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Abstract—Given the expected high number of accessible digi-
tally augmented devices and their communication requirements,
this paper presents our work on creating a Web-based infrastruc-
ture for smart things to facilitate the integration, look-up, and
interaction with such devices for human users and machines. To
exploit the locality of interactions with and between smart things,
the proposed infrastructure treats the location of a smart thing
as its main property and is therefore structured hierarchically
according to logical place identifiers. We discuss the infrastruc-
ture’s look-up mechanism that leverages Web patterns to foster
scalability and load balancing and features an advanced caching
mechanism that greatly reduces the response time and number
of exchanged messages. These properties are demonstrated in an
evaluation in a simulated smart environment.

I. INTRODUCTION

The miniaturization of embedded systems allows computers
with wireless communication technologies to be integrated
into an ever-increasing number of everyday objects that are
thereby transformed into smart things [1]. Such isolated smart
devices already can provide useful services to human users
(e.g., Nike+1). However, the real potential of embedding smart
things in our everyday environments lies in the interconnection
of the services they offer, an idea at the core of the Internet of
Things (IoT). This development provides new opportunities
within communication networks that will not only contain
“traditional” data like images and textual content, but also
enable the interaction with physical objects (e.g., environ-
mental sensors, mobile phones, etc.) and the possibly real-
time data and functionality they offer. Physical items are no
longer disconnected from the virtual world but rather become
accessible through computers and other networked devices
[1]. It is expected that this development will significantly
affect our daily lives as we will be able to use ubiquitous
computing devices for interacting with the real world from
almost anywhere, at any time. For instance, smart electricity
meters will enable us to query our environment for its current
electricity consumption [2], have the system propose ideas for
saving energy, and immediately implement our decisions by
configuring smart thermostats [3]. It will probably also become
possible to query search engines for the location and state of
many physical things [1]. Eventually, we expect that some

* Current affiliation: EVRYTHNG Ltd., Zurich, Switzerland.
1apple.com/ipod/nike/

things will be able to communicate, analyze, decide, and act
by themselves and thereby provide an invisible background
assistance that could make life more enjoyable, entertaining,
and also safer.

While the focus of the IoT is on connecting things on
the network-level, the focus of the Web of Things (WoT)
is the application-level connectivity of smart things: This
project aims at making smart things first-class citizens of
the World Wide Web and therefore usable like any other
hyperlinked data [4]. Thereby, common Web tools (e.g., Web
browsers) can be applied to real-world objects and widely
deployed and accepted protocols and standards known from
the classical Web like Uniform Resource Identifiers (URIs)
and hyperlinks can be used to interconnect physical devices.
Furthermore, using the Web protocol as opposed to using
lower-level Internet protocols when connecting smart real-
world devices is that one inherits many of the mechanisms
that made the Web scalable and successful like caching, load
balancing, indexing, and searching as well as the stateless
nature of the HTTP protocol.

As the sheer number of queries and commands that will be
produced when integrating a very large number of digitally
augmented devices has the potential of slowing or even
overloading the Internet, we believe that it is necessary to
develop a distributed management infrastructure as architec-
tural backbone for environments of smart devices. Such an
infrastructure should support the description, discovery, look-
up, and interaction of smart devices and their associated
sensing and actuation services for human users and machines.
It should allow smart things to communicate and cooperate in
extensive settings regarding their spatial distribution as well
as their sheer number. A major challenge associated with the
task of building such an infrastructure is the expected very
large number of networked devices: An Internet of Things is
expected to have a larger overall scope than the conventional
Internet of computers [1], which renders a centralized solu-
tion undesireable if not impossible. We therefore aim for a
distributed infrastructure to administer Web-enabled devices
that is designed with scalability as prime objective. Regarding
smart things properties, we have identified their location as
their key dynamic feature that is important for both, end-
users and the management infrastructure itself. Furthermore,
we expect smart things to interact frequently with other things



in their immediate environment (i.e., within a room, floor,
or building) and thus exhibit a certain degree of locality. A
searching mechanism for smart things should leverage this
property for load balancing and to avoid message overhead.
In summary, we believe that the following factors are crucial
for the success of an infrastructure for smart things:

• Scalability: The system must be designed in a way that
enables the administration of the expected high numbers
of interacting smart things and the communication tasks
to be carried out in such environments.

