

Delft University of Technology

ECCO
Edge-cloud chaining and orchestration framework for road context assessment
Cozzolino, Vittorio; Ott, Jorg; DIng, Aaron Yi; Mortier, Richard

DOI
10.1109/IoTDI49375.2020.00029
Publication date
2020
Document Version
Accepted author manuscript
Published in
Proceedings - 5th ACM/IEEE Conference on Internet of Things Design and Implementation, IoTDI 2020

Citation (APA)
Cozzolino, V., Ott, J., DIng, A. Y., & Mortier, R. (2020). ECCO: Edge-cloud chaining and orchestration
framework for road context assessment. In Proceedings - 5th ACM/IEEE Conference on Internet of Things
Design and Implementation, IoTDI 2020 (pp. 223-230). Article 9097607 (Proceedings - 5th ACM/IEEE
Conference on Internet of Things Design and Implementation, IoTDI 2020). Institute of Electrical and
Electronics Engineers (IEEE). https://doi.org/10.1109/IoTDI49375.2020.00029
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/IoTDI49375.2020.00029
https://doi.org/10.1109/IoTDI49375.2020.00029

ECCO: Edge-Cloud Chaining and Orchestration
Framework for Road Context Assessment

Vittorio Cozzolino, Jörg Ott
Technical University of Munich

{vittorio.cozzolino, ott}@in.tum.de

Aaron Yi Ding
TU Delft

aaron.ding@tudelft.nl

Richard Mortier
University of Cambridge

richard.mortier@cl.cam.ac.uk

Abstract—For road safety, detecting and reacting efficiently
to road hazards is crucial and yet challenging due to practical
restrictions such as limited data availability, which relies on
network support. Moreover, from a system perspective we lack a
computational model capable of providing to vehicles reliable and
real-time assessment of the road context. As autonomous vehicles
become widespread, the safety issues are further aggravated
by the gap between cloud, roadside infrastructure and road
users in terms of communication latency, software-hardware
compatibility and data interoperability. To tackle this, we present
ECCO: an orchestration framework that enables edge-cloud
collaborative computing for road context assessment. ECCO can
create on-demand task execution pipelines spanning multiple,
potentially resource-constrained edge-nodes with the smart IoT
infrastructure support. Our prototype lays the groundwork to
support new services, which can use more efficiently the road
infrastructure and deliver safety-critical applications for road
users.

Index Terms—Edge computing, Distributed computing,
Unikernel

I. INTRODUCTION

The development of ubiquitous road-side infrastructure

through deployment of stationary and mobile roadside units

(RSU)1 [2] and street furniture such as lampposts [3] seeks out

ways to ease congestion and improve road safety. For example,

detailed metropolitan maps coupled with citywide pollution

fingerprinting can improve citizen health, helping pedestrians

and cyclists select less polluted routes. In spite of its great

value, smart infrastructure development is still in its infancy

with and it’s tied to ad-hoc, vertically integrated solutions

rather than open platforms offering shared data and compute

resources. In fact, an open platform supporting multi-tenant

access to a citywide compute edge-network infrastructure

would facilitate development and deployment of a broad range

of applications at a reduced cost.

To support such applications, we propose a roadside infras-

tructure comparable to [4], which encompasses smart vehicles

and devices, RSUs as intermediate computational units, and

cloud servers. The challenge then becomes how to enable

developers to write and efficiently deploy applications on such

a heterogeneous infrastructure. As computing shifts to the

edge and particularly the roadside infrastructure, one of the

fundamental changes is that it will not be tied to a single

1A Roadside Unit is a V2X direct link transceiver that is mounted along a
road or pedestrian passageway [1].

vendor, regardless of how comprehensive their offerings may

be [5]. Hence, solving the problem of balancing and control-

ling applications deployed by multiple providers is of crucial

importance. Moreover, it is not about only edge or cloud — the

key for innovation lies in their interplay. In our work, we build

on top of these requirements a platform designed to deploy

applications instantiated as edge-cloud pipelines. Therefore,

we design and implement an orchestration framework enabling

road context assessment by providing precise information

about the road condition. Expanding on our previous work

on computation offloading with unikernels [6], we propose a

distributed, edge-cloud computational model to deploy multi-

node execution pipelines on-demand. Comparing with existing

frameworks such as KubeEdge [7] with generic computational

model and cloud-only control plane, with ECCO we propose

an edge-cloud chaining model dedicated to dynamic IoT sce-

narios (i.e., road context assessment) and with responsibility
repartition between cloud and edge.

II. MODEL OF COMPUTATION

Deployment of the roadside infrastructure poses the non-

trivial challenge of assessing the road context as the ensemble

of precise and trustworthy road events information, at scale.

