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Abstract—We consider a status update system consisting of one
source, one buffer-aided transmitter, and one receiver. The source
randomly generates status update packets and the transmitter
sends the packets to the receiver over an unreliable channel using
a hybrid automatic repeat request (HARQ) protocol. The system
holds two packets: one packet in the buffer, which stores the
last generated packet, and one packet currently under service
in the transmitter. At each time slot, the transmitter decides
whether to stay idle, transmit the last generated packet, or re-
transmit the packet currently under service. We aim to find
the optimal actions at each slot to minimize the average age of
information (AoI) of the source under a constraint on the average
number of transmissions. We model the problem as a constrained
Markov decision process (CMDP) problem and solve it for the
known and unknown learning environment as follows. First, we
use the Lagrangian approach to transform the CMDP problem
to an MDP problem which is solved with the relative value
iteration (RVI) for the known environment and with deep Q-
learning (DQL) algorithm for the unknown environment. Second,
we use the Lyapunov method to transform the CMDP problem
to an MDP problem which is solved with DQL algorithm for the
unknown environment. Simulation results assess the effectiveness
of the proposed approaches.

Index Terms—Age of information (AoI), hybrid automatic
repeat request (HARQ), policy, constrained Markov decision
process (CMDP), Lyapunov method, deep Q-learning (DQL).

I. INTRODUCTION

The number of time-critical cyber-physical applications
is growing dramatically. For instance, in Internet of things
and smart grid applications, delivery of fresh and accurate
information is crucial to the decision making to obtain high
system performance. One highly attracted metric to measure
the information freshness is the age of information (AoI)
[1], [2]. AoI is defined as the difference between the current
time and the generation time of the last received packet at
a destination. The destination can be kept updated about the
status of a random process by assigning the source to send
status update packets. Each status update packet contains
a timestamp representing the time when the sample was
generated and the measured value of the monitored process. At
time instant t, by denoting the timestamp of the last received
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status update packet by Ut, the AoI, δt, is defined as δt = t−Ut
[1]–[4].

For the data transmission systems with an unreliable com-
munication channel, packet re-transmissions can consider-
ably improve the system’s reliability [5]. Automatic repeat
request (ARQ) protocols are standard error control meth-
ods [5], where after each transmission, the transmitter re-
ceives a feedback about the reception of the packet as
acknowledgement/negative-acknowledgement (ACK/NACK).
Whenever the transmitter receives NACK, it keeps re-
transmitting the previous packet until it receives ACK or
reaches the maximum allowed number of re-transmissions.
While the decoding in ARQ protocols utilizes only the last
transmitted packet, the hybrid ARQ (HARQ) protocols use all
the received versions of the packet, increasing the probability
of successful decoding of the packet [5], [6].

We consider an HARQ-based status update system under
random packet arrivals in which the buffer-aided transmitter
communicates with a receiver over an unreliable channel.
The size of the system is two packets: one packet in the
buffer, which stores the last generated packet, and one packet
currently under service in the transmitter. We construct a
constrained Markov decision process (CMDP) problem to
minimize the average AoI under a constraint on the average
number of transmissions to find a policy that determines at
each time slot the optimal action: stay idle, transmit the
last generated packet, or re-transmit the packet currently
under service. We solve the CMDP problem by relaxing it
to an MDP problem via two approaches: I) a Lagrangian-
based approach and II) a Lyapunov-based approach. In the
Lagrangian approach, the MDP problem is solved under two
learning scenarios: i) relative value iteration (RVI) for the
known environment (i.e., the transmitter knows the packet
arrival rate and the HARQ decoding function) and ii) deep Q-
learning (DQL) algorithm [7] for the unknown environment. In
the Lyapunov approach, the MDP problem is solved with DQL
algorithm for the unknown environment. The numerical results
illustrate the AoI performances of the proposed policies.

Related Works: AoI characterization from the perspective
of the queueing theory has been extensively studied; see,
e.g., [8]–[12] and the references therein. In particular, the
first work that analyzed AoI under an HARQ protocol is
[10]. The authors derived the closed-form expression of the



average AoI for an HARQ-based M/G/1/1 queueing system.
The authors of [11] considered the same queueing system as
in [10] and used the closed-form expression of the average
AoI derived in [10] as the objective function. They minimized
the objective function under a constraint on the decoding error
probability by finding the optimal number of symbols to send
at each transmission attempt. The authors of [12] introduced
a network-code-HARQ (NC-HARQ) protocol and derived the
closed-form expression of AoI for the NC-HARQ-based M/1/1
queueing system.