• Location and Load Balancing: Smart devices are ex-
pected to more often interact with other things in their
vicinity and thus exhibit a certain degree of locality. An
infrastructure for smart environments should exploit this
property and thus avoid global routing whenever possible.
Furthermore, the broad availability of information about
the location of smart things is a key requirement for
enabling context-aware services.

• Self-management: The system must be built such that
manual administration effort is kept to a minimum. This
involves automating the discovery of smart things by the
infrastructure as well as minimizing manual configuration
and maintenance work on the infrastructure itself.

• User-friendliness: The system should expose easily un-
derstandable interfaces for both, human users and ma-
chines, to search for services provided by smart things.

A fundamental issue in order to make the Web of Things
widely usable is to facilitate Web-based interactions for both
end-users and WoT-integrated devices. In densely populated
smart environments, it will get increasingly difficult for com-
puters as well as human users to find services provided by
smart things in a fast, reliable, and user-friendly way. This
paper therefore focuses on a look-up mechanism for smart
things that lets its users “query the real world” and is incorpo-
rated in an infrastructure for smart devices. The task of finding
relevant smart things is significantly more complicated than
searching for documents, not only because smart things should
be identified according to dynamic, contextual information but
also due to the lack of a uniform way of describing the things,
their properties, and the services they offer: A smart thing
does not necessarily express its functionality such that it may
be found by traditional search engines that are geared towards
finding textual documents.

The rest of this paper is structured as follows: In Section II,
we describe several motivational examples for smart device in-
frastructures. We give an overview of our proposal for a Web-
based distributed management infrastructure for smart things
in Section III and briefly discuss its hierarchical structure that
reflects the logical location of its constituents as well as the
discovery system and the embedding of semantic information
in smart things’ representations. In Section IV, we discuss the
look-up service of the proposed infrastructure in greater detail.
In particular, we describe the different types of queries it offers
and the keyword matching and query routing mechanisms. We
also present an evaluation of the infrastructure with respect

to searching for smart things (Section V). Finally, we give
an overview of related work in Section VI and present a
conclusion and prospects for future work in Section VII.

II. MOTIVATION

In this section, we discuss three possible application scenar-
ios where a location-based smart device infrastructure could
support human clients and computer programs to find and use
services in their surroundings.

a) Universal User Interfaces: An infrastructure that
keeps track of smart devices and services that are accessible
at a specific place (e.g., home automation systems, smart
appliances, or public services like ticket machines) could
support human users when using these resources. For instance,
a user could carry a mobile device that would contact the
infrastructure to find services in the surroundings and then
render a user interface to make them intuitively usable.

b) Body Sensor Networks: A smart device infrastructure
could offer benefits to body sensor network (BSN) applica-
tions, where patients are allowed to freely live their daily
lives while being monitored over an extended timeframe (cf.
[5]). In such a setting, an infrastructure like the one proposed
in this paper could support the interaction of the BSN with
sensors deployed in unknown environments. For instance, it
could help to feed temperature data from the current location
of a monitored individual into the BSN to enable better
interpretations of the BSN’s own measured data.

c) Robotic Devices and Smart Environments: Finally, an
infrastructure like the one proposed here could support robots
to interact with smart environments that provide sensing and
actuation services. As an example, rescue robots could use
readily deployed sensors to acquire information about the
(possibly dangerous) surroundings they navigate, for instance
by using sensors in a room to ascertain whether it is safe to
enter that room.

III. A WEB-BASED INFRASTRUCTURE FOR SMART THINGS

In this section, we give an introduction to the design of our
prototype implementation of a Web-based infrastructure for
smart devices that aims at consolidating the aforementioned
goals of scalability, location-awareness, self-management, and
user-friendliness. An initial prototype of this infrastructure that
enables the registration of Web resources as well as its basic
searching and messaging mechanisms are discussed in [6]. In
this paper, we present the extensions that we have made to
the searching mechanism, and in particular the adoption of a
resource-oriented view on queries (Section IV) that enables
an automatic load-balancing mechanism among infrastructure
nodes and also allows for advanced caching of queries to save
system resources.

