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Precision Aquaculture

Introduction
Aquaculture, or the farmed production of fish and shellfish, has 
grown rapidly, from supplying just 7 percent of fish for human 
consumption in 1974 to more than half in 2016. This rapid 
expansion has led to challenges including concerns over envi-
ronmental degradation, disease and parasite outbreaks, and 
the need to efficiently manage resources to maximize produc-
tivity. These factors are pushing farms toward more efficient 
management practices aimed at the sustainable intensification 
of the industry. At the same time, innovative technologies are 
making the collection, processing, and analysis of large volumes 
of heterogeneous datasets possible. Taken together, these two 
factors are empowering a precision aquaculture framework that 
combines sensors, cloud, and analytics to enable real-time, evi-
dence-based decision making to optimize operations. 

Precision aquaculture [1] involves a variety of sensors used 
to gain insight into the farm environment, make decisions that 
optimize fish health, growth, and economic return, and reduce 
risk to the environment. This trend parallels developments in 
agriculture, where sensors and other observing technologies 
lead to enhanced insight into crop health as well as animal 
welfare. The fundamental approach has been summarized as 
a series of steps, namely observe, interpret, decide, and act 
[1]. Traditionally, many of these steps have required human 
intervention and depended heavily on farmer experience and 
intuition for correct decision and action. As farm size increases, 
however, and moves further offshore, automation is imperative 
to enable economically feasible operations.

Materialization of precision aquaculture depends on IoT 
technologies to empower management in a chaotic environ-
ment subject to the vagaries of oceans and weather. An obvi-
ous impediment is water cover, but other major obstacles exist, 
including the harsh environment, power and connectivity in 
offshore locations, large range of spatial scales involved (fish-, 
cage-, farm-, and bay-scale), and the challenges of manual inter-
vention or analysis in the ocean (where access can be regularly 
impeded or prevented by adverse weather). A fish farm has 
an imposing array of underwater chains, ropes, moorings, and 
other infrastructure, so wireless communications are essential. 
Further, the distributed nature of the industry, composed of a 
large number of small-scale aquaculture companies and sensor 
providers, poses challenges related to the integration of diverse, 
sometimes proprietary, datasets into a unified edge, fog, and 
cloud ecosystem.

Application of mature monitoring, modeling, prediction, and 
analysis tools to aquaculture farms has potential to improve 
operations and alleviate key challenges facing the industry. 
Fish feed represents 50–70 percent of fish farmers’ produc-
tion costs, while the growth rate of fish is intrinsically linked to 
feed composition and time of supply; precise management can 

link fish growth with optimal feed schedule and composition 
that minimize waste (and subsequent pollution of surrounding 
waters) and improves productivity. Disease and parasite-in-
duced impacts are a major issue for aquaculture farms, cost-
ing the industry up to $10 billion annually and having severe 
socio-economic impacts. Further parasite control treatment in 
salmon farms constitute 7.5 percent of total production costs 
[2]. Farming in the open ocean requires the ability to respond 
to natural fluctuations that impact operations, such as dissolved 
oxygen (DO) concentrations and temperatures, both of which 
act as stressors, impact feeding and parasitic rates, and even 
cause mortalities. Today, management of most of these tasks 
is conducted manually, relying on direct human observation 
or human-centric data acquisition means to observe condi-
tions, combined with decision making based on subjective 
experience. However, as real-time sensor technologies become 
more prevalent on farms, the foundation exists to transition the 
industry from ad hoc decision making based on heuristics and 
intuition to real-time informed decisions backed by artificial 
intelligence (AI) insights and IoT connectivity.

This article describes a precision fish farming framework we 
have implemented on farms in Canada, which is also rapidly 
being implemented in Europe. It is part of an ongoing effort 
to develop a prototype, open-standards-based ecosystem that 
combines monitoring, modeling, insight, and decision making 
toward an autonomous framework to manage farms. It rep-
resents a multi-disciplinary collaboration with partners from the 
aquaculture industry, academia, and technology.