Also, the AoI has been studied in HARQ-based systems
from the perspective of sampling and transmission policies
[13], [14]. The most related work to our paper is [13], where
the authors considered a similar HARQ-based status update
system to ours, yet with the following differences. The work
[13] considers a generate-at-will model, i.e., the source can
sample the process and thus generate a new packet any time;
we consider random arrivals at the buffer-aided transmitter.
Since the transmitter is unaware of the availability of fresh
packets at the next slots, the system is more complicated.
Moreover, while we use the Lagrangian-based approach simi-
lar to [13] for the known and unknown environments, we addi-
tionally propose a low-complexity Lyapunov-based approach,
in conjunction with DQL, for the unknown environment.
Recently, [13] was extended to a multi-user setup in [14].

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a status update system in which a transmitter
(TX) communicates with a receiver (RX) through an error-
prone wireless channel, as depicted in Fig. 1. We consider a
time-slotted system with slots indexed by t ∈ {1, 2, ...}. The
source generates packets according to the Bernoulli random
process with parameter pb at the beginning of slots. An
arriving packet is stored in the buffer of TX, which keeps
the last generated packet. We assume that a packet arriving at
slot t is accessible to TX at the same slot t. TX retains the
packet currently under service until it takes a packet from the
buffer. Thus, the size of the system is two packets, i.e., one
packet at the buffer and one packet currently under service.

The system employs the chase combining HARQ protocol,
where upon a re-transmission, the source sends the entire
previous packet [6]. After each transmission, RX sends a
feedback to TX about the reception status of the packet as
ACK (successful decoding) or NACK (unsuccessful decoding).
We assume an error-free and zero-delay feedback channel.
Transmission of each packet is completed in one time slot.

A. Status Update Procedure

At the beginning of slot t, TX takes one of the following
actions from the action space A = {0, 1, 2}: I) stay idle, at =
0, II) re-transmit the last sent packet, at = 1, and III) send
the packet in the buffer, at = 2. The decision is influenced
by 1) the number of (re-)transmissions of the packet currently
under service, 2) the age of each packet in the system, and 3)
the AoI of the source at RX. These will be elaborated next.

Figure 1. The considered status update system with an HARQ protocol. The
transmitter (TX) has a buffer with capacity one which receives a new packet
from the source according to the Bernoulli process with parameter pb. The
receiver (RX) sends a feedback as ACK for successful decoding and NACK
otherwise.

Let xt denote the number of transmissions of the packet
currently under service at TX at time slot t. By utilizing the
HARQ protocol, RX uses information from all transmission
attempts (the first transmission and the re-transmissions) of the
packet, which increases the probability of successful decoding.
Thus, the probability of successful decoding of a packet is
a non-decreasing function1 of xt, denoted as f(xt). The
evolution of xt is formulated as follows:

xt+1 =


1 at = 2

xt + 1 at = 1

xt at = 0.

(1)

Let δt be the AoI of the source at RX at the beginning of slot
t, i.e., the number of time slots elapsed since the last received
packet at RX was generated by the source. Let δb

t denote the
age of the stored packet in the buffer at the beginning of time
slot t, i.e., the number of time slots that the packet has stayed
in the buffer up to slot t. Finally, let δr

t denote the age of the
packet currently under service at TX at the beginning of time
slot t. If at time slot t, TX transmits the packet with age δr

t and
it is decoded successfully at RX, the AoI δt drops to δr

t + 1;
otherwise, the AoI increases by one. Note that δr

t = δb
t if TX

transmits the packet in the buffer, i.e., at = 2. The evolution
of the AoI, δt, can be formulated as

δt+1 =


δb
t + 1 at = {2}, ACK
δr
t + 1 at = {1}, ACK
δt + 1 at = {1, 2}, NACK
δt + 1 at = 0.

(2)

We can conclude from (2) that δt ≥ δr
t . If TX transmits the

packet in the buffer (at = 2), δr
t drops to δb

t , otherwise it
increases by one. Thus, the evolution of δr

t is given by

δr
t+1 =

{
δb
t + 1 at = 2

δr
t + 1 otherwise.

(3)

From (2) and (3), we have δt ≥ δr
t ≥ δb

t . If the buffer receives
a new packet at slot t+ 1, the age of the packet in the buffer

1The function f(xt) is a complicated function [15] and depends on several
properties of the communication link such as the channel conditions and the
channel coding methods. Thus, for the sake of simplicity, we consider a simple
function in the numerical results.