Due to the high degree of locality of interactions of human
users with smart things and of interactions between smart
things, we propose to make the location of a smart thing one
of its key dynamic properties and to use logical place iden-
tifiers for structuring the infrastructure’s nodes. Our proposed
system therefore consists of a hierarchy of interconnected
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Fig. 1. An example for a distributed smart things management infrastructure
whose nodes are hierarchically structured according to logical place iden-
tifiers: Nine nodes on two floors with three offices each in the building
MainBuilding.

management nodes that is structured according to the logical
identifiers of the places it covers. To give an example, the node
responsible for managing smart things located in room 502 at
floor 5 in building MainBuilding would have as (transitive)
parents the management nodes for ../MainBuilding/Floor5/
and ../MainBuidling/ (Fig. 1). In this setting, only the nodes
at the lower levels would have to be “embodied”, for instance
within wireless routers or network-attached storage devices, in
order to establish the physical link to smart things [6].

An important decision when designing the infrastructure
was to restrict interactions to direct communication between
neighboring management nodes in the tree structure. This
guarantees the scalability of the infrastructure as nodes can
remain ignorant about the actual hierarchy depth. Furthermore,
as smart things will most often interact with other things
in their immediate surroundings, such a structure directly
mitigates the problem of load balancing as nearby devices
are able to discover each other by only querying their local
management node. Still, by routing queries between nodes, the
infrastructure enables searching on a global scope. Finally, our
proposed system is based on widely accepted Web standards
and protocols for reasons of scalability, application-level inter-
operability, and transparency (e.g., human-readable formats).

Regarding the discovery of smart things and their regis-
tration with management nodes, we use different lightweight
markup languages like Microdata2 and Microformats3 for
describing smart things’ services and interfaces. To support
humans and machines in finding and utilizing smart things
services, our Web-enabled devices expose their functionality
using semantic markup embedded in their representations. This
metadata includes static properties of the thing (e.g., its name,
category, brand, or a unique identifier) as well as dynamic
information like a thing’s location or current sensor readings.
In particular, the location of a smart thing is used to register
it with the management node responsible for its location,
irrespective of which node discovers the device. Additionally,
things should embed a description of their program interface
to facilitate service integration across devices. The chosen

2w3.org/TR/microdata/
3microformats.org

markup language should be easy to use in order to allow
the fast and simple annotation of services. Importantly, the
discovery process of new smart things should be designed in
an open and extensible fashion to guarantee compatibility with
future description mechanisms. Our infrastructure makes use
of a service that is designed with extensibility as primary ob-
jective and enables the on-line integration of parsing strategies
for semantic markup during operation of the system [7].

Additionally to providing smart things discovery on a
semantic level, another task of an infrastructure for smart
devices is to enable the network-level discovery of physically
connected items: After establishing the network presence of
a device, the infrastructure should take care of analyzing and
semantically identifying the smart thing (cf. [6]).

Regarding self-management, the proposed infrastructure
features a self-stabilization mechanism: Based on the (pre-
configured) logical locations of management nodes, the in-
frastructure is able to recover from temporary node failures,
where, eventually, the original structural configuration is re-
established (cf. [6]). The entire topology of the infrastructure
is induced by the logical locations of the infrastructure nodes.
While we do not anticipate frequent changes in this topology,
the self-stabilization mechanism would react to such changes
by rearranging the nodes to reestablishing a correct topology.

IV. SMART THINGS LOOK-UP

In this section, we present the proposed infrastructure’s
look-up service and in particular the available types of queries,
the keyword matching mechanism to identify corresponding
resources, and the routing of queries within the infrastructure.
Our querying mechanism makes extensive use of the location-
based hierarchical structuring of the management nodes when
processing queries: Clients may submit queries that, together
with the information used to identify corresponding resources,
also include spatial information to specify query scopes.
Additionally, we have defined several types of queries that
allow leveraging scoping information to increase the system’s
querying performance, especially regarding very deep and/or
broad hierarchical structures of nodes in environments with
large numbers of registered smart things.

