
IoT Interoperability: A Hub-based Approach

Mike Blackstock
University of British Columbia

Vancouver, Canada
mblackst@magic.ubc.,ca

Rodger Lea
University of British Columbia, Vancouver, Canada

& University of Lancaster, UK
rodgerl@ece.ubc.ca

Abstract—Interoperability in the Internet of Things is critical
for emerging services and applications. In this paper we advocate
the use of IoT ‘hubs’ to aggregate things using web protocols,
and suggest a staged approach to interoperability. In the context
of a UK government funded project involving 8 IoT projects to
address cross-domain IoT interoperability, we introduce the
HyperCat IoT catalogue specification. We then describe the
tools and techniques we developed to adapt an existing data
portal and IoT platform to this specification, and provide an IoT
hub focused on the highways industry called ‘Smart Streets’.
Based on our experience developing this large scale IoT hub, we
outline lessons learned which we hope will contribute to ongoing
efforts to create an interoperable global IoT ecosystem.

Keywords—internet of things; interoperability

I. INTRODUCTION

The Internet of Things (IoT) in which everyday objects can
be equipped with identifying, sensing and processing
capabilities, and then connected to the Internet, promises
significant benefits both in terms of efficiencies and new
services [1]. To reach the full potential of the IoT, however, it
is not sufficient for things to just be connected to the Internet;
they also need to be found, accessed, managed and potentially
connected to other ‘things’. To enable this interaction, a degree
of interoperability is necessary that goes beyond simple
protocol interoperability as provided by the Internet.

As we strive for greater interoperability, one logical next
step is to exploit web technologies such as HTTP, JSON and
the Representational State Transfer (REST) architecture of the
World Wide Web, an approach referred to as the ‘Web of
Things’ [2]. This use of the web provides a higher degree of
interoperability, potentially connecting islands of things in
different domains. By doing so, developers can connect things
using web tools and technologies and create new applications
and mashups [3], [4] that combine data from physical things in
different domains with other online services such as social
networks [5], [6].

However, even as many in the IoT community have
converged on the use of web technologies, the plethora of
systems for the Web Of Things testifies to the fact that there is
no standard approach to exposing physical objects to the web
today. To address this issue, some have begun to create
large-scale ‘hubs’ that provide a consistent and easy-to-use
interface for both integrators and application developers (e.g.
[3], [7], [8]). These hubs provide facilities for search, for
(meta) data storage and for interaction between things and
applications.

While these hubs, by the simple process of aggregation of
data and standard representation of ‘things’ provide a degree of
interoperability, they typically do not inter-operate with each
other [9]. We argue that this lack of inter-hub interoperability
may stifle the uptake of the IoT. Many of the things of interest
to application and service developers will only be accessible
using product or hub-specific APIs. Long term, this must be
addressed through a standardization process, and indeed many
in the web and IoT community have started this process in
various groups (e.g. [10], [11], [12], [13]). While this is
important work that must continue, we argue that it will be
difficult to achieve consensus until the fundamental
requirements for these IoT hubs are clearly established.
Premature standardization could risk stifling innovation. At
the same time, and even as the community evolves, there is a
need for some degree of interoperability, if we are to offer
developers more than simple islands of Internet
connected-things, requiring developers to address
interoperability issues themselves.

II. PATH TO HUB INTEROPERABILITY

In previous work [9] we proposed a four stage path toward
greater interoperability between IoT hubs.

1. IoT Core. Hubs expose things and associated metadata
using the web architecture and RESTful web services _ a web
of things.

2. IoT Model. Agreement on basic approaches and models
requiring a common understanding of what things and
associated data a hub should contain. Achieving this stage will
facilitate the development of adapters and other integration
tools for hub interoperability.

Fig. 1. IoT hubs provide single consistent interface for hosted 'things'

3. IoT Hub. Agreement on certain implementation issues such
as concrete representations, URLs and schema for describing
and querying catalogs and data from hubs. This will include
support for security mechanisms so that hubs can control
access to things and offer some guarantees over who is
providing things and their data and who is able to access and
use these resources.