Figure 2. Evolution of the age of the packet in the buffer (δbt ), the age of
the packet currently under service at TX (δrt ), the AoI (δt), and the number
of transmissions (xt) for nine time slots. The actions (at), acknowledgements
(ACK/NACK), and packet arrivals are also presented.

goes to zero, i.e., δb
t+1 = 0; otherwise, δb

t+1 = δb
t + 1. Thus,

the evolution of δb
t can be formulated as

δb
t+1 =

{
0 a packet arrives at buffer at slot t+ 1

δb
t + 1 otherwise.

(4)
The evolution of δb

t , δr
t , δt, and xt are demonstrated in Fig.

2.

B. Problem Formulation

Our aim is to find the sequence of actions {at}t=1,2,...

to minimize the expected long-term time average of the AoI
while satisfying the constraint on the expected long-term time
average number of transmissions. The expected long-term time
average of the AoI, δ̄, is defined as

δ̄ = lim sup
T→∞

1

T
E
{ T∑
t=1

δt

}
, (5)

where the expectation is taken over randomness of the system
and the actions (this convention for E{·} is used throughout
the paper). The expected long-term time average number of
transmissions, P̄ , is defined as

P̄ = lim sup
T→∞

1

T
E
{ T∑
t=1

Pt

}
, (6)

where Pt indicates a transmission decision at slot t as

Pt =

{
1 at = 1, 2

0 at = 0.
(7)

Using (5) and (6), our considered AoI minimization problem
is formulated as a stochastic optimization problem

min.
{at}t=1,2,...

δ̄

s.t. P̄ ≤ Pmax,
(8)

where Pmax is the maximum allowable average number of
transmissions.

III. CMDP PROBLEM AND PROPOSED SOLUTIONS

In this section, we formulate the problem (8) as a CMDP
problem and provide two approaches to solve it. In the first
approach, we use the Lagrangian approach to transform the
CMDP problem to an MDP problem. The MDP problem is
then solved with RVI for the known environment and with
DQL algorithm for the unknown environment. In the second
approach, we use the Lyapunov method to transform the
CMDP problem to an MDP problem and then solve the MDP
problem via DQL.

The CMDP is defined by the five-tuple (S,A,P, C,D)
[16, Sec. 2]. We define the state at time slot t as
st = (δb

t , δ
r
t , δt, xt) ∈ S, where S is the state space.

The action space is A = {0, 1, 2}, as defined in
Section II. The state transition probability function
P(s′|s, a) = Pr(s′ = st+1|s = st, a = at) gives the
probability of moving from state st to state st+1 when
taking action at; P is specified below in (9). We define
the objective cost as the instantaneous AoI, C = δt. The
transmission cost is defined as D = D(at) = Pt, which
depends only on the current action.

Let us denote p′b = 1−pb. The state transition probabilities
of the CMDP at state st = (δb

t , δ
r
t , δt, xt) are given as

Pr
(
(0, δr

t + 1, δt+1, xt)|st, 0
)

= pb,

Pr
(
(δb
t + 1, δr

t + 1, δt+1, xt)|st, 0
)

= p′b,

Pr
(
(0, δr

t + 1, δr
t+1, xt + 1)|st, 1

)
= pbf(xt + 1),

Pr
(
(0, δr

t + 1, δt+1, xt + 1)|st, 1
)

= pb

(
1− f(xt + 1)

)
,

Pr
(
(δb
t + 1, δr

t + 1, δr
t+1, xt + 1)|st, 1

)
= p′bf(xt + 1),

Pr
(
(δb
t +1, δr

t+1, δt+1, xt+1)|st, 1
)

=p′b
(
1−f(xt+1)

)
,

Pr
(
(0, δb

t + 1, δb
t +1, 1)|st, 2

)
= pbf(1),

Pr
(
(0, δb

t + 1, δt+1, 1)|st, 2
)

= pb

(
1− f(1)

)
,

Pr
(
(δb
t + 1, δb

t + 1, δb
t +1, 1)|st, 2

)
= p′bf(1),

Pr
(
(δb
t + 1, δb

t + 1, δt+1, 1)|st, 2
)

= p′b
(
1− f(1)

)
,

(9)
for the other cases, the state transition probabilities are zero.