What Is Precision Aquaculture?
The rapid development of aquaculture in recent years has been 
likened to a “Blue Revolution” [3] that matches the “Grain Rev-
olution” of higher cereal yields from the 1950s onward. The 
industry’s rapid growth and expansion globally, however, has 
caused concerns about negative environmental impacts, such 
as eutrophication of nearby waters and habitat alteration. In 
Europe, annual growth of aquaculture has declined to 1 per-
cent, partly because of market factors, but also because the 
industry is subject to stringent regulation regarding sustain-
able development. These factors have led to a strong focus 
on the ecological development of aquaculture in marine sys-
tems, and the promotion of terms such as “ecological aquacul-
ture” and “ecoaquaculture.” Coupled with the need for greater 
efficiencies and economies of scale to empower the sustain-
able growth of the industry, precision aquaculture focuses on 
exploiting modern technologies toward the eco-intensification 
of aquaculture farms. 

Data generated on modern aquaculture farms extend across 
a wide variety of forms. In situ sensors sample large numbers 
of environmental variables such as temperature, current veloc-
ity, dissolved oxygen (DO), chlorophyll, and salinity. Remote-
ly sensed environmental data can sample much larger spatial 
domains and can be at the bay scale — from land-based sensors 
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such as CODAR-type HF radar — or at the global scale from a 
satellite-based monitoring system. Informing on farm operations 
also requires sampling of animal variables such as size, cluster-
ing behavior, and movement, and this is typically done using 
underwater technologies such as video monitoring, hydroacous-
tic technology, and aerial drone imagery. 

Further, there are large datasets of pertinent variables that 
are generated by numerical models such as weather or ocean 
circulation products. These datasets constitute huge data vol-
umes with distinct characteristics. Integrating and extracting 
information from these disparate data sources are key to encap-
sulating the full dynamics of the farm environment and enabling 
effective management. Related data from mathematical models 
are estimates of fish growth and behavior that can be used to 
guide expected conditions and decision [4]. 

The overarching aims of precision aquaculture have been 
defined as [1]: 1) improve accuracy, precision and repeatability 
in farming operations; 2) facilitate more autonomous and con-
tinuous biomass/animal monitoring; 3) provide more reliable 
decision support; and 4) reduce dependencies on manual labor 
and subjective assessments, thus improving staff safety. Similar 
to precision livestock farming [5], precision fish farming has 
been decomposed into three conditions that must be fulfilled. 
We note that in addition to these caveats, we include sensing of 
the ambient environment (e.g., water temperature, oxygen), a 
consideration that is less important in agriculture where animals 
can be housed. The basic requirements of precision aquacul-
ture are:
•	 Continuous monitoring of animal variables (i.e., parameters 

related to the behavioral or physiological state of the fish)
•	 A reliable model to predict how animal variables dynamically 

vary in response to external factors
•	 Observations and predictions integrated into an online system 

for decision or control
Achieving these objectives is dependent on the successful 

implementation of a range of innovative technologies relat-
ed to sensors, computer vision, and AI, enabled by a readily 
interconnected edge, fog, and cloud ecosystem. Central to this 
paradigm shift from human to autonomous management is an 
IoT platform to link information from different components, 
understand current status against a desired or model-predicted 
benchmark, and return insight from data in terms of action-
able information, such as modified feeding protocol or defined 
health intervention or treatment. 

Conceptually, the cultivation of fish in the ocean has par-
allels with terrestrial livestock farming. In practice, however, 
livestock farming is more amenable toward direct human and 
animal interaction than is possible in the marine-based coun-
terpart. Modern fish farms comprise cages with up to 200,000 
fish. As farms are typically composed of 10–20 cages, and mul-
tiple farms are often co-located in a bay, the total number of 
individual fish is enormous. This precludes the direct translation 
of concepts from livestock farming, and in practice, precision 
aquaculture is a marriage of approaches developed for both 
precision livestock and grain cultivation; that is, fish are not 
managed as individuals as are cows, but are obviously more 
complex in management than plants. 