4. IoT Profiles. Agreement on the semantics of things and
their associated data exposed on a hub. For example: a
temperature sensor in one hub provides the same quality and
value of temperature as one in another hub. Essentially the
taxonomy of things and the ontological models that hubs
support will need to be defined. By reaching agreement at this
level, deep integration of application is possible, allowing hubs
and things to link to and communicate directly with each other.

Assuming that hubs are exposing IoT resources using web
protocols (stage 1), we need to begin moving toward
agreement on basic models for the IoT (stage 2) and agreement
on hub implementation issues (stage3). To that end, we have
begun to explore the use of integration tools to map existing
IoT systems to emerging specifications and diverse data
sources. This work was performed in the context of a UK
funded IoT programme that established 8 IoT data hubs from
different domains and explored the creation of an
interoperability specification called HyperCat [14].

In this paper, we briefly describe the HyperCat
specification that aims to unify the catalogues of these hubs
with a shared representation and query mechanism. This is
followed by a description of the tools we have developed to
ease the implementation tasks we faced when we attempted to
expose our own IoT catalogues as specified by HyperCat and
tried to integrate disparate data sources into our IoT hub for
access by developers in a uniform manner. We conclude with
some lessons from our experiences building a large-scale IoT
hub and supporting the HyperCat approach to interoperability,
hoping that our experiences will contribute to the ongoing
search for a truly global IoT ecosystem.

III. HYPERCAT

In early 2013, the UK’s Technology Strategy Board
invested in a project called the Internet of Things Ecosystem
Demonstrator [15] to stimulate the development of an open IoT
application and services ecosystem. In this project, eight
industry led sub-projects were funded to deliver IoT clusters in
the spring of 2014. Each cluster focused on different domains,
for example airports, city transportation, smart homes, schools,
highways, etc. One of the key goals of the project focused on
interoperability, specifically on how the UK's IoT ecosystem
could achieve interoperability and data availability between
clusters in different domains.

Recognizing that full IoT interoperability is a large
undertaking, the project focused on providing application
developers with information about what data is available, what
it represents, and how it is represented. To accomplish this,
each cluster was tasked to create one or more IoT “hubs” that
describe the devices they manage or represent to the web, and
permits applications and services to interact with them. Each
hub is then responsible for interacting with applications, and
potentially, other hubs. Initially the project focused on
supporting application developers with a specification for

exposing diverse sets of IoT resources such as real time sensor
data feeds, meta-data, and static asset datasets that describe
“things”. The outcome of this effort was HyperCat [14].

HyperCat is a specification for a lightweight hypermedia
catalog for querying and representing catalogs of resources
(URIs) on the web. Exposed resources are described by a list
of RDF-like triple statements to provide information about the
format and semantics of the URI as illustrated in Figure 2.
This enables applications to search for suitable resources and
understand the data when they retrieve it. Because of its
simplicity, developers can easily publish descriptions of the
resources they expose; applications can easily query for the
things they are interested in.

To do so, applications access a top-level catalogue that
every HyperCat hub must expose. The catalogue itself is a
resource representing an unordered list of items. Each item
refers to a single URI, which may itself be another catalogue.
An example of a simple catalogue is shown in Figure 3.

HyperCat specifies how to insert, update and delete
catalogue items and provides a limited set of metadata
relationships to describe catalogues and items. The relation
urn:X-sbiot:rels:hasDescription:en, for example, is used to
provide an English description of an item; urn:X-
sbiot:rels:isContentType indicates the MIME type of the data
associated with an item. The initial specification defines a

simple search capability where query parameters are used to
query for a specific resource URI (href parameter), metadata
relationships (rel parameter) and/or values (val parameter). If

Fig. 3. Example HyperCat catalogue.

Fig. 2. HyperCat catalogues consist of a list of resources annotated with
relationships and values.

multiple parameters are supplied, the server is required to
return the intersection of items that match all search
parameters. Catalogues advertise whether they support search
by using a tsbiot:rels:supportsSearch metadata relation.
Finally, HyperCat specifies an optional security mechanism
whereby all requests may be authenticated with a key presented
using HTTP basic authentication, or in an x-api-key header.
Details related to visibility and access control to catalogues
were considered out of scope for the initial phase of the project.