A. Query Types
We propose several query types to let clients choose the

scope of their queries, i.e. which nodes of the infrastructure to
include when searching for resources. We defined four query
types to be used for searching (cf. Fig. 2 for an overview). For
a discussion of how the different types are routed internally,
refer to Section IV-C.

1) Exhaustive Queries EXQ: The scope of an exhaustive
query is the entire subtree of the queried node. The answer will
contain all resources that correspond to the query parameters
found locally at the queried node or at (transitive) child nodes.

2) Cardinality Queries (CAQk): When a client wants to
find exactly k resources that match its query, the addressed
node triggers a cardinality query with parameter k.
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Fig. 2. Query types: EXQ (EXhaustive Query) - search the entire subtree of
a node. CAQk (CArdinality Query) - search for k corresponding resources
within the subtree of a node. BEQ (Best-Effort Query, BEQ ≡ CAQ1) -
search for a single corresponding resource within the subtree of a node.

3) Best Effort Queries (BEQ): A special case of the
cardinality query is the BEQ which corresponds to a CAQ1,
i.e. to a query that only retrieves the first matching resource
that is encountered.

4) Request For Query (RFQ): RFQs are a special type
of query that enables clients to search at locations other than
that of the initially queried infrastructure node, for instance
to involve nodes on higher levels of the infrastructure or to
restrict a query to a specific subtree of the infrastructure (cf.
Fig. 3). An infrastructure node creates an RFQ internally
whenever it receives a request to search at a different location
than its own by wrapping the query and relaying it to an
attached node that is “closer” to the location given in the query.
For instance, a node at ../MainBuilding/Floor6/ that receives
an exhaustive query for location ../MainBuilding/Floor5/ will
locally decide on creating an RFQ and routing it to its parent
node at ../MainBuilding/ which will in turn relay the query
to ../MainBuilding/Floor5/. This node will then trigger the
original request locally and return the answer(s) (ATQ). This
process happens transparently such that, for the client, it looks
like its request is processed locally at the queried node. RFQs,
as well as the other types of queries, can be processed by only
relying on information about the local node and its immediate
neighbors and does not require any global information to be
distributed among the management nodes.

B. Query Parameters

The proposed system offers multiple querying interfaces,
where clients can find resources by providing keywords,
resources’ unique identifiers, or other pieces of information
about the required resource like their offered REST interface
(cf. [6]). To use such information for searching implies that the
resources expose the information. For instance, to search by
REST interface, a resource could embed a machine-readable
description of this interface in the hRESTS Microformat (cf.
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Fig. 3. To trigger an EXQ at location ../MainBuilding/Floor5, a
client contacts its local management node at ../MainBuilding/Floor6.
Internally, the query is routed as an RFQ.

[8]). To extract this information from resources and store it
locally in a structured way, we use an extensible semantic
resource discovery service described in [7].

Here, we describe the system’s keyword-based interface
that represents an interface mainly for human clients, but
can also be used by machines. The other interfaces can be
used in a similar way by specifying, for instance, a unique
identifier instead of the keywords. Every query consists of at
most three parts: The keyword(s) to identify corresponding
resources, a location specifier to route queries to appropriate
nodes and a cardinality specifier to set the number of desired
answers. New queries are created by clients using HTTP GET
requests that include a single URL-encoded string as query
description. An example query for three resources at location
../MainBuilding/Floor5 that match the keywords Temperature
and Sensor is given here:

http://host.net/?q=3x+Temperature+
Sensor+at+MainBuilding%2FFloor5

Upon receiving a query, it is parsed to extract the required
parameters (in the above case using the regular expression
[0-9]*x for the cardinality specifier and the token at for
identifying the location specifier) and an appropriate JSON-
serializable query object is created to be routed within the
infrastructure.

