used throughout
this paper.

A. Localization Definition

Consider a wireless network that consists of N reference
nodes and M blind nodes:
• Reference nodes know their positions in advance. We

identify the positions of the N reference nodes by:
(x1, y1) . . . (xN , yN ).

• Blind nodes do not know their locations and require
localization. We identify the positions of the M blind
nodes by: (xN+1, yN+1) . . . (xM+N , yM+N ).

Our aim is to position blind nodes using signal strength mea-
surements from several reference nodes. We do not evaluate
signal strength measurements between blind nodes (like in [4]
and [11]). We use the following variables to identify individual
nodes and RSS measurements:
• j represents the identification number of the jth blind

node.
• i represents the identification number of the ith reference

node.
• Pi,j represents the RSS measurement between reference

node i and blind node j.
• Hj represents the set of reference nodes heard by blind

node j. This set consists of the identification numbers of
these reference nodes.

Figure 3 shows the measurement set-up that is used throughout
this paper. The 9 triangles represent the reference nodes (N =
9); the 112 crosses represent the blind nodes (M = 112).

B. Log-normal Shadowing Model and Measurement Setup

We adopt the Log-Normal Shadowing Model (LNSM) for
modeling the signal strength over distance distribution. This
model is widely used by RSS-based localization estimators
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Fig. 3. Measurement set-up

(e.g. [4], [11] and [13]) and has shown to be a reasonable
representation of reality ([2]). The Log-Normal Shadowing
Model describes the signal strength decay over distance that
suffers from shadowing effects. This model assumes that the
received signal strength follows a log-normal distribution.
Both theoretical and measurement-based studies support this
assumption in indoor and outdoor environments ([2]). A log-
normal distribution is a continuous distribution in which the
logarithm of the variable follows a normal distribution. This
means that:
• The average received signal strength decreases logarith-

mically over distance.
• The received signal strength follows a normal distribution

at a certain distance.
The following formula represents the Log-Normal Shadowing
Model ([1]):

Pd = Pd0 − 10 · n · log10(
d

d0
) +Xσ (1)

Here:
• Pd represents the received signal strength in dBm at

distance d.
• Pd0 represents the received signal strength in dBm at

reference distance d0, which we call the “Reference
RSS”. In general, d0 is relatively small. For simplicity,
we assume that d0 equals 1 meter (see [2]).

• n represents the Path Loss Exponent (PLE). The path
loss exponent represents the rate at which the path loss
increases with distance.

• Xσ represents the standard deviation of the received
signal strength due to shadowing effects and is invariant
with the distance ([2]). X follows a zero-mean normal
distribution with standard deviation σ:

X ∼ N(0, σ2) (2)

Even though the model is widely accepted and has shown
to be useful, it is important to note that it has limitations.
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Fig. 4. RSS over distance

Three major sources of error are multipath effects, shadowing
([1]) and hardware inaccuracies ([6] and [7]) . Multiple
signals with different amplitudes and phases add construc-
tively or destructively to the RSS, causing frequency-selective
destructive and constructive interference. The error caused
by the multipath effect is usually minimized by performing
RSS measurements over a relatively large frequency band.
The remaining errors in RSS measurements are caused by
shadowing. Shadowing is the attenuation of a signal due to
obstructions, also called medium-scale fading ([1]). We use
the indoor Line-Of-Sight measurements obtained in [17] using
CC2430 radios ([19]) equiped with standard 2.4 GHz dipole
antennas (e.g. [20], which also shows the typical radiation
pattern). In this measurement set-up, the reference nodes have
a vertical antenna orientation, and the blind node measures
the RSS with a vertical and a horizontal antenna orientation
at the 112 blind node positions shown in Figure 3. Parallel
antenna orientations (vertical/vertical) optimize reception and
perpendicular antenna orientations (vertical/horizontal) mini-
mize reception. During each measurement round, the blind
node performs 100 consecutive RSS measurements at 38
different frequencies in the 2406 . . . 2480 MHz band. The
mean RSS over these 38 frequencies is used as input for the
calibration phase and localization algorithms. Figure 4 shows
the Log-Normal Shadowing Model fitting these RSS measure-
ments. The red dots represent individual RSS measurements
with a vertical/vertical antenna orientation (best reception);
the green dots represent individual RSS measurements with a
vertical/horizontal antenna orientation (worst reception). There
are three fits that minimize the squared residual between the
measured and expected RSS using the Log-Normal Shadowing
Model:
• The curve that fits the measurements made with paral-

lel antenna orientations (vertical/vertical). The parameter
values of this fit are: {Pd0 = −21.6 dBm, n = 2.2,
σdBm = 3.2 dBm}.