A. Smart Streets IoT Hub

As developers of the Smart Streets IoT Hub, our focus was
the Highways maintenance sector (a $6B sector in the UK),
which gathered data from a variety of sources related to the
UK’s national and regional road network. Data included
real-time road traffic, incidents that affected traffic, road
works, flood and rain data, etc., all of which were made
available via the Smart Streets IoT Hub1.

A critical challenge we faced was the need to collect and
manage a diverse set of existing data sources ranging from real
time data on traffic flow or water levels in roadside drains, to
soft real-time data such as roadwork schedules to relatively
static data such as highways asset lists of signs, bridges,
markings etc. in our IoT hub and provide a uniform API (via
HyperCat) to this data.

The Hub itself was built from two core components (Fig.
4). Firstly, our own IoT platform called the Web of Things
ToolKit (WoTKit) [3], [16], and secondly, an open source data
management tool provided by the Comprehensive Knowledge
Archive Network (CKAN) project [17], designed to support
static data and metadata storage as illustrated in Figure 4.

IV. INTEROPERABILITY TOOLS

The CKAN system is a data management system and portal
that allows data publishers like governments, companies and
other organizations to make their data available to others. It
makes it easy for data publishers to easily upload and publish
new datasets containing one or more data resources, providing
versioning and support for multiple formats. Datasets can be
associated with organizations for access control. Grouping,
tagging and metadata are supported to facilitate search. CKAN
provides an API that allows developers to search for, download
and, in some cases, query for data within relevant datasets. In
Smart Streets, we used the CKAN system to store data sets that
are static or do not change often (e.g. monthly or annually).

1 Smart Streets Data Hub.” https://smartstreets.sensetecnic.com/. Accessed:
28-Mar-2014.

The WoTKit, under development since 2009, is a
web-centric IoT toolkit, focused on managing things that
exhibit real-time behaviour. Running as a cloud service, its
APIs offer developers a comprehensive set of IoT services
making it easy to develop web applications and services for the
IoT. Users create ‘sensors’ with the UI or API that represent
‘things’, can receive data from those things, and can send
control commands. Like CKAN, sensors can be arranged into
organizations for access control and can be grouped and
tagged. Unlike CKAN, data is typically not uploaded as a
single file, but on an ongoing basis, either periodically or when
sensor values change, typically every few minutes.

Both CKAN and the WoTKit support API calls to view a
‘catalogue’ of resources (datasets and sensors), but the formats
and APIs to access these catalogues are very different. To
support interoperability, we needed to adapt the catalog APIs
for both the WoTKit and CKAN to the HyperCat simple search
parameters and semantics.

A. The API Proxy

To achieve this, we developed an API proxy architecture
implemented as a web application in Python, using the
Pyramid framework2. Like other web frameworks, Pyramid
maps URLs to methods in control modules. In the API Proxy,
when the corresponding URL (method) for a given catalog is
requested, an object called CatalogCreator is instantiated. To
support CKAN and the WoTKit and associated sub catalogues,
we sub-classed this object for our implementations as
illustrated in Figure 5.

B. Search engine implementation

To support flexible search, our initial CatalogCreator
implementations leveraged the Apache Solr search platform3 to
both store and search catalogs (right side of Figure 5). We
created data importer scripts that periodically called the CKAN
and WoTKit APIs, and imported their data into solr ‘cores’ that
could then be searched by the API Proxy. While this solution
worked well for public sensors and data sets that did not
change often, catalogue visibility and access control of private
sensors and datasets by the underlying systems could not be
supported without replicating the access control logic of the
underlying systems. Moreover, if the catalog changed, the
catalog exposed by the API Proxy would be out of date until
the next catalogue import.

C. Catalogue proxy implementation

To address these issues, we created ProxyCatalogCreator
sub-classes. These implementations translated HyperCat
queries format to an appropriate API call to the underlying
CKAN or WoTKit system, and then converted the response to
the HyperCat format ‘on the fly’. While the concept seemed
straightforward, it raised a number of issues related to access
control and security, query capability/semantic mismatch and
catalogue scale.

