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ABSTRACT
�e spread of an infectious disease through a population can be
modeled using a network or a graph. In digital advertising, internet
device graphs are graph data sets that organize identi�ers produced
by mobile phones, PCs, TVs, and tablets as they access media on
the internet. Characterized by immense scale, they have become
ubiquitous as they enable targeted advertising, content customiza-
tion and tracking. �is paper posits that internet device graphs,
in particular those based on IP colocation, can provide signi�cant
utility in predicting and modeling the spread of infectious disease.
Starting the week of March 16th, 2020, in the United States, many
individuals began to ‘shelter-in-place’ as schools and workplaces
across the nation closed because of the COVID-19 pandemic. �is
paper quanti�es the e�ect of the shelter-in-place orders on a large
scale internet device graph with more than a billion nodes by study-
ing the graph before and a�er orders went into e�ect. �e e�ects
are clearly visible. �e structure of the graph suggests behavior
least conducive to transmission of infection occurred in the US
between April 12th and 19th, 2020. �is paper also discusses the
utility of device graphs for i) contact tracing, ii) prediction of ‘hot
spots’, iii) simulation of infectious disease spread, and iv) delivery
of advertisement-based warnings to potentially exposed individuals.
�e paper also posits an overarching question: can systems and
datasets amassed by entities in the digital ad ecosystem aid in the
�ght against COVID-19?

KEYWORDS
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1 INTRODUCTION
Epidemiologists o�en study the spread of infectious disease using
a contact process on a network (i.e, a graph) [5, 8–10, 18]. In a
contact process, an infection spreads along the edges of the graph,
infecting neighboring nodes. While the individual edges de�ne who
becomes infected, the underlying structure of the graph controls the
characteristics of the spread of the infectious disease through the
population. Knowledge of the edges in the network is paramount
to contact tracing.

In digital advertising, device graphs are datasets that relate digital
identi�ers produced by smartphones, PCs and tablets as they access
resources on the internet. Device graphs, characterized by immense
scale with billions of nodes and tens of billions of edges [22], have
become ubiquitous in the digital advertising ecosystem as they
facilitate targeted advertising. While device graphs are constructed
using information gathered online, the associations they capture
correspond to o�ine relationships.

While the exact mechanisms for assembling device graphs vary,
the principles of their construction follow a similar paradigm. Web-
sites, apps and advertising networks log information about smar-
phones and PCs as they access media on the internet. �e informa-
tion they collect includes a unique, anonymized identi�er (either
a cookie-ID or an advertising ID), an IP address, a timestamp, and
information about the device and the content accessed.

One technique for generating device graphs is IP colocation. IP
colocation is the co-occurrence of identi�ers on a single IP address
at approximately the same time. �e e�cacy of IP colocation tech-
niques comes from the observation that IP space is intimate: IP
addresses are shared by family members, friends and co-workers
when they connect to the internet via the same WiFi access point.
Generally speaking, devices that connect to a WiFi router have the
same public-facing IPv4 address. Capturing these relationships is
valuable for marketing and targeted advertising, and many entities
in digital advertising have assembled device graphs [2, 4, 32]. �ese
datasets cover the majority of internet-connected devices in the
United States and elsewhere in the world [21].

While internet device graphs are ubiquitous in digital advertis-
ing, they also have potential utility for epidemiological study and
combating the worldwide COVID-19 pandemic. As WiFi access
points have limited range, IP colocation is a proxy for physical
colocation. As physical colocation supposes epidemiological contact,
device graphs are a natural �t to study the spread of infectious dis-
ease over a network. �is paper posits that device graphs could be
used to: i) supplement contact tracing by enabling public health o�-
cials to identify users that connected to the same WiFi access points
at internet scale, ii) enable prediction of outbreak ‘hot spots’, and iii)
facilitate delivery of advertisement-based warnings to potentially
exposed individuals. While the datasets have great potential, there
are also limitations. Unlike digital contact tracing approaches based
on mobile apps and technology such as GPS and Bluetooth Low
Energy [13, 16], IP colocation is more susceptible to false positives.
�is potential shortcoming is arguably overcome by scale.