This problem assumes even greater relevance in combination

with fully autonomous vehicles, which rely on content de-

livery through mobile or edge communication to precisely

understand the real-time driving environments [8]. With the

support of edge computing, we can build an infrastructure able

to deliver fresh information to nearby vehicles, enhancing their

context awareness. Such approach can enable new services or

enhance existing ones such as incident warning broadcasting,

traffic signal violation warning, pre-crash sensing, cooperative

forward collision warning, lane change warning, black-ice

detection.

We can identify static and dynamic entities at work in the

roadside scenario which need to communicate and exchange

information. Based on these, we devise a model of com-

putation pivoting on three elements: the inputs received by

the roadside infrastructure, the functions (edge functions, EF)

processing them, and the outputs enabling different services.

To provide a thorough description, we select three use-cases:

(a) car crash detection, (b) road hazards detection, and (c)
smart parking as shown in Figure 1. The latter illustrates an

example of a linear pipeline where: (i) the inputs are the

 © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Accepted Author Manuscript. Link to published article (IEEE): https://doi.org/10.1109/IoTDI49375.2020.00029

(c) Detectors nodes (D) scan detect the presence
of free parking spots directly below them. The de-
tection can be done with cameras, IR proximity
sensors or ultrasonic sensors. The acquired infor-
mation is then disseminated to nearby vehicles by
the broadcasting nodes (B).

(b) Multiple broadcasters notify vehicles entering the highway of the presence of possible
hazards ahead of their path. For instance, a car driving against traffic and the presence
of black-ice on the road. The former requires a normal camera while the latter is more
complex. Photodetectors and thermopiles, infrared cameras (thermography) or Peltier
elements installed directly below the asphalt are possible options. In this situations, allo-
cationg different tasks to each detector node is required by their different sensors.

(a) Car crashes on the road can be detected with the
support of cameras. The detector node will pass the
information to all nearby broadcasters to send a noti-
fication to as many vehicles as possible. In this case, a
redundant detector node is deployed to counter possi-
ble node failures.

D

D

B

B

B

B

B

B

B

B

Toll
Gate

D DB D DB
B

D BD WD

EN Roles: Detector (D), Broadcaster(B), Worker (W)

Car crash detection
Road hazard detection

B D

B D

D

D

Smart parking

Fig. 1: Smart roadside infrastructure use-cases. (a) Car crash detection, (b) road hazards detection, (c) smart parking.

EF
EF

EF

PIPELINE

SENSORS DATA

INPUT

OUTPUT

Fig. 2: Visual representation of an ECCO pipeline.

sensors readings detecting free parking spots, (ii) the roadside

equipment is the compute infrastructure at the edge of network

on which the EFs are deployed and executed, and (iii) the

output is a list of available parking spots which is sent to

nearby vehicles. Figure 2 illustrates how these elements are

connected to form an ECCO pipeline.

We next describe the pipeline components (network, func-

tions, nodes) in more detail, as well as their deployment and

execution strategy.

A. Pipeline Components

In our scenario, the vehicles are the recipients of the

pipelines output. They receive information from the infras-

tructure via long-range communication radios such as Lo-

RaWAN [9] or LTE-V2X for Vehicle Fog Computing [10],

[11]. As we focus on the computational model and system

design, we do not delve deeper into the specifics of V2I

transmission mechanisms, a topic explored in other research

efforts [12].

Edge Nodes. Following the definition of Shi et al. [13]

that edge computing occurs in proximity to datasources, we

define an Edge Node (EN) to be a device close to the end-user,

such as a mobile phone, PC, or wireless access point. In other

contexts, the definition could be extended to include Radio

Access Network (RAN) micro-servers [14]. In our case, we

focus on the already mentioned RSUs, which are deployed on

the road to monitor it and collect data. As they are stationary,

we assume good connectivity to the cloud and to other ENs

forming what we call an Edge Network.

Edge Functions. An Edge Function (EF) is a self-contained,

atomic function which embeds a small piece of the application

logic that can be executed standalone. When chained together,

EFs form an execution pipeline2. Each instance of EF plays a

specific role and is hosted on a EN. They need to be placed

strategically based on the available datasources, the current

load status and the geographic position.

Edge-Cloud Pipelines. An ECCO pipeline is a distributed

task involving a set of ENs. ENs, listed in the pipeline, take

part in execution chains and collaborate to run it. In the

next section, more details are provided regarding how such

pipelines are deployed.

B. Pipeline Deployment

We envision two levels of control in the pipeline deployment

and management process: (i) the cloud, which defines the high-

level, application driven pipeline deployment plan and (ii) the

edge which locally makes scheduling decisions based on the

parameters described in the rest of this section. The detail of a

pipeline structure is defined by the cloud provider, which also

monitors its execution.

We assume ENs are reachable from the cloud and can report

their available data and current load in terms of active EFs and

pipelines. On this basis, the service can plan a pipeline based

on a set of parameters to exploit data locality. Once offloaded,

the pipeline can be configured to run independently from the

cloud, based on specific policies. The need for a constant

connection with the cloud stems from the specific scenario.