1) Unified access control
To ensure that users could only view and access datasets or

sensors they were permitted to, we needed to unify the user

2 “Pylons Project Home.”http://www.pylonsproject.org/. Accessed
1-Apr-2014
3 “Apache Solr.”https://lucene.apache.org/solr/. Accessed 1-Apr-2014

Fig. 4. High-level Smart Streets Hub Architecture

http://www.pylonsproject.org/

accounts and access control mechanism used by both systems.
The CKAN API uses a single developer key per user for access
control, while the WoTKit API supports both basic
authentication and OAuth 2. Like CKAN, HyperCat only
required a single key for authentication and did not specify
how the key is obtained or what it contains. To unify the
systems under a single HyperCat key, we decided to modify
the WoTKit to support CKAN authentication keys, associating
this key with a WoTKit user and ensure the user credentials in
both systems were kept in sync on both systems. Another
approach would have been to maintain a mapping in the API
Proxy to API keys or access tokens in the underlying systems.
With unified access control, only the sensors or CKAN data
sets visible to the user associated with the API key will be
queried and returned by the API Proxy.

2) Query mismatch and filtering
Another issue was related to supporting catalogue queries.

The initial query semantics for HyperCat, called ‘simple
search’, allows users of the API to query for certain catalogue
items by specifying whether a metadata relationship exists,
and/or is set to a certain value. To perform a simple search,
clients provide a query string specifying the specific item URI,
relationships and/or values of the items they are interested in
(href, rel and val parameters). All items with metadata that
matches the query parameters must be returned.

While this sounds straightforward, because of limitations or
the semantics of certain metadata in the underlying system, we
weren’t always able to search by the existence or value of
certain metadata, nor did it always make sense to do so. For
example, we included location as metadata using longitude and
latitude relationships as the WoTKit maintains the location of
fixed sensors. Since the WoTKit API did not provide a
mechanism to find all sensors with a certain latitude value, just
geo-queries in an area, we could not map the HyperCat simple
search to the WoTKit search API directly. In the WoTKit, we
provided a way to find sensors that contained certain text
strings in the name, or description, but not to find sensors that
matched these metadata values exactly. To address this, we
extended the ProxyCatalogCreator implementation to support
filtering a HyperCat response by query relationships and values
after it was generated by the underlying system. While this
worked, it meant that we had to retrieve more data than
necessary, reducing the performance of a simple search.

3) Large catalogues
Since the WoTKit contained large amounts of real-time

data, e.g. more than 40,000 gully/drain sensors from a given
region, we needed a way to partition this large catalogue into
manageable ‘chunks’ to avoid overwhelming clients of the
HyperCat API. One approach we considered was to split the
sensor catalogue into sub catalogues corresponding to ‘pages’
of a larger catalogue. Another was to partition our catalogue
into sub-catalogues corresponding to the owner of datasets or
sensors. On further consideration, we found that either

approach would interfere with the ability to search the entire
catalogue since HyperCat’s simple search applies only to a
single catalogue, not sub catalogues. Realizing this issue could
not be addressed adequately with the current specification, we
requested a change to support catalogue paging and new query
parameters. These limited the number of items returned by a
query on a large catalogue that co-exists with the HyperCat
search query parameters.

Data interoperability: The Harvester

A secondary issue we faced was integrating a variety of
heterogeneous data from a set of disparate sources ranging
from lists of street fixtures (signs, lamps, barriers etc.) to
collected statistics on road repair performance and impact. To
address this, we developed an additional tool called the
Harvester, loosely based on the CKAN Harvester plug-in used
for federating CKAN open data portals. Like data warehouse
Extract Transform and Load (ETL) tools, the Harvester
integrates sources of data into a common ‘web of things’
repository. Rather than simply extracting data from databases,
the Harvester extends that capability to also extract virtual
sensor data buried in web pages, XML data feeds and other
web formats. It normalizes this data and uploads it into the
WoTKit for easy access by developers. Today the Harvester
loads data into several instances of the WoTKit platform using
its REST API.

V. RELATED WORK

Aggregating many things into cloud-based IoT hubs is a
growing trend. Some are product or market-centric, others
focus on specific domains. Interoperability is also being
addressed at different levels by various industry and standards
groups.