�is paper studies the e�ects of shelter-in-place on an internet
scale IP colocation device graph provided by a large internet an-
alytics company, Comscore. �e COVID-19 pandemic caused a
signi�cant change in day-to-day behavior in the US and across the
globe. In the US, starting approximately the week of Monday March
16th, many individuals began to work from home and shelter-in-
place either voluntarily or through mandate, as schools across the
nation closed. We study the e�ects of this change in behavior by
examining the community structure of the device graph∗.

�e e�ects of sheltering in place are clearly visible in the de-
vice graph, validating a simple hypothesis: when individuals stay
home, they do not connect to WiFi outside-the-home, reducing the
number of outside the home edges in the graph. We study two

∗We intend to make anonymized graph datasets publicly available, corresponding
to before and a�er the shelter-in-place orders.
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statistics of the graph and the inferred community structure: i)
the modularity, and ii) the ratio of edges that cross communities
to the total number of edges in the graph. Both metrics indicate
that behavior least conducive to the spread of infectious disease
occurred on the week beginning April 12th, 2020. Past this week,
both graph metrics suggest behavior becomes more conducive to
the spread of infectious disease. We also compare the metrics to the
estimated percent of the US population that is placed under stay at
home orders.

�e use of internet device graphs for contact tracing, prediction
of transmission, and epidemiological studies, to the best of our
knowledge, is a new idea. Compared to other technology for digital
contact tracing using mobile devices [13], there are both signi�cant
advantages and limitations. One main advantage of device graphs is
that they already exist and do not require custom apps or websites
as are o�en suggested for digital contact tracing in the media [1].
Required data collection only consists of server logs containing an
IP address, an ID (a cookie or advertising ID), and a timestamp. �is
data is recorded any time a user accesses content on a webpage or
app, and these datasets are already produced and sold by a num-
ber of tracking and measurement entities in the digital advertising
ecosystem. �e identi�ers used in device graphing conform to es-
tablished privacy guidelines, and are also precisely the identi�ers
that facilitate targeted advertisements, which could be used for
public service announcements or warnings of potential exposure
to infectious diseases. �ere are limitations to using device graphs
based on IP colocation for contact tracing. Most importantly, they
do not reveal detailed location traces that are available using tech-
niques based on precise geolocation services (i.e, GPS). Instead they
provide reliable estimation of habitual behavior.

To the best of our knowledge, the use of device graphs to sim-
ulate the spread of infectious disease is a new idea. �e baseline
graph under normal conditions would likely be of interest to epi-
demiologists for use in a contact process model. Moreover, the
change in characteristics of the graph pre and post shelter-in-place
orders is also likely of interest to epidemiologists and policy makers
in understanding the e�ectiveness of such orders. �e data struc-
ture provides a unique opportunity for simulation and exposition
to answer the following question: do the shelter-in-place orders
have material impact on the rate of spread of infectious disease
as modeled as a contact process on a device graph? A number of
related modeling questions ensue. We also pose the overarching
question: can the processes and datasets developed by the advertis-
ing ecosystem writ large aid in the �ght against COVID-19?

2 BACKGROUND AND METHODOLOGY
�is section reviews background and methodology for generation
of an IP colocation device. More details can be found in [14, 21, 22].
IP colocation device graphing o�en follows three steps: i) data
collection, ii) generation of the graph, which establishes pair-wise
relationships between devices by observing them on the same IP
address at approximately the same time, and iii) community detec-
tion, which partitions the graph into smaller clusters that identify
household, person-level, or larger internet communities depending
on tuning of the algorithms.