We preferred to use keywords as using these has, mainly
due to the popularity of Web search engines, for many users
become the most intuitive way of searching for information.
To find resources that match a given set of keywords locally
at a node, we use an approximate string matching algorithm
based on a measure called Dice’s coefficient that considers
the number of equivalent character bigrams as a fraction of
the total contained character bigrams when comparing the
keyword(s) to resource information like the resource name,
its unique identifier, description, category, or brand. We have
extended this algorithm with different weighing factors for
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Fig. 4. Overview of the processing of received queries.

matching different kinds of information – for instance, a
correspondence with the resource’s unique ID is considered
a more valuable match than the comparison to the resource’s
description. By using this metric instead of comparable string
matching algorithms like the edit distance or the longest
common substring, we found that the searching becomes
more robust regarding, for instance, typographical mistakes
or keywords in different languages and in general produces
very satisfying results for resource lookup by human users.
For machines, we recommend the use of structured queries to
better specify the desired resource.

C. Query Processing

As mentioned earlier, received queries are parsed to query
objects. The internal representation of a query contains, as
mandatory parameters, the unique query ID, the URL of the
node that initiated the query as well as its type, where the
specification of a positive integer is mandatory for CAQs.
Additionally, queries may contain optional parameters to, for
instance, piggy-back structural or management information.
After parsing, queries are routed within the infrastructure
to obtain answers in the form of registered resources that
correspond to the queries’ parameters. In this section, this
process is described in detail where we first consider the
handling of RFQs and then describe the routing mechanism
for the other types of queries (see Fig. 4 for an overview).
Throughout this discussion, note that queries are only routed
locally and that no global knowledge about the infrastructure is
implied anywhere in the query handling mechanisms. Rather,
all nodes have to merely be aware of their immediate child
nodes and their parent node.

1) Routing of RFQs: A node that receives an RFQ first
analyzes its location parameter in order to determine how to
route the request. From the data in the location field, the node
is capable of deciding whether the query’s destination is the
processing node itself in which case the query is unpacked,
transformed to the matching query type, and triggered locally.
Else, if the management node determines that the query’s
destination node is contained within its own subtree, it selects
that node among its children which is most appropriate to

handle the query (i.e., the node whose location better matches
the query destination than the processing node). Otherwise,
i.e. if the processing node determines that it is a sub-node
of the queried one or if the destination node is in a different
subtree altogether, the query is relayed to the node’s parent.
If the query’s destination node does not match the processing
node’s location at all, the query is destroyed.

2) Routing of BEQs, CAQs, and EXQs: When an infras-
tructure node receives a CAQ, EXQ, or BEQ or transforms
an RFQ to one of these locally and cannot satisfy the
query itself by delivering enough corresponding smart things
from its local database, it starts to collect answers from its
(transitive) child-nodes. As soon as enough answers have been
collected, they are merged and the composite answer is relayed
to the inquirer (i.e., a client or the infrastructure node that
relayed the RFQ). To propagate a query across nodes in the
infrastructure, the local node immediately creates a local Web
resource at the URL localhost/queries/{queryID}
as a representation of the query and then relays the query to
its children which, after doing a local look-up, forward it to
their children. The proposed querying mechanism thus features
a resource-oriented view on querying: Queries are embodied
as resources that can be extended by submitting answers
and can be queried for the number of answers still due.
This helps to reduce answer times to queries, the number of
messages induced by single queries, and with load balancing.
We describe this mechanism in greater detail in the following
by discussing the three main purposes of query resources:

First, any infrastructure node in the query scope aware
of smart things that correspond to the query can POST that
information to this URL as (partial) answer. The local node
registers to the resource and thus receives these answers. As
soon as the query is satisfied (i.e., if, for a CAQ, enough
answers have been received), it destroys the query resource and
relays the answers to the inquiring client. For EXQs, where the
triggering node does not know in advance when all nodes in its
subtree have answered, the query resource features an explicit
notification mechanism where information regarding pending
answers from child nodes is stored: Whenever a node forwards
a query to one of its children, it registers this child as pending
with the query. This flag is removed again when the child
answers such that, as soon as a query has no more pending
answers, it may be finalized by its issuing node. The same
mechanism is necessary to avoid stalling when the cardinality
of a CAQ is higher than the total number of corresponding
resources in the system. The explicit query resource thus
leads to a decoupling of infrastructural nodes with respect to
queries: Child nodes merely have to accept query notifications
rather than directly obtaining answers from their subtrees,
which would induce a wave-algorithm-like propagation of the
queries within the infrastructure. Furthermore, the proposed
mechanism leads to the infrastructure reporting resources from
nodes in the order of the nodes’ response times. This enables
an automatic load balancing mechanism as overloaded nodes’
resources will be reported less frequently when processing
queries and thus used less. If a whole subtree of the system