• The curve that fits the measurements made with per-

pendicular antenna orientations (vertical/horizontal). The
parameter values of this fit are: {Pd0 = −37.6 dBm, n =
1.5, σdBm = 3.4 dBm}.

• The curve that fits all measurements. The parameter
values of this fit are: {Pd0 = −29.6 dBm, n = 1.9,
σdBm = 5.9 dBm}.

For details about the measurements, we refer to [17]. These
parameters settings are used as the reference throughout this
paper.

III. MAXIMUM LIKELIHOOD ESTIMATORS

This section describes the Maximum Likelihood Estimators
(MLE) of range-based localization estimators. We first formu-
late a general MLE using the Log-Normal Shadowing Model
([4]). The MLE of a position estimate equals the position
estimate that maximizes the probability using the probability
density function of Equation 1. The MLE for blind node j
equals:

max
θ

∏
i∈Hj

1

σ
√
2π
e

(Pi,j−P̂i,j)
2

2σ2 (3)

Here P̂i,j represents:

P̂i,j =Pd0 − 10 · n · log10(
di,j
d0

)

di,j =
√
(xi − x̂j)2 + (yi − ŷj)2

(4)

In Equation 3 and 4:
• di,j represents the distance between reference node i and

the position estimate of blind node j.
• θ is the set of parameters that maximizes the optimization

function (Equation 3). Note that θ always contains the
position estimate, this means that: x̂j ∈ θ and ŷj ∈ θ.

The Log-Normal Shadowing Model assumes that the variance
remains constant over distance ([2]). Hence, after some alge-
bra, Equation 3 reduces to:

min
θ

∑
i∈Hj

(
Pi,j −

(
Pd0 − n · 10 · log10(

di,j
d0

)

))2

=min
θ

∑
i∈Hj

(Pi,j − P̂i,j)2
(5)

This equation represents the general MLE using the Log-
Normal Shadowing Model. Note that it does not define:
• The values of the reference RSS (Pd0 ) and the path loss

exponent (n). This paper focuses on the calibration of
these parameters.

• θ. In SAL implementations, the different definitions of θ
define the difference between the conventional and SAL
approach.

The following enumeration describes the MLEs of the con-
ventional localization approach and three implementations of
the SAL approach:

The Conventional Localization Approach (LN-CON) as-
sumes that the optimal values of the reference RSS (Pd0 )



and the path loss exponent (n) are known before minimizing
Equation 5 (as in [4]):

min
θ={x̂j ,ŷj |Pd0=α,n=β}∑

i∈Hj

(
Pi,j −

(
Pd0 − n · 10 · log10(

di,j
d0

)

))2

(6)

α (= Pd0 ) and β (= n) are the calibrated values of the Log-
Normal Shadowing Model.

Reference RSS Self-Adaptive Localization (RR-SAL)
estimates the reference RSS (Pd0 ) on the basis of the localiza-
tion measurements. Contrary to the conventional localization
approach, RR-SAL assumes that the value of the reference
RSS (Pd0 ) is not known before minimizing Equation 5:

min
θ={x̂j ,ŷj ,P̂d0 |n=β}∑

i∈Hj

(
Pi,j −

(
P̂d0 − n · 10 · log10(

di,j
d0

)

))2

(7)

Path Loss Exponent Self-Adaptive Localization (PLE-
SAL) estimates the path loss exponent (n) on the basis of
the localization measurements (as in [12]). Contrary to the
conventional localization approach, PLE-SAL assumes that
the value of the path loss exponent (n) is not known before
minimizing Equation 5:

min
θ={x̂j ,ŷj ,n̂|Pd0=α}∑

i∈Hj

(
Pi,j −

(
Pd0 − n̂ · 10 · log10(

di,j
d0

)

))2

(8)