Safety is a major concern in our use-cases as human lives are

involved and the constant presence of the cloud as an overseer

is deemed necessary to properly manage resources and system

failures. For example, dissemination of wrong information or

neglecting a car accident may put lives at risk.

As ENs have limited resources and are shared by multiple

services, we use the priority and execution fields in the

2The composition of sources (inputs), edge nodes, and sinks (outputs) is
similar to a directed acyclic graph (DAG). However, from a user perspective it
can be abstracted to a linear flow so that we use the term pipeline to emphasize
this relationship.

pipeline configuration to decide when to execute a pipeline.

The priority field assumes different values based on the use-

case and it is static, meaning that a specific use-case will

always have the same priority. It is defined by the cloud

provider orchestrating the service. For instance, car crash

detection will always have higher priority than smart parking.

This information allows the system to dynamically shut-down

low priority services when additional resources are required

by the high priority ones.

Another parameter is execution, which can assume only

two values: on-demand and automatic. On-demand pipelines

are only deployed when requested explicitly by the service

provider. Black-ice detection is deployed on-demand as it

only manifests in specific conditions (e.g., low temperature

at night). Likewise, smart parking is not required in the early

hours of the day or when there is very low traffic density

detected. Conversely, car crash detection will be flagged as

automatic as it is a safety critical application running with the

highest priority.

Pipelines are flexible and adapt to the use-case and ENs

at our disposal. The execution flow can be represented as a

directed acyclic graph (DAG) or directed cyclic graphs with

topological ordering [15]. We focus on the system aspects as

theoretical challenges in service composition techniques have

been explored in other studies [16]. For instance, in Figure 1a

the pipelines branch to disseminate the alert regarding a car

crash as quickly as possible to as many repeater nodes in close

proximity. The same behaviour is expected in case of node

malfunction, where branching might be necessary to bypass an

unresponsive EN. When an EN is not reachable, a substitute

is found to replace it or the pipeline is adjusted to skip the

node and remove it from the execution tree. For Figure 1a, this

means that we will not be able to reach some vehicles directly

from our broadcasting ENs if the failure affects a broadcaster

node. Conversely, if a detector node goes down, there will

be another node ready to replace it and able to detect the

car crash. Intersections require redundant ENs deployment as

they are often involved in accidents: in 2007, approximately

2.4 million intersection-related crashes occurred, representing

40% of all reported crashes and 21.5% of traffic fatalities [17].

Another reason for branching is that each EN has different

resource. One EN might only have cameras, another one

only a proximity sensor and a broadcasting interface. This

information is collected by the cloud and used to opportunely

plan the pipelines structure. ENs without a broadcasting inter-

face can only have a detector role which in turn is defined

by its sensors’ capabilities. By analogy, there can be ENs

playing both the detector and broadcaster role. In the smart

parking use-case, the data flow generated by the detectors is

progressively enriched along the pipeline. In this case, a small

delta of processing is carried out by each detector leaving

the broadcasting node only with a task of actually sending

the results as shown in Figure 3a. Finally, broadcasting nodes

might not support all the radio access technologies required

for vehicular communication which is a problem currently

discussed by the research community [18].

b

a

Detector

Worker

Broadcaster

Start EF
Midsection
Finale EF

Worker
Broadcaster

Detector
EN semantic role

EF role in the pipeline

Fig. 3: Pipelines’ execution graphs based on ENs capabilities

and EFs roles.

In other cases, we might need an additional worker node

to perform a computationally intensive task. For example,

integration of multiple sensors feeds to detect road hazards as

shown in Figure 1b. Another example is an intersection where

all the data generated is sent to the worker node, processed,

and sent back to manage more efficiently the traffic lights

based on the current traffic conditions. The processing node

might be a micro-server in close proximity which sends the

refined information to selected broadcasting nodes (Figure 3b).

The need for multiple broadcasting nodes is twofold: greater

communication range and available network interfaces. In fact,

radio access technologies required by vehicular communica-

tion are changing rapidly and it is expected that not all will

be supported by a single RSU [19].

C. Pipeline Execution

The cloud provider generates the pipeline configuration

which contains details about the execution plan. When the

configuration is offloaded, the ENs involved parse it and each

identifies sections it can execute in relation to other nodes.

Each pipeline is thus split into sub-pipelines, and transformed

into multiple stages which eventually become executable.

Execution order of EFs within an EN can be based on various

parameters, e.g., priority, expected load, and deadline.

ENs scan the received pipeline configuration and iden-

tify the group of EFs it should execute. The classification

determines the order to execute and chain EFs, plus the

respective roles. An EF has one of three roles: (i) Start,
starting a sequence; followed by (ii) zero or more Midsections;

culminating in (iii) a Finale which closes the sequence.