Before proceeding, we de�ne notation required in graph analysis.
An undirected, weighted graph G is a set of nodes V and a set of
edges E, G = (V ,E). An edge e ∈ E consists of two elements from
V and a weight: e = (i, j,w) ∈ V ×V × R. In a device graph, a node
i ∈ V is a digital identi�er (e.g., a web cookie or advertising ID). An
edge e ∈ E represents a relationship between two identi�ers. Many
of the applications of device graphs require determining groups
of devices that have strong relationships in the graph. We refer to
these groups as communities. When a community is aligned to a
residential household, we refer to it as a household. A community
is a set of one or more nodes, C = {i, . . . } ⊂ V , and the set of
communities is denoted C = {C1,C2 . . . }. C is a partitioning of
V , i.e, Ci ∩Cj = {} for any i , j, and

⋃
i Ci = V . In IP colocation

device graphs, communities are small groups of IDs o�en observed
together on the same IP address. �ese groups are are well aligned
with residential households and small business places.

�e data used to build the IP colocation device graphs comes from
Comscore’s digital network, one of the largest in the world. �is
data is collected over a 42 day period (six weeks) via the local exe-
cution of either a JavaScript/HTML or SDK (so�ware development
kit) tag on a client machine. �ese tags can be found accompanying
a wide variety of internet resources, including web pages, video
requests, mobile applications, advertisement deliveries, and other
distributed content. When local execution occurs a unique record
is directly reported to Comscore’s infrastructure. �e record is
run through an ETL (extract-transform-load) process before being
utilized in the construction of the IP colocation device graph.

Construction of the IP colocation device graph starts with a
dataset consisting of tuples of (device ID, IP address, time). For each
IP address in the dataset, an edge is established between every
pair of device IDs that share that IP address on epoch t = 1. �e
weight of the edge is inversely proportional to the number of digital
identi�ers observed on that IP at that epoch. �is is repeated for
epoch t = 2, 3, . . . . A�er each epoch is considered, a �nal weight is
assigned to each pair of devices by summing over all epochs and all
IP addresses. �e algorithm is detailed in Algorithm 1. Algorithm
1 requires two parameters: Nmax, which is set to exclude high
volume IP addresses, and the edge cuto� parameter γ , which results
in the exclusion of edges below a speci�ed weight. Algorithm 1 is
implemented in practice utilizing the Apache Pig platform on an
Apache Hadoop environment consisting of 500+ worker nodes.

Algorithm 1 IP Colocation Device Graph [21]
1: parameters: Nmax, γ
2: input: tuples (device ID, IP address, time)
3: V = set of unique device IDs
4: for each time step t , each IP k
5: Nt,k = number of distinct device IDs on IP k at time t
6: if Nt,k ≤ Nmax
7: for all pairs of device IDs (i, j) on IP k at t
8: wi, j (t ,k) = 1

Nt,k

9: wi, j =
∑
t,k wi, j (t ,k) for all (i, j)

10: E = {(i, j,wi, j ) : wi, j > γ }
11: return Gγ = (V ,E)
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A�er construction of the graph, community detection algorithms
can be applied to cluster devices into small communities of closely
related nodes. �e clusters, which partition V , correspond to indi-
viduals, residential households, and larger work and social commu-
nities. As the basis for the graph is IP colocation, the communities
correspond to individuals that share WiFi access points. To study
clustering properties of the graph, we applied community detection
algorithms, adjusting the parameter γ as one mechanism to control
the size of the communities.

�e goal of community detection is to �nd a partitioning of the
nodes so that the edges between nodes in a group are dense and
edges between nodes from di�erent groups are sparse. Community
detection is well studied with many available methods. �e Louvain
method [6] is a popular technique due to its success on large scale
graphs, and we employ the approach to cluster the nodes of the IP
colocation graph. �e Louvain approach consists of two repeated
steps - i) minimizing a cost function by moving nodes to neighbor-
ing communities and ii) creating a new graph with the communities
from the �rst step as nodes. �e technique creates a hierarchy of
communities, each corresponding to a di�erent partitioning of the
node set. In this paper we focus only on communities created a�er
the �rst iteration, i.e, step i) above.