Log-Normal Self-Adaptive Localization (LN-SAL) esti-
mates the reference RSS (Pd0 ) and the path loss exponent (n)
on the basis of the localization measurements (as in [15]).
Contrary to the conventional localization approach, LN-SAL
assumes that the value of the reference RSS (Pd0 ) and the path
loss exponent (n) are not known before minimizing Equation
5:

min
θ={x̂j ,ŷj ,P̂d0 ,n̂}∑

i∈Hj

(
Pi,j −

(
P̂d0 − n̂ · 10 · log10(

di,j
d0

)

))2

(9)

Table 1 summarizes the characteristics of the MLE of
the conventional and SAL approaches. The table columns
represent the following:
• The “type” column contains the type of localization

estimator.
• The “Article” column contains the references to the

articles that describe these estimators.
• The “θ” column contains the set of parameters that are

estimated by the localization measurements.
• The “Calibrated parameters” column contains the set of

parameters that are calibrated before localization.

Type Article θ Calibrated parameters
LN-CON [4] {x, y} {Pd0 , n}
RR-SAL This {x, y, Pd0} {n}
PLE-SAL [12] {x, y, n} {Pd0}
LN-SAL [15] {x, y, Pd0 , n} {}

TABLE I
SUMMARY CONVENTIONAL AND SAL ESTIMATORS

LN-CON and RR/PLE/LN-SAL all use the propagation model
in the same way, these estimators assume that the reference
RSS and the path loss exponent are equal for all links. This
can also be inferred from the fact that the set of estimated pa-
rameters (union of “θ” and “Calibrated parameters” columns)
is equal for these estimators ({x, y, Pd0 , n}). Therefore LN-
CON is the conventional counterpart of RR/PLE/LN-SAL.

IV. CONSTRAINED AND UNCONSTRAINED ESTIMATOR
BEHAVIOR

This section first analyzes the performance of RR/PLE/LN-
SAL and compares them with their conventional counterpart
(LN-CON). Then, we use this analysis to determine the
conditions under which these estimators provide the best and
most reliable results. We apply these conditions as constraints
on the SAL estimators. The last subsection evaluates the un-
constrained and constrained conventional and SAL algorithms
in a environment with unknown antenna orientations.

A. Measurement Set-up

The measurement set-up is equal to the set-up described
in Section 0.2.2, and we use the same parameter values
for the Log-Normal Shadowing Model determined in Section
0.2.2 for our simulations. We use the same measurements for
calibration and localization, which ensures the best localization
performance for the evaluated localization algorithms. We
minimize Equations 6, 7, 8 and 9 using a brute force grid-based
Monte-Carlo localization approach. Other approaches can be
used, but this approach avoids local minima. We evaluate our
localization algorithms using:
• Simulations provide a way to analyze the performance

of the estimators. We perform 1000 simulation runs per
blind node position in Matlab.

• Real Measurements provide an indication what the
performance is in a real world application. We perform 2
sets of localization measurements per blind node position
(1 per antenna orientation).

We define the performance as:
• The mean error over the localization surface, which we

interpret as the localization error.
• The standard deviation between the average errors calcu-

lated at each blind node position, which we interpret as
the localization stability.

B. Performance and Behavior of Unconstrained estimators

This section analyzes the costs of calibrating the nuisance
parameters with localization measurements by first analyzing
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Fig. 5. LN-CON and RR/PLE-SAL in one dimension

the behavior and then the performance of the unconstrained
conventional and SAL estimators. First, we analyze the be-
havior in the one-dimensional case and then in the two-
dimensional case.

Consider the one dimensional set-up shown in Figure 5. In
this set-up, the blind node measures the RSS to two reference
nodes. The green circles represent the reference nodes, the
solid red box represents the blind node. Figure 5 shows that:
• LN-CON (Equation 6) calculates a unique position esti-

mate represented by the solid red box.
• RR- and PLE-SAL (Equation 7) calculate two unique

position estimates represented by the solid box and the
transparent red box. Note that these two position esti-
mates also have different estimated propagation model
settings. In the one dimensional case, one position esti-
mate is always inside the convex hull of the reference
nodes, and one position estimate is always outside the
convex hull of the reference nodes.

This ambiguity is easily solved by measuring the RSS to
several reference nodes. However, in a real measurement set-
up the number of available reference nodes is scarce, and
the ranging error is exponential (see Equation 1). This means
that SAL estimators could pick the “wrong optimum”, which
decreases the performance significantly.