Sequence ordering parameters are used to correctly unfold

execution onto the ENs. The nomenclature adopted in Figure 1

(detectors, broadcasters and workers) applies to the EN while

the one just introduced only to the EFs and it is used internally

by the system to properly order the pipeline graph. What

matters for the pipeline processor is the relative execution
order of the EFs and not their actual task in relation to the

EN capabilities. The relationship between these two concepts

is shown in Figure 3 with two simple topologies.

ECCO creates temporary, dynamic execution chains based

on the pipeline topology to form ad-hoc collaborative networks

of ENs. As data flows from one EF to the next, computa-

tion unfolds and progresses toward the Finale. As already

MAESTRO

EF MEMORY
MANAGER + SAC

EF1 EF2 EF3

PIPELINE
PROCESSOR

NETWORK
MODULEPIPELINE MONITOR

EF MONITORDATA ACQUISITION
MODULE

HYPERVISOR
INTERFACE

PIPELINE
INTERPETER

OS

HYPERVISOR

EFN

EDGE NODE

Main modules

Offloaded EFs

...
Data acquisition

E
C
C
O

H
O
S
T

Data validation
Data processing
Data distribution

Fig. 4: Overview of ECCO modules.

discussed, pipelines need not be linear but can branch and

join to create execution DAGs.

III. ECCO: DESIGN

In this section, we provide an overview of the system

depicted in Figure 4 and its components, relate them to

our use case, and describe the system workflow. ECCO was

designed to achieve two goals: (i) provide a landing platform

to offload lightweight and fine-grained services orchestrated

by the cloud and running on constrained devices at the edge;

and (ii) support seamless cooperation and interconnection of

ENs to support pipelines offloaded from the cloud.

If roadside infrastructure was only usable as an extension

of the cloud, reliant on the cloud to work, then a slow or

intermittent network connection could render the whole infras-

tructure useless. Information about road conditions would be

retrieved slowly or not at all, and vehicles would be left with-

out information about imminent hazards, potentially costing

lives. Treating roadside infrastructure as an edge computing

infrastructure, able to use but not reliant upon the cloud, offers

a reliable, resilient, and independent infrastructure delivering

services even when the cloud is unreachable from end-users.

Crowdsourcing cannot provide this because vehicle density

on less heavily used roads will often be insufficient to reliably

map road conditions. Available spatial data are sparse and in-

adequate, leading to incomplete or misleading information dis-

tributed to vehicles driving in low-traffic areas. Effectiveness

of onboard car sensors is also reduced in common situations

as adverse weather conditions which reduce visibility.

ECCO addresses these challenges by providing a platform

where multiple cloud services can share existing edge in-

frastructure for scheduling and handling multiple offloaded

pipelines. It offers computational power at the ENs, enabling

both independence from the cloud in case of intermittent

connectivity, and dynamic processing of information based on

chaining EFs.

A. Components

Our system relies on edge offloading: a paradigm that

moves computation from the cloud to edge nodes [20]. To

differentiate from similar solutions, we design our system as

a collaborative framework where multiple ENs are chained to

execute different pipelines. To orchestrate the offloaded EFs at

the edge, we developed a set of modules running on each EN.

The components listed below are associated with the blocks

in Figure 4.

Maestro. This is the core of and entry point to our system,

functioning as both a coordinator and an interface with the

outside world. When one or more EFs are offloaded as part

of a pipeline, maestro handles the calling of the required

modules to filter, order and execute the EFs. During pipeline

execution, each EF is tracked and monitored to assess its state

in conjunction with the pipeline’s. Since multiple parties can

access the same ENs, the execution of parallel pipeline is also

supported as the allocated resources are completely indepen-

dent. For resiliency purposes, checkpoints of the pipeline status

together with EFs intermediate results are stored in a local

database. This modules takes care of bootstrapping ECCO by

notifying the presence of an EN to the cloud by advertising

its capabilities in terms of hardware resources (e.g., RAM,

CPU), sensors, cameras, and communication interfaces. These

parameters allow a correct placement of the EFs to minimize

distance from the datasource without overloading the EN. In

fact, EFs are mapped to ENs based on the required data and

type of processing.

EF workflow. Each EF is composed of four phases: data

acquisition, validation, processing, and distribution as shown

in Figure 4.

In the data acquisition phase, an EF awaits the necessary

data from the maestro which identifies the correct datasource

and retrieves the data on the EF behalf. In fact, maestro
exposes to EFs different end-point to access sensors or local

databases identified during the bootstrapping phase. Moreover,

the specific steps of the data retrieval phase change depending

on the type of end-point. For instance, in the case of hardware

sensors, the code to pilot them is embedded directly into the

EFs, while for external sources (e.g., databases) maestro would

use libraries from the host to read the data and then pass it

to the EF. Contextualizing, in the example use-case of black

ice detection such data are images produced by an infrared

camera or readings from a Peltier element. The data validation
phase checks the received data for errors, eventually requesting

a re-transmission. The data processing phase is the core of

the EF as it contains the developer code. By customizing

this part of the EF, it is possible to execute arbitrary code

in the EF, granted that eventual external dependencies and

libraries have been opportunely handled. In relation to our

use-cases, it can contain algorithms to manipulate and process

images from cameras or do sensors fusion. Finally, the data
distribution phase determines whether the outputted result

should be passed to the host module which takes care of

sending it to nearby road users or sent to the next EF in the

local sequence. For instance, a midsection EF (detector) in the

pipeline can output a post-processed image to be sent along

the pipeline for further analysis while a finale EF (broadcaster)

will signal to nearby vehicles the presence of potential hazards.