While the resulting communities are based on relationships in IP
space, their interpretation translates into o�ine relations between
devices. �e parameterγ is a cuto� for the minimum edge weight in
the graph. Tuning γ also has an e�ect on community size. For small
γ , the communities correspond to multiple identi�ers that belong
to the same person. As γ is decreased, larger communities are
produced that align with groups of devices that share a residential
household. Further decreasing γ generates internet communities
that connect extended families, friends and co-workers. In this
paper we focus on parameter se�ings that result in communities
that corresponding to residential households.

3 RESULTS
We study the characteristics of the graph and the communities,
focusing on two metrics: graph modularity, and the ratio of edges
that cross communities to the total number of edges. Modularity,
denoted Q , can be expressed as [7]

Q =
∑
s

(
`s
L
−

(
ds
2L

)2)
where s enumerates the communities, `s is the number of edges
inside the community, ds is the total degree of the nodes in commu-
nity s , N = |V |, and L = |E |. �e ratio of edges inside communities
to those outside is expressed as:

R =
E −∑

s `s

E
.

Both metrics quantify how well the graph conforms to the commu-
nity structure. Graph modularity can be interpreted as the ratio
of the number of edges inside a community, minus the expected
number of edges if connections were de�ned at random, to the total
number of edges. Graphs with fully connected communities and
no cross community edges have a modularity Q = 1, and graphs
with no community structure and uniformly random edges over
the nodes have a modularity of Q = 0.

Nodes Edges
G0 1,169,103,380 6,189,562,782
G0.2 1,057,968,932 3,456,105,267
G0.4 873,110,979 1,917,085,849
G0.6 753,677,283 1,331,218,411
G0.8 696,068,576 1,048,758,994
G1.0 600,338,457 841,785,094

Table 1: Edge count and node count of the graph before
‘shelter-in-place’. Data collected over six weeks from Jan-
uary 20th, 2020 to March 1st, 2020. Gγ corresponds to the
graph, restricted to edge weights above γ .

To analyze the e�ect of stay-at-home orders across the United
States on both graph modularity and the ratio of edges that cross
communities to the total number of edges, we looked at a series
of graphs produced using Comscore data collected over several
months. All data examined originated from the US between the
dates of UTC January 20, 2020 and UTC June 7, 2020 - a 140 day
period (20 weeks). Each graph consists of 6 weeks of data. �e date
associated with the graph is the center date of the time frame; e.g., a
device graph on April 1st consists of data collected the three weeks
immediately preceding and following April 1st. In the hierarchy of
partitions produced by Louvain Modularity, only results from the
�nest scale communities are presented. All results are presented
for G0.8.

As the United States began to stay-at-home, the frequency with
which the population shared IP space with co-workers, friends,
and others outside of their home decreased. �e main hypothesis
is that such orders lead to a decrease in cross community edges
and an increase in graph modularity. Figures 1 and 2 con�rm this
hypothesis. Both metrics indicate the graph is most modular on the
week beginning April 12th. �is suggests the US in aggregate was
most observant of the stay-at-home orders at approximately that
date.

Figures 1 and 2 also suggest there is utility in simulating infec-
tious disease spread on device graph datasets. �e datasets provide
weekly snapshots of contacts (connections) at country wide scale.
�e ability to simulate infectious disease spread on week over week
snapshots allows closer to ’real time’ estimations on the e�cacy of
stay-at-home orders; both at large and in speci�c areas of the US. In
addition, being able to observe the resurgence of cross community
edges week over week has forward looking utility. It may be used
to predict areas susceptible to an outbreak or resurgence of cases
if the in�ux of cross community edges are observed in geographic
areas still experiencing a steady rate of new infections. �is data
can allow policy makers to make be�er informed decisions on when
it is safe to resume certain public functions and business.

Results of community detection were validated using a ground
truthdataset provided by Comscore. �e datasets involves recruit-
ment of panelists for installation of customized wireless routers.
�e wireless router captures an anonymized version of the media
access control (MAC) address, and the cookies ID/advertising IDs
of with the devices that connects to the router.