We define a policy π : S → A as a mapping from the states
onto a distribution over the actions. Let δ̄π and P̄π denote the
average AoI in (5) and the average transmission cost in (6),
obtained when following a policy π. Thus, our main problem
in (8) is formulated as a CMDP problem

min.
π

δ̄π

s.t. P̄π ≤ Pmax.
(10)

A. Lagrangian Approach

In this section, we utilize the Lagrangian approach to
propose a policy that solves the CMDP problem (10). Based
on [16, Theorem 4.4], if a CMDP is unichain, there is at least
one stationary policy that solves the CMDP problem.

Theorem 1: The considered CMDP is unichain.
Proof: A CMDP is unichain, if under any policy, it

induces a single recurrent class plus a possible empty set of
transient states [17, pp. 78–80]. Consider now that our Markov



chain is at state st = (δb
t , δ

r
t, δt, xt), the source generates a new

packet at slot t (i.e., δb
t = 0), TX takes action at = 2, and TX

receives an ACK feedback. This means that the state moves to
state st+1 = (δb

t+1, 1, 1, 0). Consider now that, in addition, the
buffer receives a new packet at time slot t+1 (i.e., δb

t+1 = 0).
In other words, because the source keeps generating packets
for any pb 6= 0, and RX is updated regularly by sending
status updates, the system can go to the state s = (0, 1, 1, 0)
from every state with a non-zero probability. Therefore, the
considered CMDP is a unichain CMDP.

We use a standard Lagrangian approach to relax the CMDP
problem to an unconstrained MDP problem [16, Sec. 3.3].
The problem (10) is rewritten to its Lagrangian form for a
Lagrangian multiplier λ as

min.
π

L̄(π, λ) = lim sup
T→∞

1

T
E
{ T∑
t=1

δπt + λ

T∑
t=1

Pπt

}
. (11)

The goal of the MDP problem (11) is to minimize the average
Lagrangian cost L̄(π, λ) for a given λ. In the following
subsections, we solve (11) under the known and unknown
learning environment.

1) Known Learning Environment: Here, we consider the
known environment where the transmitter knows the packet
arrival rate and the HARQ decoding function. Based on [16,
Theorem 4.3], an optimal policy π∗λ for a given λ is obtained
by solving the following Bellman equation:

L̄∗(λ)+V (st, λ)= min
at∈A

{
L(π, λ)+E

{
V (st+1, λ)

}}
,∀st ∈ S,

(12)
where

L(π, λ) = δπt + λPπt , (13)

L̄∗(λ) = min
π
L̄(π, λ), (14)

V (st, λ) = E
{ ∞∑
t=1

(
L(π, λ)− L̄∗(λ)

)
|st
}
,∀st ∈ S, (15)

where L(π, λ) is the instantaneous Lagrangian cost, and L̄∗ is
the minimum average Lagrange cost achieved by the optimal
policy π∗λ for a given λ. V (st, λ) is the value function for
which the expectation in (12) is computed as

E
{
V (st+1, λ)

}
=
∑

st+1∈S
Pr(st+1|st, at)V (st+1, λ),∀st ∈ S.

(16)
Finally, the optimal policy π∗λ for a given λ is obtained as

π∗λ(st) = arg min
at∈A

{
L(π, λ) + E

{
V (st+1, λ)

}}
,∀st ∈ S.

(17)
Let λ∗ denote the optimal Lagrange multiplier with respect

to CMDP problem (10). Since the CMDP problem (10) is
unichain, according to [16, Theorem 4.4], there exists an
optimal stationary policy π∗. In particular, π∗ is a mixture
of two deterministic policies π∗1 and π∗2 that are obtained by
solving (11) given the optimal λ∗ and they differ at most in one
state. At that state, the policy π∗1 is selected with probability

µ and the policy π∗2 is selected with probability 1− µ, where
µ ∈ [0, 1]. However, finding λ∗, the optimal deterministic
policies π∗1 and π∗2 , and the randomization factor µ is very
difficult. Thus, similarly as the works [13], [17, p. 88], and
[18], we use a heuristic method to find the two deterministic
policies. Namely, we find two Lagrangian multipliers λ1 and
λ2 so that 1) they both are very close to λ∗, 2) the obtained
policy for λ1 does not satisfy the transmission constraint,
and 3) the obtained policy for λ2 satisfies the constraint.
Then, the heuristic policy π̄∗ is derived by mixing these two
policies such that the constraint is satisfied with equality, i.e.,
P̄ π̄

∗
= Pmax.