Data communication primitives. Dependent on pipeline

structure, data can be exchanged in two ways: (i) Intra-node
communication occurs when the transfer involves two co-

located EFs or an EF and the maestro; and (ii) Inter-node
communication occurs when the transfer takes place between

two EFs on different ENs. To do so, we adopted a shared

memory approach to transfer data between EFs using a custom

module called EF memory manager (EF-MM).

Network module. It enables communication between dis-

tinct ENs. It has two groups of queues that contain data

structures called bundles, a set of parameters to unequivocally

identify a pair of producer and consumer ENs. A combination

of IDs extracted from the pipeline configuration serves this

purpose. The bundles in the inbound queue are stored until

consumed by one or more local EFs, which remain on standby

until data is available. The outbound queue contains the

bundles that are ready to be forwarded to the next EN in

the pipeline. The outbound queue is also used as a fail-safe

measure in case of a misstep in a pipeline stage whereas data

bundles are stored until the malfunctioning nodes are ready to

proceed. For added resiliency, the bundles are preserved inside

a database to allow hot restart of the system in case of local

failure.

Other components. Of the remaining components, the data
acquisition module is a library wrapper, loaded on-demand

based on the requirement specified in the pipeline configu-

ration to interact with different datasources. The hypervisor
interface exposes an API to control and monitor the VMs

running on Xen. The pipeline processor contain the core al-

gorithm to unfold the pipeline into ordered sequences. It filters

the EFs, identify their roles, bundled them in order sequences

(longest sequence). Finally, there is a pipeline monitor for

each running pipeline as their execution is independent. It

spawns multiple EF monitors to track each running EF. It uses

the hypervisor interface to track the status of each running

instance and report back in case of failure.

IV. IMPLEMENTATION AND EVALUATION

ECCO was developed as an orchestration platform for

unikernels: specialised, single address space machine image

constructed by using library operating systems [21]. Specifi-

cally, our unikernel of choice was MirageOS [22] which we

ran on top of the Xen hypervisor [23]. We used virtualization

to abstract over hardware discrepancies between ENs, and

to obtain fine-grained control over running VMs, stronger

isolation, and compatibility with existing cloud computing

platforms. Our implementation uses C for the EF memory

module (a kernel module), Python for the core modules, and

OCaml for the EF code (mandated by use of MirageOS).

ECCO computational model is platform-independent,
meaning that it can be potentially implemented using other sets

of technologies as Docker containers on top of Kubernetes. We

decided to develop our system based on unikernels due to the

multiple advantages in terms of isolation, memory footprint

and fine-grained function encapsulation. These are crucial

properties in a multi-tenant, resource-constrained scenario.

NUC OPX SRV1,SRV2
Device

0

500

1000

1500

Ti
m

e
(m

s)

 46.00

 331.00

 30.00
 267.00

 25.00

1629.00
ECCO EF
Firecracker microVM
STD 65x faster

Fig. 5: Average ECCO EF vs. Firecracker microVM boot-up

time and standard deviation (STD).

Xen was the most suitable hypervisor for our implementa-

tion as it directly supports MirageOS, our chosen unikernel

framework due to it producing compact, bootable images that

embed only the required OS functionality. Other unikernel

technologies were available but MirageOS is one of the most

mature and has already been applied to similar IoT use-

cases [24]. However, our framework is in principle compatible

with any unikernel framework that supports Xen adding flex-

ibility in terms of usable programming languages (e.g., C++,

Java, Haskell).

A. Evaluation

Our preliminary evaluation of ECCO focuses on: (i) the

overhead introduced by the technology choices made in ECCO

(Xen, MirageOS) and (ii) what is the impact of these overheads

on a specific application, driven by our use-cases. The default

EF used for in our experiments is a MirageOS unikernel

supporting basic image processing operations fed with an

image size of approximately 280 kB. This EF is used for all

our subsequent benchmarks.

Device CPU RAM Ocaml Xen OS
Dell PowerEdge
R530 (SRV1, SRV2)

Intel Xeon E5-2640
2.60GHz — 32 Cores

128 GB 4.04.2 4.6.0
Ubuntu 14.04
Kernel 3.19.0

Intel NUC (NUC)
Intel i5-6260U
1.80GHz — 4 Cores

16 GB 4.04.2 4.6.6
Ubuntu 14.04
Kernel 4.4.0

Dell Optiplex 7050
(OPX)

Intel i5-7500T
2.70GHz — 4 Cores

8 GB 4.04.2 4.6.6
Ubuntu 14.04
Kernel 4.4.0

TABLE I: Devices specifications.