DeepSense for Aquaculture
DeepSense (http://www.deepsense.ca) is a big ocean data 
innovation environment, powered by IBM, that brings together 
academia and industry to drive growth in the ocean economy. 
A key component is the commercialization of IoT technologies 
toward better management of fish farms. Specifically, a new 
research program involving Dalhousie University, DeepSense, 
InnovaSea, Cooke Aquaculture, and IBM has been created to 
research sensor networks, big data, and analytics applied to 
fish farming in eastern Canada. Dalhousie University in Halifax, 
Nova Scotia is a global leader in the marine sciences and aqua-
culture, and home of DeepSense in the Faculty of Computer 

Science. The university collaborates with InnovaSea, also head-
quartered in Nova Scotia. Cooke Aquaculture is an international 
seafood company originating in New Brunswick, Canada, with a 
deep commitment to innovation and sustainability, cooperating 
closely in research with Dalhousie. The unique combination of 
industry, technology, and scientific expertise further positions 
Nova Scotia as a global center of ocean technology, developing 
innovative solutions to empower aquaculture operations.

Farm Monitoring
Within this precision fish farming initiative, hundreds of real-

time underwater wireless acoustic sensors have been deployed 
in Canada at multiple fish farms by Cooke and InnovaSea 
(http://www.rtaqua.com). Sensors take 100,000 measurements 
daily, analyzing 11 million data points about temperature and 
tilt, salinity, dissolved oxygen, blue-green algae, chlorophyll, and 
turbidity. Figure 1 presents a schematic of the sensor deploy-
ment that collects pertinent environmental variables within 
a cage. Additional data on fish position are provided by the 
“CageEye” acoustic system (http://www.cageeye.no), as well as 
individually acoustically tagged fish. 

All data generated on farms are communicated to IBM® 
Cloud (https://www.ibm.com/cloud), utilizing the open-stan-
dard Message Queuing Telemetry Transport (MQTT) protocol 
for data transport. For each cage, a comprehensive set of vari-
ables are collected, communicated, and updated, continuously 
informing on environmental and animal conditions.

The ocean consists of complex environmental conditions 
(tides, winds, water masses, ice) that impact farm operations, 
safety, and health of the fish. Hence, information external to 
the cage is pertinent to operations and management. Satellite 
measured observations, weather data, and numerical models 
of the ocean all generate information impacting at the farm 
scale. Real-time analysis and decision making require the abil-
ity to rapidly query and extract pertinent variables from these 
datasets. We integrate in situ and geospatial datasets using a big 
data platform, Physical Analytics Integrated Repository and Ser-
vices (PAIRS) [6], a service that processes petabytes of data and 

Figure 1. Sensor configuration within a stylized cage. Nine 
sensors were deployed within each cage (we only show five 
to illustrate approximate locations) consisting of four sensors 
at 2 m depth in each corner (north, south, east, and west), 
four sensors at 8 m depth in each corner, and one sensor at 
4 m depth in the center of the cage. This sensor density is 
for research purposes of understanding spatial variation in 
the net pen. Operational metrics related to fish position and 
behavior are estimated using the “CageEye” acoustic system 
as well as a number of individually tagged fish.
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addresses the spatial and temporal complexity associated with 
heterogeneous data integration. Built on top of the open source 
big data technologies Hadoop and HBase, PAIRS aims to accel-
erate data queries by curating and storing geospatial datasets 
from diverse sources (NOAA, NASA, ECMWF, etc.) in a scal-
able storage table that can be rapidly accessed and retrieved. 

Modeling within Precision Aquaculture
The objective of precision aquaculture is to manage the 
observed status of the farms relative to a defined benchmark 
(e.g., projected biomass). Hence, a key functionality of the IoT 
platform is the capability to manage various machine learning 
models and integrate with the different data streams coming 
from sensors, weather data, and other open sources. A range 
of machine learning and mechanistic models relate to managing 
aquaculture operations. In particular, we focus on:
•	 Mechanistic and data-driven models to predict fish health, 

biomass, and mortality based on information on feed and 
environmental stressors

•	 Predictive models to inform on outbreaks of parasitic infec-
tions

•	 Deep learning models to forecast oceanographic conditions 
multiple days/weeks in advance
Fish feed is the most expensive part of aquaculture and caus-

es environmental problems when excess product sinks to the 
bottom. Optimal supply of feed is a complex selection that 
includes feed composition, growth stage, biomarkers, and envi-
ronmental conditions. While mechanistic models have been 
developed that simulate growth rates based on feeding regime 
and environmental conditions, the nonlinear relationships and 
sensitivity to external events such as diseases or parasites have 
made prediction difficult [7]. 