We search for λ∗ by a gradient descent algorithm as

λe+1 = λe + σ(P̄π
∗
λe − Pmax), (18)

where e is the iteration number and σ is the step size. In each
iteration, an optimal policy π∗λe for the given λe is obtained by
(17). Then, λe is updated based on (18). When λe converges, it
is considered as λ∗. Then, we set λ1 = λ∗−κ and λ2 = λ∗+κ,
where the perturbation parameter κ is a sufficiently small
constant and satisfies P̄π

∗
λ1 > Pmax and P̄π

∗
λ2 < Pmax. By

obtaining λ1 and λ2, we find the corresponding deterministic
policies π∗λ1

and π∗λ2
as well as the average number of

transmissions. The randomization factor is calculated as

µ =
Pmax − P̄π

∗
λ2

P̄π
∗
λ1 − P̄π

∗
λ2

. (19)

To mix the obtained two deterministic policies π∗λ1
and

π∗λ2
, similarly as in [13], we consider the positive recurrent

state s = (0, 1, 1, 0) as the state in which we implement the
randomization. In other words, whenever the chain reaches
this state, the system chooses the policy π∗λ1

with probability
µ, and π∗λ2

with probability 1− µ.
To obtain the optimal policy π∗λ for a given λ, we need

to obtain V (s, λ) (see (12)). To obtain V (s, λ), we use the
relative value iteration (RVI) [19]. To apply RVI, the state
space needs to be finite. To this end, we assume an upper
bound for the AoI δt as δ̇ [14], [20]. Accordingly, we redefine
the AoI evolution (2) as

δt+1 =


min{δb

t + 1, δ̇} at = {2}, ACK
min{δr

t + 1, δ̇} at = {1}, ACK
min{δt + 1, δ̇} at = {1, 2}, NACK
min{δt + 1, δ̇} at = 0.

We can conclude from (1)–(4) that δt is always greater than or
equal to δb

t , δr
t , and xt. Therefore, every state st is redefined

as

st =
(

min(δb
t , δ̇),min(δr

t , δ̇),min(δt, δ̇),min(xt, δ̇)
)
. (20)

Now, the state space is finite, and we can use RVI to solve
MDP problem (11).

2) Unknown Learning Environment: In the unknown envi-
ronment, the decision-maker does not know the state transition
probability function P. The solution steps are the same as in
Section III-A1, however, instead of RVI, we use the DQL



algorithm [7] to solve the MDP problem (11) for a given λ.
After deriving λ1 and λ2, we mix their corresponding policies,
π∗λ1

and π∗λ2
, to derive the solution. In Section IV, we present

the implementation of DQL and its parameters.

B. Lyapunov Approach

The major challenge in the CMDP problem (10) is to handle
the average transmission constraint. As an alternative to the
Lagrangian approach applied in Section III-A, we use here
the Lyapunov method to transform the CMDP problem into
an MDP problem [21]. Following the standard procedure of the
Lyapunov method, we transform the constraint of the problem
(10) into a virtual queue. Then, by stabilizing the virtual queue
the constraint is satisfied [20], [21, Theorem 2.5]. Let Qt
denote the virtual queue associated with the constraint, which
evolves as

Qt+1 = max{Qt − Pmax + Pt, 0}. (21)

To enforce the stability of the virtual queue, we use the
quadratic Lyapunov function defined as follows [21]

L
(
Qt
)

=
1

2
Q2
t . (22)

If the Lyapunov function is small, then the queue is small, and
if the Lyapunov function is large, then the queue is large. Thus,
by minimizing the change of the Lyapunov function from one
slot to the next slot, the virtual queue Qt can be stabilized
[21, Ch. 4].

The conditional Lyapunov drift ∆(ŝt), where ŝt =
(
st, Qt

)
is the current network state, is defined as the expected change
in the Lyapunov function over one slot [21, Ch. 4]. Therefore,
∆(ŝt) is given by

∆(ŝt) = E
{
L
(
Qt+1

)
− L

(
Qt
)
|ŝt
}
.

Using the drift-plus-penalty minimization method, the
CMDP problem (10) is transformed to the following MDP
problem [22]

min.
π

lim sup
T→∞

1

T

T∑
t=1

(
∆(ŝt)+vE{δπt |ŝt}

)
, (23)

where v is a positive parameter to adjust the trade-off between
minimizing the objective function and constraint of the prob-
lem (10), and π is a stationary policy which configures the
action at according to state st in each slot t.