Different devices were used to understand the performance

gap between the edge and cloud (all connected to the same

LAN network). As revealed in Table I, SRV1 and SRV2 have

identical configuration, hence their results are bundle together

in all the plots due to negligible differences. We performed

each experiment 100 times, except when clearly stated.

To evaluate baseline overheads we compare against Amazon

Firecracker [25], a recently introduced lightweight serverless

computing framework that delivers end-to-end orchestration

for tiny VMs. To do so, we built a custom microVM based on

an Alpine Linux v3.9 kernel, loaded it with OpenCV v3.4.6

and allocated it was 128 MB RAM and 1 vCPU. The size of

its rootfs was roughly 4.5 GB.

Figure 5 shows boot times for unikernels compared to

the Firecracker microVM. On all devices where we can

compare to the Amazon Firecracker microVM, the unikernel

284 669 1134 1769
Image Size (KB)

0

20

40

60

80

Ti
m

e
(m

s)

OpenCV (baremetal)
Firecracker microVM
ECCO EF

3.6x faster

Fig. 6: ECCO Benchmarks (SRV1, color normalization).

boot time was substantially lower, below 50 ms. There is

also a considerable difference in size between the images,

which probably accounts for much of the difference in boot

times. The ECCO EF unikernel is around 5 MB EF while the

microVM is around 22 MB plus another 4500 MB of attached

rootfs. Similarly, the RAM required for an EF is around 15 MB

(x86) or 12 MB (ARM) while the microVM required at least

33 MB. We believe that this shows the ECCO approach is well

suited to low-latency applications running on ENs with limited

memory, as well as for situations where EFs may be updated

and distributed frequently.

We compare EF performance against two baselines in

Figure 6: (i) we developed multiple C++ applications with

OpenCV v3.4.6 replicating the operations executed inside

the EF; and (ii) we loaded the applications in the custom

Firecracker microVM previously described. In this way we

compared our system to both solutions. For this purpose,

we developed a simple application for colour normalization.

For space reasons, we present only the result for SRV1, but

a similar behavior was shown for the other devices. While

ECCO cannot outperform OpenCV running on bare-metal, it

has a substantial advantage compared to Firecracker. Pairing

this result with the substantial difference in boot time, ECCO

outperforms the alternatives and is competitive with bare metal

solutions for small image sizes. ECCO performance assumes

even greater importance when executing distributed compu-

tation spanning multiple ENs, where both quick instantiation

and execution time are crucial.

We identify a different execution time growth factors be-

tween ECCO and Firecracker, steeper for the former. This

shows that our solution is suitable for processing a small

amount of information, while the serverless Amazon approach

shines with higher data loads.

V. RELATED WORK

Our work draws on multiple strands of existing research

which we split into two major branches: detection of road

hazards and events, and distributed edge computing systems.

Detecting road conditions and possible hazards is a problem

that has been solved in multiple ways: through crowdsourcing,

where vehicles exchange collected data to spot bumps [4],

or through new infrastructure, where infrared cameras on

lampposts are used to identify ice formations on the road [26].

Various studies have examined the efficacy of different meth-

ods for detecting road conditions [27], [28].

Current solutions focus on using either crowdsourcing or

edge networks for transferring road conditions information.

However, the quality of crowdsourced spatial data is often

unreliable [29], resulting in insufficient density of data to

estimate road conditions in low-traffic areas. Solutions based

on on-board car sensors can prove to be mediocre depending

on the road characteristics and weather conditions. Edge com-

puting can play a pivotal role in addressing these challenges

by exploiting road infrastructure to augment vehicle sensory

capacity beyond their on-board sensors. Using edge computing

to support offload of computation to deliver particular appli-

cations is not new [13]. With ECCO we are concerned with

providing a distributed framework to dynamically interconnect

nodes based on the applications requirements.

Numerous authors have explored offloading computation

and data, for different purposes and under different decision

policies [30]–[34]. Cloudlets [35] were a particular pioneer

in the field of computation offloading. Earlier work from

Madhavapeddy et al. [36] proposed on-demand specialized

VM instantiation within connection setup time. Airbox [37]

presents a software platform based on onloading and backend-

driven cyberforaging. It shares the general direction presented

in our paper in terms of offloading the EF. Compared with Air-

box, ECCO achieves fine-grained offloading by using uniker-

nels instead of Docker technology. Databox [38] proposes a

hybrid physical and cloud-hosted system for personal data

management. Koller et al., [39] also proposed an unikernel-

based serverless framework architecture while a more recent

research effort proposes a WebAssembly solution [40].