3



Nodes Edges
G0 1,196,074,232 6,034,219,867
G0.2 1,078,714,915 3,707,466,124
G0.4 889,876,127 2,187,580,778
G0.6 771,171,764 1,576,917,496
G0.8 710,457,825 1,261,395,734
G1.0 626,406,997 1,030,235,341

Table 2: Edge count and node count of the graph a�er
‘shelter-in-place’. Data collected over six weeks fromMarch
30th, 2020 to May 10th, 2020. Gγ corresponds to the graph,
restricted to edge weights above γ .
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Figure 1: Graph modularity (right axis), a measure of how
well a graph matches community structure. Percentage of
US population under state-issued ‘stay-at-home’ order (le�
axis, adapted from [26]). �e graph is constructed with six
weeks of data (three weeks before and three a�er the listed
date).

�e cookie IDs and advertising IDs recorded by a custom wire-
less router de�ne a ground truth community (which correspond
to residential households). �e dataset includes more than 5,000
ground truth communities. Only cookie IDs/advertising IDs that
correspond to MAC addresses observed for more than 2 days are
included, eliminating ‘guest’ devices that do not have a long term
association with the small community. �e time frame of data col-
lection used to de�ne the ground truth communities is the same 6
weeks as the time frame used for graph data collection.

Precision and recall of communities produced by Louvain Modu-
larity were calculated. In particular, let C be the set of communities
produced by the community detection algorithm. For a ground truth
community C ′ (i.e., a physical household), the best corresponding
graph communityC∗ is determined by �nding the community with
the largest intersection of IDs: C∗ := arg maxC ∈C |C ′ ∩ C |. �e
precision and recall of C∗ are given by

precision = |C
′ ∩C∗ |
|C∗ | recall = |C

′ ∩C∗ |
|C ′ | .

�e the precision and recall are plo�ed for Louvain Modularity
applied to G0.8 in Figure 3. Notice that community structure is
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Figure 2: Percent of total edges that are inter-community
(across community) edges (right axis). Percentage of US pop-
ulation under state-issued ‘stay-at-home’ ordered (le� axis,
adapted from [26]).

best aligned with a ground truth partitioning of the nodes between
April 12th and April 19th, 2020.

Figures 4 and 5 visualize a small portion of the graph, and rep-
resent an illustrative and hand-curated example of communities
before and a�er shelter-in-place. Notice that many connections
across communities are not present a�er stay-at-home orders. �e
example �gures also highlight the utility of the graph with respect
to contact tracing.
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Figure 3: Precision and recall of communities derived from
a ground truth dataset on more than 5000 communities.

4 RELATEDWORK
�e study of networks (i.e, graphs) in epidemiology has a rich
history dating back to at least the 1980’s [19]. �ere are a number
of review articles on the topic of graphs and infectious disease, and
while we aim to extract the relevant themes herein, we refer the
reader to [9] for a more thorough discussion.

A number of studies have looked at how (o�ine) social networks
predict, model and relate to the spread of infectious disease [19, 20,
27]. �is includes studies of realized encounter networks, in which a
graph is constructed from documented physical encounters, and the
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Figure 4: Illustrative example of a small portion of the graph
prior to stay-at-home orders. �e color of node indicates the
assigned community. Note the large number of connections
between the device labeled ‘LG Nexus 5 D820 16GB’ and de-
vices outside its community.
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Figure 5: Illustrative example of a small portion of the graph
a�er stay-at-home orders. �e color of node indicates the
assigned community. Notice that many of the edges outside
the communities are no longer present.

spread of a transmi�ed disease is studied on the resulting graph. A
major limitation of such approaches is the construction of the graph
itself, which requires participation from subjects and recollection

of encounters. Such studies have in general been limited to graphs
with fewer than a thousand nodes. One di�erence between our
discussions and much work in epidemiology is that we do not
have information about nodes are infected with a disease. We
acknowledge signi�cant challenge in relating that information to
the graph at scale. Relating o�ine information (i.e, a name/address)
to an advertising ID or cookie is o�en termed ‘digital onboarding’,
and a number of companies o�er such datasets [3].