is under heavy load, this whole hierarchy will be excluded
from subsequent queries. Note that this does not influence
the quality of responses as, in such a scenario, a client has
explicitly asked for, e.g., “Three temperature sensors on the
5th floor of building MainBuilding” and thus is not interested
in where exactly (i.e., from which office on the 5th floor) the
delivered sensors are situated. Rather, it enhances the search
mechanism as answers from nodes at higher hierarchical levels
with a more general scope will automatically be preferred: If,
for the aforementioned query, the node responsible for the
5th floor of building MainBuilding has registered temperature
sensors, these will be delivered to the client rather than
considering answers from room-specific nodes, as the query
can be served from the local database. Finally, note that, for
CAQs of fixed cardinality, the response time will decrease
on average when increasing the number of resources per node
until a single node is able to fully serve the query.

Second, if the local node receives another query that is
equivalent to or overlapping with the first (e.g., if a BEQ with
identical keyword(s) is received subsequently to an EXQ), the
node does not forward the query but rather registers to the first
query’s resource. This system thus represents an augmented
query caching mechanism as overlapping queries may have
different scopes and/or types: If a node detects that a query that
is already being routed within the infrastructure is overlapping
with a newly received query, there is no need to forward the
new query. This mechanism can greatly reduce query answer
times and the number of messages in the system (cf. Section
V), especially when the queried node is under heavy load from
concurrent clients.

Third, query resources can themselves be contacted to
detect the query’s current state. This is helpful whenever a
node that receives a query can deliver local corresponding
resources as answers: When POSTing this information to the
query resource, the resource’s response contains the number
of answers that are still required to fulfill the query. The
local node can use this information to determine if the query
should be further relayed to its child nodes which again saves
resources.

V. SIMULATION ENVIRONMENT AND EVALUATION

We evaluated the discussed querying mechanism using a
deployment of the infrastructure with nine nodes (one on
building-level, two on floor-level, six on office-level, cf. Fig.
1 in Section III) that handled a total of 600 simulated sensors
of different types (e.g., temperature, electricity consumption,
ambient light) which were registered uniformly at random with
the six office-level nodes. We used the apachebench4 tool
with different queries (a BEQ, a CAQ30, a CAQ200, and an
EXQ). All measurements were performed locally, on a single
machine running all nodes in parallel, to avoid distortion of
the results.

4httpd.apache.org/docs/2.0/programs/ab.html
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Fig. 5. Simulation results for comparison of active vs. inactive query-caching
for different types of queries and concurrency levels.

A. Evaluation Setup

To simulate the smart devices that are registered to the in-
frastructure, we used a custom-developed simulation environ-
ment for Web-enabled devices. In this environment, Web re-
sources can be created that simulate arbitrary sensors (support-
ing HTTP GET requests) and actuators (supporting HTTP GET
and PUT requests). The simulated resources support represen-
tations in the form of text/html, application/json,
application/xml, and text/plain, where representa-
tion templates can be configured. Every resource can simulate
desired response behavior regarding its reliability and response
time by setting parameters for a statistical model. Sensors can
furthermore be configured to deliver values according to a
statistical model and can also be set to fetch their result from
a real device. The simulation environment has been created to
deploy large numbers of Web resources and we have tested
it for up to 100000 resources without performance issues.
Resource templates are available to facilitate the deployment
of common sensors, however a user may configure the envi-
ronment to simulate arbitrary, custom resources.