VI. CONCLUSIONS

ECCO is a distributed edge computing framework devel-

oped to deliver road context assessment. We discuss the

advantages of our approach in comparison to crowdsourcing,

cloud computing, and onboard car sensors solutions. Given

the fast adoption of autonomous vehicles, our work propose

a computational model to bridge the gap between cloud, road

infrastructure and road users to deliver rapidly instantiated,

on-demand services. The logic, design and implementation of

our system were described in relation to the analyzed scenario

and encompass two crucial problems of edge computing:

fine-grained orchestration and collaborative, multi-device task

execution at the edge. At the core of our framework, the

function chaining allows different nodes to cooperate in the

execution of ECCO pipelines.

REFERENCES

[1] “US government publishing office (2017) electronic code of
federal regulations, 47 cfr part 90.” http://www.ecfr.gov/cgi-

bin/textidx?tpl=/ecfrbrowse/Title47/47cfr90-main-02.tpl, 2017, [Online;
accessed 07-October-2019].

[2] “V2X OBU deployed in new york’s cv pilot,”
https://www.traffictechnologytoday.com/news/autonomous-
vehicles/v2x-obu-deployed-in-new-yorks-cv-pilot.html, 2019, [Online;
accessed 07-October-2019].

[3] “Smarter togheter - Munich’s smart lamp posts shine,”
https://www.smarter-together.eu/news/munichs-smart-lamp-posts-shine,
2018, [Online; accessed 07-January-2019].

[4] S. Basudan, X. Lin, and K. Sankaranarayanan, “A privacy-preserving
vehicular crowdsensing-based road surface condition monitoring system
using fog computing,” IEEE Internet of Things Journal, vol. 4, no. 3,
pp. 772–782, 2017.

[5] “Satya Nadella looks to the future with edge computing,”
https://techcrunch.com/2019/10/08/satya-nadella-looks-to-the-future-
with-edge-computing/, 2019, [Online; accessed 09-October-2019].

[6] V. Cozzolino, A. Y. Ding, and J. Ott, “Fades: Fine-grained edge
offloading with unikernels,” in Proceedings of the Workshop on Hot
Topics in Container Networking and Networked Systems. ACM, 2017,
pp. 36–41.

[7] “Kubeedge,” https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-
edge-intro/, 2019, [Online; accessed 21-October-2019].

[8] Q. Yuan, H. Zhou, J. Li, Z. Liu, F. Yang, and X. S. Shen, “Toward
efficient content delivery for automated driving services: An edge
computing solution,” IEEE Network, vol. 32, no. 1, pp. 80–86, 2018.

[9] A. J. Wixted, P. Kinnaird, H. Larijani, A. Tait, A. Ahmadinia, and
N. Strachan, “Evaluation of LoRa and LoRaWAN for wireless sensor
networks,” in 2016 IEEE SENSORS. IEEE, 2016, pp. 1–3.

[10] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular
fog computing: A viewpoint of vehicles as the infrastructures,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 6, pp. 3860–3873,
2016.

[11] Y. J. Li, “An overview of the DSRC/WAVE technology,” in International
Conference on Heterogeneous Networking for Quality, Reliability, Secu-
rity and Robustness. Springer, 2010, pp. 544–558.

[12] K. Abboud, H. A. Omar, and W. Zhuang, “Interworking of DSRC
and cellular network technologies for V2X communications: A survey,”
IEEE transactions on vehicular technology, vol. 65, no. 12, pp. 9457–
9470, 2016.

[13] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[14] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[15] Wikipedia contributors, “Topological sorting — Wikipedia, the free
encyclopedia,” 2020, [Online; accessed 31-January-2020]. [Online].
Available: ”https://en.wikipedia.org/wiki/Topological sorting”

[16] U. Sadiq, M. Kumar, A. Passarella, and M. Conti, “Service composition
in opportunistic networks: A load and mobility aware solution,” IEEE
Transactions on Computers, vol. 64, no. 8, pp. 2308–2322, 2014.

[17] “The national intersection safety problem,” https://bit.ly/2pFzaUe, 2009,
[Online; accessed 21-October-2019].

[18] L. GomesBaltar, M. Mucck, and D. Sabella, “Heterogeneous vehicular
communications-multi-standard solutions to enable interoperability,” in
2018 IEEE Conference on Standards for Communications and Network-
ing (CSCN). IEEE, 2018, pp. 1–6.

[19] G. Naik, B. Choudhury, and J.-M. Park, “Ieee 802.11 bd & 5g nr V2X:
Evolution of radio access technologies for V2X communications,” IEEE
Access, 2019.

[20] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott, “Consoli-
date iot edge computing with lightweight virtualization,” IEEE Network,
vol. 32, no. 1, pp. 102–111, Jan 2018.