In addition to the broader study of infectious disease on networks
with social and encounter networks, there is work that studies the
e�ects of graph modularity on the spread of infectious disease [17,
29, 30]. While conventional wisdom would suggest that modular
organization of a network would prevent the spread of infectious
disease, there is work on animal social networks that in certain
se�ings supposes otherwise [30].

�ere has been a surge in work related to digital contact trac-
ing (see, for example [13] and related articles). In general these
techniques require a signi�cant portion of the population install
a mobile app for data collection, which is a signi�cant challenge.
�e technology involved is both based on global positioning (GPS),
Bluetooth Low Energy [12, 16].

Related work in device graphing is broadly divided into aca-
demic work, including the prequels to this paper [14, 21, 22], and
commercial literature. [21, 23] provides a introduction to device
graphing using IP co-location, and is the �rst academic paper to
study the datasets. [14] assumes that IP colocation associations
have been made, and focuses on re�ning the graph to create custom
user and device level groupings using an extension of Naive Bayes
termed Naive Bayes Similarity Scoring. Lastly, [22] proposes an
approach to extend the scale of the graph towards 10 billion nodes.
Beyond these publications, li�le academic literature exists with the
taxonomy ‘device graph’. Some literature on ‘cross device tracking’
[31] aims to provide a method to detect when cross device track-
ing (such as device graphing) occurs. A review of privacy in cross
device tracking is found in [33].

Commercial and industry publications with the ‘device graph’
taxonomy are more prevalent, as device graph o�erings are ubiqui-
tous and widely available e.g., [3, 4, 32] in the adverting ecosystem.
�is includes a number of patents on systems for generation of
device graphs based on colocation [15, 24, 25]. �e academic work
can be viewed as a formalization of many of the ideas encapsulated
in the commercial device graph patents and literature. Much of the
work that studies identi�cation of users on the internet absent login
information can be broadly categorized as �ngerprinting [11, 28].
�e goal of �ngerprinting, as the name suggests, is to identify a
user/browser in a persistent manner, absent login information and
without cookies or advertising IDs.

5 SUMMARY
�is paper proposes the utility of internet device graphs in epi-
demiology. Device graphs are characterized by immense scale and
ubiquitous use in digital advertising. More precisely, this paper
posits the utility of device graphs for four applications i) contact
tracing, ii) prediction of ‘hot spots’, iii) simulation of infectious
disease spread, and iv) delivery of advertisement based warnings
to potentially exposed individuals. �e utility follows two natural
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observations i) in epidemiology, the spread of infectious disease
through a population can be modeled using a network or graph,
and ii) in digital advertising internet device graphs are graph data
sets that organize digital identi�ers produced by mobile phones,
PCs, TVs, and tablets as they access media on the internet.

�is paper also studies the e�ects of the shelter-in-place or-
ders on a large scale internet device graph constructed using IP
co-location with more than a billion nodes. As individuals stay at
home, fewer graph edges are created with co-workers and other
individuals outside the home. We study the impact on the commu-
nity structure in the graph, and show that the graph modularity (a
measure of how well a graph conforms to community structure)
increases as the stay at home order went into place. �e modularity
of the graph is closely related to the number of edges that cross
communities, in relation to the total edges. �e number of cross
community edges decreases as the stay at home order went into
place. Both metrics indicate that the graph is most modular (best
adheres to community structure) the week beginning April 12th.
�is implies that the US, in aggregate, best followed the stay at
home orders that same week.

While device graphs o�er utility for the study of infectious dis-
ease, they may also supplement the more material and a immediate
needs of public health departments that are actively �ghting the
worldwide COVID-19 pandemic. �e digital advertising ecosystem
writ large has successfully built tools, infrastructure, and datasets
to track users as they access services on the internet. �e question
remains: can the processes and datasets amassed by the digital
advertising industry help in the �ght against COVID-19, and do so
in a privacy safe manner?
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