B. Results – Query Caching

To evaluate the query-caching mechanism, we performed,
for each of the aforementioned query types, 1000 requests
with varying concurrency levels. The expectation for this test
is that a “baseline”-system with query-caching turned off is
increasingly outperformed by an otherwise equal system with
query-caching turned on with increasing concurrency level.
Our evaluation supports this observation, where the response
time of the baseline-system is up to twice as high as that of



the caching system for the CAQ30-case with 4 concurrent
requests (Fig. 5). The caching system is faster in almost all
cases and its advantage strongly increases with the chosen
concurrency level. Furthermore, we can see that the BEQ
performs only slightly faster than the CAQ30, which is due
to the fact that every office-level node knows about more than
30 resources and a CAQ with that cardinality therefore does
not induce any overhead when compared to a BEQ (which is
essentially a CAQ1). Finally, we see that the EXQ performs
remarkably fast when compared to the other types of queries.
This is due to the different internal handling of EXQs – these
queries are forwarded by each node as fast as possible as it
is well-known that they need to be propagated to all child
nodes in any case. For CAQs, on the other hand, the local
node also considers preempting the query before forwarding
it to its child nodes. This advantage of EXQs regarding
their handling, however, vanishes when triggered in deeper
hierarchies and/or when additional resources are registered
with intermediate nodes (i.e., in this scenario, floor-level
nodes). Altogether, the obtained simulation results support our
expectations and demonstrate that the described query-caching
is a valuable mechanism for the scalable routing of queries in
such infrastructures.

C. Results – Load balancing

We furthermore tested the infrastructure’s load balancing
abilities mentioned in Section IV-C: For a BEQ with the key-
word temperature at location MainBuilding, the infrastructure
usually (i.e., in more than 90% of the cases) delivered a sensor
in one of the rooms on floor 5. However, when we started
to flood the node at ../MainBuilding/Floor5 with queries, the
same BEQ returned almost exclusively (more than 96% of
the cases) sensors in the rooms located on floor 6 due to the
increased response time of the nodes in the subtree rooted
at ../MainBuilding/Floor5. Note that, as the BEQ’s scope is
MainBuilding, answers from both locations (i.e. rooms on floor
5 and rooms on floor 6) are equally valid.

VI. RELATED WORK

A large part of the World Wide Web’s success stems
from its scalable architecture, generic interfaces, and loosely
coupled components. In its idealized form, we refer to this
architecture as Representational State Transfer (REST) [9].
In REST, the primary abstraction of objects that provide
information and functionality are resources that are identi-
fied in a uniform way using Uniform Resource Identifiers
(URIs) (cf. resource-oriented architecture). These objects can
be queried and manipulated using a limited and fixed set
of verbs (in the Hypertext Transfer Protocol HTTP, these
are GET, POST, PUT, DELETE, etc.) that have generally
understood semantics (e.g., for HTTP, GET is considered
safe, i.e., free of side-effects). Messages that are exchanged
between client and server are self-descriptive and their struc-
ture is considered common knowledge, which is supported
by a content negotiation mechanism used to determine the
concrete resource representation that is transmitted between

communication endpoints. Although HTTP was designed as an
application protocol with particular focus on scalability, many
Web applications use it only as a transport protocol and there-
fore only utilize a fraction of its functionality: For instance,
Web applications that rely upon SOAP or WSDL use only the
HTTP POST operation to perform application programming
interface (API) calls on URI-identified endpoints and do not
expose the manipulated resources themselves. Practices like
these prevent to take full advantage of the Web architecture
because they neglect the semantics of the interaction verbs: In
the mentioned example, a GET could be used to signal that
the interaction is safe and therefore cacheable. The WoT seeks
to fully leverage the Web’s architectural principles and widely
accepted protocols, standards, and mechanisms (e.g., caching)
to foster device interoperability, facilitated user interaction (via
browsers), scalability, and openness. We believe that the Web
can act as a common ground for enabling smart things to
interact with each other, with traditional Web services, and
with humans. Furthermore, it could be utilized as a lightweight
approach that would enable the creation of physical mashups
(i.e., of applications emerging from the crossover of multiple
services) on top of smart things.