[21] A. Madhavapeddy and D. J. Scott, “Unikernels: Rise of the virtual
library operating system,” Queue, vol. 11, no. 11, pp. 30:30–30:44, Dec.
2013. [Online]. Available: http://doi.acm.org/10.1145/2557963.2566628

[22] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gaza-
gnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels: Library
operating systems for the cloud,” Acm Sigplan Notices, vol. 48, no. 4,
pp. 461–472, 2013.

[23] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen
and the art of virtualization,” SIGOPS Oper. Syst. Rev.,

vol. 37, no. 5, pp. 164–177, Oct. 2003. [Online]. Available:
http://doi.acm.org/10.1145/1165389.945462

[24] J. Zhao, T. Tiplea, R. Mortier, J. Crowcroft, and L. Wang, “Data
analytics service composition and deployment on iot devices,”
in Proceedings of the 16th Annual International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’18. New
York, NY, USA: ACM, 2018, pp. 502–504. [Online]. Available:
http://doi.acm.org/10.1145/3210240.3223570

[25] Amazon, “Firecracker – Lightweight Virtualization for Serverless
Computing,” 2020, [Online; accessed 31-January-2020]. [Online].
Available: ”https://aws.amazon.com/blogs/aws/firecracker-lightweight-
virtualization-for-serverless-computing/”

[26] M. Kutila, M. Jokela, J. Burgoa, A. Barsi, T. Lovas, and S. Zangherati,
“Optical roadstate monitoring for infrastructure-side co-operative traffic
safety systems,” in Intelligent Vehicles Symposium, 2008 IEEE. IEEE,
2008, pp. 620–625.

[27] M. Jokela, M. Kutila, and L. Le, “Road condition monitoring system
based on a stereo camera,” in Intelligent Computer Communication and
Processing, 2009. ICCP 2009. IEEE 5th International Conference on.
IEEE, 2009, pp. 423–428.

[28] Y. Iwasaki, M. Misumi, and T. Nakamiya, “Robust vehicle detection
under various environmental conditions using an infrared thermal camera
and its application to road traffic flow monitoring,” Sensors, vol. 13,
no. 6, pp. 7756–7773, 2013.

[29] A. Comber, L. See, S. Fritz, M. Van der Velde, C. Perger, and G. Foody,
“Using control data to determine the reliability of volunteered geo-
graphic information about land cover,” International Journal of Applied
Earth Observation and Geoinformation, vol. 23, pp. 37–48, 2013.

[30] A. Y. Ding, B. Han, Y. Xiao, P. Hui, A. Srinivasan, M. Kojo, and
S. Tarkoma, “Enabling energy-aware collaborative mobile data of-
floading for smartphones,” in 2013 IEEE International Conference on
Sensing, Communications and Networking (SECON). IEEE, 2013, pp.
487–495.

[31] E. Hyytiä, T. Spyropoulos, and J. Ott, “Offload (only) the right jobs:
Robust offloading using the markov decision processes,” in Proceedings
of IEEE WoWMoM ’15, 2015.

[32] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in 2012 Proceedings IEEE Infocom. IEEE,
2012, pp. 945–953.

[33] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services. ACM, 2010, pp. 49–62.

[34] D. F. Willis, A. Dasgupta, and S. Banerjee, “Paradrop: A multi-
tenant platform for dynamically installed third party services on
home gateways,” in Proceedings of the 2014 ACM SIGCOMM
Workshop on Distributed Cloud Computing, ser. DCC ’14. New
York, NY, USA: ACM, 2014, pp. 43–44. [Online]. Available:
http://doi.acm.org/10.1145/2627566.2627583

[35] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, 2009.

[36] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire, D. Sheets,
D. Scott, R. Mortier, A. Chaudhry, B. Singh, J. Ludlam et al., “Jitsu:
Just-in-time summoning of unikernels,” in 12th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 15), 2015,
pp. 559–573.

[37] K. Bhardwaj, M.-W. Shih, P. Agarwal, A. Gavrilovska, T. Kim, and
K. Schwan, “Fast, scalable and secure onloading of edge functions using
airbox,” in 2016 IEEE/ACM Symposium on Edge Computing (SEC).
IEEE, 2016, pp. 14–27.

[38] R. Mortier, J. Zhao, J. Crowcroft, L. Wang, Q. Li, H. Haddadi, Y. Amar,
A. Crabtree, J. Colley, T. Lodge et al., “Personal data management with
the databox: What’s inside the box?” in Proceedings of the 2016 ACM
Workshop on Cloud-Assisted Networking. ACM, 2016, pp. 49–54.

[39] R. Koller and D. Williams, “Will serverless end the dominance of
linux in the cloud?” in Proceedings of the 16th Workshop on Hot
Topics in Operating Systems, ser. HotOS ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 169–173. [Online].
Available: https://doi.org/10.1145/3102980.3103008

[40] A. Hall and U. Ramachandran, “An execution model for serverless
functions at the edge,” in Proceedings of the International Conference
on Internet of Things Design and Implementation, ser. IoTDI ’19.