Many of today’s Internet-connected products use
web-based services for remote control and monitoring
employing mobile phone applications and web browsers. The
‘Nest’ thermostat [18], for example, is connected to a cloud
service using home wifi networks ,permitting users to manage
their home heating with their mobile phones and the web. The
Koubachi system [19] connects consumer plant sensors to the
web, allowing owners to monitor and improve their plant
health with alerts and graphs. It supports a RESTful API for
developers to access this data from other applications. The
Smart Things platform provides an API, a programming
language and web based IDE for creating home automation
applications [20].

Large IoT hub and platform vendors provide a degree of
interoperability by providing a thing-agnostic model and API
to integrate things across a wide variety of domains. These
vendors aim to create a network effect where the hub becomes
more valuable as more users and their things are connected. By
doing so, vendors hope to establish their hubs as de-facto
standards for web of things interoperability. Our own work,
the WoTKit [3], as well as Xively(formerly Cosm and Pachube
[8]), aggregate collections of data streams called feeds to store
information about sensors and the data they emit over time.
Similarly, ThingSpeak [7] supports a data model of channels
similar to Xively and WoTKit feeds. All three include
applications for processing, visualization and integration, and
offer the ability to find and share sensors and data, allowing
others to take advantage of the integration work of others. The

Fig. 5. CatalogCreator class diagram

Each of these platforms offer a ‘hub’ model to provide a
repository for Things (data and metadata) and a set of APIs for
accessing and using Things.

The Internet of Things Architecture project (IoT-A) is
proposing an architectural reference model for IoT
interoperability together with key components of the future IoT
to enable search, discovery and interaction as one coherent
network [21].

The IETF community has been involved in foundational
IoT technologies such as IPv6 and the Constrained Application
Protocol (CoAP), focusing on getting constrained devices and
sensor networks connected to the Internet [11], [22]. Similarly,
the IEEE has several protocol standards that form the
foundation of the IoT and provid connectivity between things
and the Internet [10].

The Open Geospatial Consortium (OGC) and others [23]
have recognized the need for coordinating systems to make it
easier for applications to discover and access a wide variety of
sensors independent of connectivity and data types. The OGC
Sensor Web Enablement (SWE) framework defines a standard
set of web service interfaces making it easier to share sensor
data. A new working group called Sensor Web Interface for the
IoT [12] aims to link emerging web of things toolkits and
platforms to the OGC SWE standards.

While these efforts are moving the IoT toward greater
interoperability, some, such as the IETF and IEEE, deal
primarily with connecting things to the Internet and the web.
They specify only the core networking infrastructure and
protocols needed, not cross-domain hub-to-hub or
hub-to-application catalogue and data interoperability as
outlined here. More ambitious standardization efforts such as
the IoT-A project [21], although offering a comprehensive
approach to interoperability, are hampered by their scale, and
may be attempting to lock down aspects of the IoT ecosystem
while it is still rapidly evolving. Developers and vendors
however, may favour less complex approaches that address
requirements as they emerge.

VI. EXPERIENCES AND LESSONS

The Smart Streets IoT hub has been in operation for
approximately 8 months and currently manages 64,000
time-series sensor feeds as well as a wide variety of static
datasets. It includes a diverse set of both open and private data
about transportation, road traffic and highways, ranging from
real-time traffic data to road asset condition, planned
roadworks, air quality, weather and flooding information.
These data sources have been pushed into the hub either via
tools such as the Harvestor, by end users uploading data sets,
or from physical devices that explicitly send information to the
Hub via its APIs.

During the course of the project, we have built a variety of
IoT applications that use our Smart Streets hub as well as data
from other hubs. The Catalogue Explorer connects to other
hubs’ HyperCat catalogues to display and view things available
on other hubs. We used JavaScript visualization frameworks
to build a roadworks mashup that uses roadwork and sign data
to display the location and severity of accidents. A Traffic
Data Explorer application displays roadworks against traffic
flow and the relationship of traffic flow to delays,.A gully

visualization mashup that explores the correlation between
road works and gully silt levels over time. At a recent
hackathon, 50+ participants from Switzerland, Germany and
the UK developed a series of apps. Over a two day period
generated more than 300K Hub API calls transferring over 9
GB of data.