The MDP problem in (23) is characterized by the four-tuple
(Ŝ,A, P̂, Ĉ), where Ŝ is the state space. The action space
is A = {0, 1, 2}, similarly as in Section III. The term P̂
denotes the state transition probability function. We define the
objective cost as Ĉ = Ĉ(ŝt, at) = L(Qt+1)− L(Qt) + vδt.
We consider MDP problem (23) in the unknown learning
environment in which we do not need the state transition
probability function. Then, using the DQL algorithm presented
in [7], we solve MDP problem (23).

Table I
SYSTEM PARAMETERS AND THEIR VALUES

Parameter Symbol Value
Maximum allowable average number of Pmax 0.5
transmissions
The parameter of function f(·) p0 0.2
Maximum AoI δ̇ 20
The drift-plus-penalty method parameter v 2.5
Step size σ 0.5
The perturbation parameter κ 0.05

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
policies. In the spirit of [13], [14], we consider that the
probability of successful decoding is given by f(xt) = 1−pxt0 ,
where p0 ∈ [0, 1]. The main system parameters are provided
in Table I.

Fig. 3 depicts the average AoI with respect to episodes
for the proposed policies, i.e., the Lagrangian approach with
RVI for the known environment, the Lagrangian approach
with DQL algorithm for the unknown environment, and the
Lyapunov method with DQL algorithm for the unknown envi-
ronment. In both Lagrangian-based policies, we have λ1 = 1.6
and λ2 = 1.7. As can be seen, in the known environment, as
the transmitter knows the state transition probability function,
it results in the minimum average AoI among the proposed
policies. In the unknown environment, the Lagrangian and
Lyapunov approaches perform close to each other. Note that
the Lyapunov approach needs only to select a reasonably high
value for the parameter v, whereas the Lagrangian approach is
subject to a tedious search for the Lagrangian multipliers and
randomization factor. In addition, we compare the performance
of the proposed algorithms to a fixed scheduling method
representing a baseline policy. According to the baseline policy
which satisfies the average number of transmissions constraint,
TX transmits the last generated packet until the packet is
delivered successfully or a new packet arrives, also RX uses
all the received versions of a packet for decoding. As it can
be seen, the proposed policies outperform the baseline policy.

In Fig. 4, we investigate the impact of the maximum
allowable average number of transmissions and the packet
arrival rates, pb, on the average AoI performance. Here, we
utilize the Lagrangian approach with RVI for the known
environment. According to Fig. 4, as expected, the average
AoI decreases when Pmax increases, as TX can take more
transmission attempts. In addition, the average AoI decreases
when pb increases, as TX will have fresh packets available
more frequently. However, it can be seen from Fig. 4 that
the average AoI values for the two different packet arrival
rates are very close when Pmax = 0.2. This behavior is
because the limitation on the number of transmissions is the
dominant factor in the status updating related to the fresh
packet availability.

V. CONCLUSION

We considered an HARQ-based status update system under
random arrivals. We constructed a CMDP problem to find a



Table II
DQL ALGORITHM PARAMETERS AND THEIR VALUES

Parameter Value
Learning rate 0.001
Hidden layers (256,256)
Hidden activation ReLU
Optimizer Adam
Minibatch size 64
Training episodes 2100
Steps per episode 500
Replay memory size 100000
Discount factor 0.99
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Figure 3. The average AoI over the number of episodes for the proposed
policies where λ1 = 1.6, λ2 = 1.7, and pb = 0.7.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
1.5

2

2.5

3

3.5

4

4.5

A
v

er
ag

e 
A

o
I

Figure 4. The average AoI for the Lagrangian approach with RVI versus
the maximum allowable average number of transmissions, Pmax, for two
different packet arrival rates, pb.

policy that minimizes the average AoI under the constraint
on the average number of transmissions. We proposed two
approaches to solve the problem for known and unknown
environments. In the first approach, we used the Lagrangian
approach to transform the CMDP problem to an MDP prob-
lem. We solved the MDP problem with the RVI algorithm for
the known environment and the DQL algorithm for the un-
known environment. In the second approach, we transformed
the CMDP problem to an MDP problem with the Lyapunov
drift-plus-penalty method and then solved the MDP problem
with the DQL algorithm for the unknown environment. The
numerical results showed that the proposed policies lead to
significantly lower average AoI than that of the baseline policy.

Moreover, the proposed DQL-based policies, which do not
know the packet arrival rate and the probability of successful
decoding, perform close to the RVI-based policy.
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