Figures 6 and 7 show the typical probability distribution
of the position estimates over the localization surface at blind
node position (x = 3, y = 12) in a two dimensional case.
The triangles represent the reference nodes; the black cross
represents the real blind node position. White represents a
probability of zero; blue represents a relatively low probability;
red represents a relatively high probability. These figures show
that the probability distribution of the position estimates of
LN-SAL differs significantly from LN-CON. In addition, LN-
SAL increases the localization error from 1.7 meters to 5.2
meters at blind node position (x = 3, y = 12). We made two
observations by analyzing an extensive amount of probability
distributions of blind node positions that have a relatively high
localization error:

1. The blind node positions within the convex hull tend to
have large error slopes outside the convex hull, especially
when estimated by the SAL estimators. In Figure 7 the
error slope is located at the north-west corner of the
localization surface.

2. LN-SAL tends to have an asymptotic position distri-
bution. Figure 7 shows that the asymptotic position
distribution is located at the south-east corner of the
localization surface. The estimated path loss exponents
in the asymptotic position distribution have a negative
value.

These observations show that position estimates, relatively far

Fig. 6. Position distribution of LN-CON calculated by simulations

Fig. 7. Position distribution of LN-SAL calculated by simulations

away from the actual position, approximate the SAL optimiza-
tion function of the actual position. As in the one dimensional
case, these positions are located outside the convex hull or
have a negative path loss exponent. We use these observations
in the next subsection to contrain the conventional and SAL
estimators.

Figure 8 shows the performance of the unconstrained con-
ventional and unconstrained SAL estimators, calculated by the
simulations and real measurements. SIM is an abbreviation for
simulations; REA is an abbreviation for real measurements;
UNC is an abbreviation for unconstrained and CON is an
abbreviation for constrained. This table shows that the local-
ization performance decreases significantly as the number of
unknowns increases, which is in line with the observations.
Note that the obtained performance of the simulations and
real measurements are similar.

C. Performance of Constrained estimators

In line with our empirical findings, we set constraints on the
MLEs of the conventional and SAL estimators. We diminish



Fig. 8. Performance results unconstrained and constrained estimators in static environment
Approach Approach Antenna MEAN SIM STD SIM MEAN REA STD REA

Number Orientation UNC/CON UNC/CON UNC/CON UNC/CON
LN-CON 1 VER 1.59/1.37 m. 1.06/0.93 m. 1.53/1.39 m. 1.18/0.91 m.
RR-SAL 2 VER 2.14/1.42 m. 2.36/0.95 m. 1.98/1.40 m. 2.00/0.90 m.
PLE-SAL 3 VER 2.37/1.40 m. 2.98/0.93 m. 2.27/1.41 m. 2.60/0.89 m.
LN-SAL 4 VER 2.95/1.50 m. 4.14/0.97 m. 3.70/1.51 m. 5.65/0.97 m.
LN-CON 1 HOR 2.44/2.09 m. 1.71/1.47 m. 2.64/2.38 m. 1.73/1.40 m.
RR-SAL 2 HOR 3.53/2.12 m. 4.31/1.46 m. 3.43/2.42 m. 2.76/1.41 m.
PLE-SAL 3 HOR 3.22/2.14 m. 3.52/1.49 m. 3.32/2.47 m. 2.40/1.47 m.
LN-SAL 4 HOR 5.17/2.26 m. 6.51/1.59 m. 3.74/2.46 m. 4.09/1.43 m.

the error causes recognized in Section 0.4.2 by assuming that:
• the blind node is positioned within the convex hull of the

reference nodes.
• the path loss exponent is positive.

These assumptions are presented by the following constraints:

(x̂j , ŷj) =
∑
i∈Hj

αi · (xi, yi)∑
i∈Hj

αi = 1

n ≥ 0

(10)

Note that these constraints ensure that the position estimate
is within the convex hull, even when the true position is
outside the convex hull. Therefore, our technique imposes
requirements on the reference node set-up relative to the blind
node localization surface. Note that this is similar to a spatial
filter often used in the field of optics, that filters noise/solutions
from sources far away (e.g. multipath effects). In this section
we use box constraints instead of a set of inequality constraints
defined by the convex hull, as this significantly lowers the
computation costs.