Making a diverse set of IoT resources discoverable on the
web by using a common catalogue was the initial focus of the
UK IoT project. Even with the limited scope of the HyperCat
specification (catalogs, simple security, simple search), we
found that achieving a level of meaningful interoperability
using our API proxy was difficult. Some of the challenges
included the need to resolve different access control
mechanisms, different query semantics, and dealing with the
size of certain large catalogues.

Related to security and access control, we found that it is
not enough to control access to the data for thing resources
hosted on an IoT hub. It is also critical to control the visibility
or knowledge that a resource is even available, limiting or
exposing its visibility in a catalogue depending on its
ownership and the user, or application accessing the catalogue
API. To ensure these controls were reflected in the exposed
catalogue, we could not simply replicate the catalogue of
underlying systems; we needed to access these catalogues
directly using the credentials of the requesting client to ensure
only resources visible to that client were retrieved as described
in section IV.

Overall we found that although the scope of HyperCat was
appropriate for this initial project, it became obvious once
several of the hubs came on-line that the groups will need to
work closely toward standardizing catalogue item semantics,
agreeing on the definition of certain meta data relationship
fields and on how they relate to search, access control and data
formats.

We believe that the use of ETL tools such as the Harvester
is a good interim step towards addressing data interoperability,.
The Harvester framework allowed us to aggregate a diverse set
of data sources into a single hub that exposed a consistent API
for developers, allowing developers to focus more on their
applications rather than worry about the location and formats
of the data they needed on the web. During our efforts to
populate our hub with interesting data sets, we have found that
there is an abundance of thing and sensor data available on the
web today, buried in various web sites. In many cases these
sites focus on providing end users with information and do not
consider the value of their data as part of an IoT ecosystem, in
which application developers can combine their data with that
of others. We believe this will change over time as data
suppliers standardize data formats and the metatdata used to
describe these representations (e.g. MIME types). Based on our
experience with HyperCat,our hub containing both CKAN and
WoTKit data feeds and the diverse data already available on
the web, we believe that it may be more practical to agree on
the metadata (relationships and values) used to describe
domain-specific data formats rather than to agree on one
format. Using a catalogue like HyperCat, with a flexible
metadata facility for describing things, will allow application
developers to decide whether they are capable of consuming
the data exposed by a given resource.

VII. CONCLUSIONS

Interoperability in the IoT is critical to achieving the
potential of the widest variety of applications and services that
can interact with objects in our physical world. Research and
development to date have shown that a web-centric approach is
a critical first step in achieving this vision. With the
introduction of IoT hubs that aggregate IoT resources using
web protocols, application developers can access individual
hub-hosted physical resources such as environmental sensors,
home automation equipment, home appliances and other things
in a uniform manner. The challenge of interoperability then
becomes one of unifying the presentation of hub catalogues
and data formats. While we believe standards groups will
eventually be able to provide interoperable specifications for
WoT hubs, the tools presented here allow hub developers to
begin to address interoperability while the requirements for
such specifications become clearer and agreement is reached
between academic and industrial practitioners in the IoT
community.

ACKNOWLEDGEMENTS

We are indebted to our colleagues in the SmartStreets IoT
project team, especially those at In Touch Ltd. and Lancaster
University. The HyperCat work is the result of collaboration
by the 8 IoT hub projects who participated in the
interoperability working group. Partial funding for this work
was provided by the TSB and NSERC.

REFERENCES

[1] A. Whitmore, A. Agarwal, and L. D. Xu, “The Internet of Things—A
survey of topics and trends,” Information Systems Frontiers, pp. 1–14.

[2] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, “From the Internet of
Things to the Web of Things: Resource Oriented Architecture and Best
Practices,” in Architecting the Internet of Things, D. Uckelmann, M.
Harrison, and F. Michahelles, Eds. New York Dordrecht Heidelberg
London: Springer, 2011, pp. 97–129.

[3] M. Blackstock and R. Lea, “IoT mashups with the WoTKit,” in
Internet of Things (IOT), 2012 3rd International Conference on the,
Wuxi, China, 2012, pp. 159–166.

[4] D. Guinard, V. Trifa, T. Pham, and O. Liechti, “Towards physical
mashups in the web of things,” in Proceedings of the 6th international
conference on Networked sensing systems, Pittsburgh, Pennsylvania,
USA, 2009, pp. 196–199.