A promising solution to create WoT discovery and look-
up services that users can query to find devices, data, and
services, are semantic technologies. A prominent approach to
put forward common formats for the integration and com-
bining of data and its relationship to real world objects is
the Semantic Web [10], the most advanced concretization of
which is based upon RDF. Approaches for enriching HTML
documents with semantic metadata most notably include Mi-
croformats that aim at re-using existing HTML/XHTML tags
for attaching semantics to data on the Web, and Microdata
that uses new tag attributes to achieve the like. The imple-
mentation of these semantic annotation formats is currently
gaining momentum as several companies, including Google,
Bing, and Yahoo! have started to define vocabularies (e.g.,
data-vocabulary.org) and use them in their products.
In our concrete use case of supporting the look-up of smart
things, we imagine these technologies to be utilized by devices
to expose their static and dynamic properties in a machine-
and human-readable form. This would allow for centralized
or distributed smart things registries like the one described in
this paper to easily detect and classify devices and make them
discoverable for potential clients.

Middleware solutions that leverage description languages
for facilitating the management and interconnection of smart
things have been proposed, for instance in [11], where a central
argument for using semantic technologies is that these would
not only facilitate the discovery but also the behavioral control
and coordination of heterogeneous components. Similarly, in
[12], the authors propose a discovery, querying, and selec-
tion framework for WS-* and RESTful web services where
resources expose their APIs using machine-readable formats.
This framework supports Microformat-based markup and Web
Services Description Language (WSDL) documents and fed-
erates them in a meta description format that is accessible to



external clients through a (WS-*) resource discovery service.
Their system, however, represents a centralized solution that
does not exploit properties of smart things interaction like
locality and does not allow for the location-based look-up of
devices. A survey of sensor-actuator networks along with a
resource repository implementation is presented in [13]. This
repository lets Web-enabled things be discovered using a tag-
based approach while publishing an OpenSearch5 document
to describe its resource retrieval capabilities. It thus features a
support infrastructure for smart things like the one discussed
in this paper where resources are registered and exposed to
clients, but, like [12], makes use of a centralized resource
repository. Dyser [14] is a search engine for the real-time
Internet of Things which uses statistical models to make
predictions about the state of its registered resources when
a user submits a query. These predictions are used to establish
a ranking that determines the order in which resources are
contacted to find out whether their current state matches the
query. Our system does not contact the registered resources
for every query but rather acts as a broker between clients
that wish to interact with smart things and the devices, where
this interaction is currently fully left to the client.

VII. CONCLUSIONS

In this paper, we described how a distributed management
infrastructure could support human users and machines in find-
ing smart devices and described our prototype implementation
of such a system. We argue that, for reasons of scalability and
interoperability, it would be beneficial to base the infrastruc-
ture on widely accepted Web standards and protocols. Due to
the locality of smart things interactions, we proposed to make
the location of a smart thing its key dynamic property and
to use logical place identifiers for hierarchically structuring
the infrastructure’s nodes. On top of this architecture, we
described a scalable look-up mechanism that treats queries as
resources and features a caching system which significantly
reduces response time and the number of messages required
when searching for devices. The proposed mechanism also has
benefits regarding load balancing, as queries are automatically
routed to not further strain overloaded parts of the infrastruc-
ture. We demonstrated these properties in an evaluation that
involves multiple infrastructure nodes and several hundreds of
simulated Web-enabled sensors distributed among these nodes.

One main concern with the proposed location-based overlay
is to establish standard naming conventions to avoid problems
in the hierarchical routing algorithms. Furthermore, the sys-
tem is dependent on a mechanism that enables the correct
assignment of logical place identifiers to smart things – in our
current implementation, this information is statically assigned
to the devices and embedded in their Web representations
as semantic markup such that the infrastructure’s discovery
service is able to interpret it. Regarding future work, we plan
to implement an indoor localization system also on the smart
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devices and send location updates to the infrastructure to en-
able the roaming of devices between infrastructure nodes. We
furthermore plan to extend device descriptions with semantic
information about the services and data they offer and use this
information to enhance the infrastructure’s querying mecha-
nism. Finally, we plan to integrate the proposed infrastructure
with the Dyser real-time search engine [14] and incorporate
its ranking system into our querying mechanisms.
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