Figure 9 shows the performance of the unconstrained and
constrained conventional and SAL estimators. On the x-axis,
we use the approach numbers, shown in Figure 8, to indicate
the localization approach used. Figure 9 shows the results of
the simulations (SIM) and real measurements (REA). Figure
8 show the raw numbers represented in Figure 9. Figures 8
and 9 show that:
• The constrained estimators increase the localization ac-

curacy by ∼ 40% and the localization stability by ∼ 67%
(in average).

• The constrained SAL estimators provide similar results
as their optimally calibrated constrained conventional
counterpart.

We expect that the SAL estimators provide similar results as
their conventional counterpart in wireless networks with a uni-
form reference node set-up, as simulations with other uniform
reference node set-ups show similar results. Simulations with
1000 random reference node set-ups show that the constrained
RR-SAL and PLE-SAL provide similar results (mean error
= 1.58 meter) as their conventional counterpart (mean error
= 1.48 meter). These simulations also show that LN-SAL is
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Fig. 9. Performance of unconstrained and constrained estimators in static
environment with vertical antenna orientation

more dependent on the reference node set-up than the other
constrained SAL estimators (mean error = 1.85 meter). The
random reference node set-ups contain 9 reference nodes, with
four reference nodes located at the corners of the localization
area (15× 15 m2) in order to comply with the constraints.

We expect that the SAL estimators provide similar re-
sults as their conventional counterpart with other Log-Normal
Shadowing Model parameter settings. Hence, the Log-Normal
Shadowing Model parameter settings only determine the mag-
nitude of the mean error (e.g. [8]). Simulations with other
parameter settings verify this. For instance, simulations with
the following parameter settings {Pd0 = −10 dBm, n =
3.5, σdBm = 8dBm} show that the constrained SAL esti-
mators provide similar results (mean error = 2.46/2.47/2.80
meter) as their conventional counterpart (mean error = 2.33
meter).

D. Performance with Different Antenna Orientations

This section analyzes the performance of unconstrained and
constrained conventional and SAL estimators in a environment
using the measurements described in Section 0.2.2. In these
measurements, we assume that the antenna orientation of the
blind node is not known. In other words, the localization
algorithms use the propagation model settings that fit all
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Fig. 10. Performance in dynamic environment with two unknown antenna
orientations

TABLE II
PERFORMANCE IN ENVIRONMENT WITH TWO UNKNOWN ANTENNA

ORIENTATIONS

Approach MEAN REA STD REA
UNC/CON UNC/CON

LN-CON 5.58/2.34 m. 4.67/1.65 m.
RR-SAL 3.13/1.94 m. 3.40/1.25 m.
PLE-SAL 4.13/2.12 m. 5.19/1.21 m.
LN-SAL 3.72/1.99 m. 4.92/1.31 m.

the measurements (vertical and horizontal antenna orientation,
see Section 0.2.2). Table 2 shows the raw numbers that are
represented by Figure 10 using a similar format as Figure 9.
This table and figure show that in average:
• Our constrained SAL algorithms increase the localization

accuracy by ∼ 45% and stability by ∼ 72% in compari-
son with the existing unconstrained SAL algorithms.

• Our constrained SAL algorithms increase the localization
accuracy by ∼ 64% and stability by ∼ 73% in compari-
son with the unconstrained conventional algorithm.

• The constrained conventional algorithm increases the
localization accuracy by ∼ 58% and stability by ∼ 65%
in comparison with the unconstrained conventional algo-
rithm.

These measurements show that SAL outperforms the conven-
tional estimator when the antenna orientation is dynamic and
unknown. In a more realistic set-up, there are more dynamic
factors that influence the RSS in a similar way. Therefore,
we expect that in a dynamic environment the difference in
performance will be larger between the SAL and conventional
estimators.

Finally, these measurements show that constraining the
conventional estimator increases the performance in a similar
way as the SAL algorithms.

V. CONCLUSION

Conventional RSS-based localization estimators assume that
the propagation model is static and identical for all nodes.

This limits the applications to static environments. Realistic
environments are dynamic where the optimal propagation
model settings vary with time and are dependent on the node’s
hardware and location. Self-Adaptive Localization algorithms
provide a possible solution in these environments. We showed
that constraining these SAL algorithms is necessary to provide
optimal and reliable results in static and dynamic environ-
ments.

Future research focuses on networking structures and mul-
timodal processing allowing an accuracy in the order of
decimeters.
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