[5] M. Blackstock, R. Lea, and A. Friday, “Uniting online social networks
with places and things,” in Workshop on the Web of Things (WoT
2011), San Francisco, CA, USA, 2011, pp. 5:1–5:6.

[6] D. Guinard, M. Fischer, and V. Trifa, “Sharing using social networks in
a composable Web of Things,” in 2010 8th IEEE International
Conference on Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2010, pp. 702–707.

[7] “The Internet of Things - ThingSpeak.” [Online]. Available:
https://thingspeak.com/. [Accessed: 29-Jan-2013].

[8] “Xively by LogMeIn.” [Online]. Available: https://xively.com/.
[Accessed: 01-Apr-2014].

[9] M. Blackstock and R. Lea, “Toward Interoperability in a Web of
Things,” in Proceedings of the 2013 ACM Conference on Pervasive
and Ubiquitous Computing Adjunct Publication, New York, NY, USA,
2013, pp. 1565–1574.

[10] “IEEE-SA - Internet of Things Related Standards.” [Online]. Available:
http://standards.ieee.org/innovate/iot/stds.html. [Accessed:
28-May-2013].

[11] I. Ishaq, D. Carels, G. Teklemariam, J. Hoebeke, F. Abeele, E. Poorter,
I. Moerman, and P. Demeester, “IETF Standardization in the Field of

the Internet of Things (IoT): A Survey,” Journal of Sensor and
Actuator Networks, vol. 2, no. 2, pp. 235–287, Apr. 2013.

[12] “Sensor Web Interface for IoT SWG | OGC(R).” [Online]. Available:
http://www.opengeospatial.org/projects/groups/sweiotswg. [Accessed:
28-May-2013].

[13] “W3C Web of Things Community Group.” [Online]. Available:
http://www.w3.org/community/wot/. [Accessed: 26-Mar-2014].

[14] “HyperCat Specification,” HyperCat Specification, Dec-2013. [Online].
Available: http://wiki.1248.io/doku.php?id=hypercat. [Accessed:
26-Mar-2014].

[15] “Internet of Things Ecosystem Demonstrator Overview.” [Online].
Available:
https://connect.innovateuk.org/web/internet-of-things-ecosystem-demo
nstrator. [Accessed: 28-May-2013].

[16] M. Blackstock and R. Lea, “WoTKit: A Lightweight Toolkit for the
Web of Things,” in Proceedings of the Third International Workshop
on the Web of Things, New York, NY, USA, 2012, pp. 3:1–3:6.

[17] “CKAN The Open Source Data Portal Software.” [Online]. Available:
http://ckan.org/.

[18] “Nest | The Learning Thermostat | Home.” [Online]. Available:
http://nest.com/ca/. [Accessed: 28-May-2013].

[19] “Koubachi - Interactive Plant Care.” [Online]. Available:
http://www.koubachi.com/main?locale=en. [Accessed: 26-Mar-2014].

[20] “Smart Things.” [Online]. Available: http://smartthings.com/.
[Accessed: 26-Mar-2014].

[21] “Internet of Things - Architecture — IOT-A: Internet of Things
Architecture.” [Online]. Available: http://www.iot-a.eu/public.
[Accessed: 28-May-2013].

[22] A. P. Castellani, M. Gheda, N. Bui, M. Rossi, and M. Zorzi, “Web
Services for the Internet of Things through CoAP and EXI,” in 2011
IEEE International Conference on Communications Workshops (ICC),
2011, pp. 1–6.

[23] M. Botts and A. Robbin, “Bringing the Sensor Web together,”
Géosciences, vol. 2007, no. 6, pp. 46–53, Oct. 2007.

	I. INTRODUCTION
	II. Path to Hub interoperability
	III. HYPERCAT
	A. Smart Streets IoT Hub

	IV. INTEROPERABILITY TOOLS
	A. The API Proxy
	B. Search engine implementation
	C. Catalogue proxy implementation
	1) Unified access control
	2) Query mismatch and filtering
	3) Large catalogues

	V. RELATED WORK
	VI. EXPERIENCES AND LESSONS
	VII. CONCLUSIONS
	Acknowledgements
	References