A practical solution requires that prediction be based on 
observed status to maintain accuracy. One approach combines 
mechanistic models with observations using data assimilation, 
a mathematical technique that incorporates process knowl-
edge encapsulated in a physics-based model with information 
from observations describing the current state of the system 
(described schematically in Fig. 2). A precision aquaculture 
implementation can be summarized as:
•	 Dynamic process models for individual fish growth based on 

feeding regime and environmental conditions are implement-
ed.

•	 Continuous update of model state based on actual fish 
position and/or biomass as measured by the CageEye sys-
tem described earlier or the Biosonics aquaculture biomass 
monitor (https://www.biosonicsinc.com/products/aquacul-
ture-biomass-monitor/) is performed.

Within the former approach, data assimilation concepts 
have seen enormous application since the 1960s as scientists 
aimed to update models using sparse sensor observations [8]. 
As sensors become more prevalent, data-intensive computing 
is continuing to transform industries and decision making [9]. 
Leveraging the large datasets being generated on aquaculture 
farms has multiple advantages, particularly related to extracting 
insight from highly complex nonlinear processes not amenable 
to encoding within a set of explanatory equations. An obvious 
case in aquaculture is fish health and in particular parasitic out-
breaks. 

Sea lice presence in salmon farms is a complex interplay 
of hydrodynamics, lice load, temperature, and position of the 
fish in the water column. Nonlinear, opaque relationships have 
traditionally made mechanistic modeling impractical. More 
recently, IBM, in collaboration with industry stakeholders, 
has implemented a deep learning model that collates data 
from multiple sources and predicts sea-lice outbreaks, termed 
“AquaCloud.” The model was fed with data on environmen-
tal conditions and lice counts from over 2000 salmon cages 
along the Norwegian coast. Combining a dense network of 
environmental sensors and manual sampling (of lice count), 
the deep learning model provides two-week-ahead prediction 
of lice count with 70 percent accuracy [11]. Within a preci-
sion aquaculture framework, advance prediction of parasitic 
outbreaks presents opportunities for improved management 
and treatment that can reduce severity of outbreak and inva-
siveness of treatment.

Machine-learning-based models for geophysical processes 
are an active area of research. The authors recently developed 
and demonstrated a machine learning surrogate model for a 
physics-based ocean-wave model [12] The machine learning 
model yielded enormous speedup (> 5000-fold) in compu-
tational time while maintaining accuracy that was well within 
the confidence bounds of the physics-based model. In effect, 
deep-learning-based approaches enable the transition of com-
plex modeling systems from HPC to edge devices (naturally, the 
training of the models is expensive, but once trained, deploy-
ment is cheap). This approach is being extended as part of 
DeepSense with data from hundreds of sensors being fed to 
deep learning models that provide continuous prediction of 
oceanographic variables multiple days in advance. A number of 
studies have produced promising results using machine learning 
to predict pertinent variables such as ocean temperature [13]
and algal blooms [14].

From Data to Decision
The key objective of precision aquaculture is moving beyond 
data toward decision. As part of the DeepSense platform, an IoT 
network has been developed to integrate data from hundreds 
of sensors at salmon cages in Canada. This is complemented by 
a model management framework that enables tracking of mod-
els and functionalities, automatic subscription to data streams, 
and relationships between different models (geospatial, vertical 
dependencies, etc.). Efforts are ongoing to integrate this with an 
evidence-based decision platform. Currently, we focus on two 
key challenges facing fish farms:
•	 Optimizing feeding to maximize productivity and minimize 

environmental impacts
•	 Inform on health intervention practices to mitigate sea lice

Optimizing fish feed needs to consider the composition and 
schedule in response to external conditions. The objective is the 
supply of nutritionally appropriate feed at a rate and frequency 
that maximizes uptake by the fish. Some guidelines may instruct 
— such as not to feed when environmental stressors may impact 
consumption — but ultimately real-time conditions and behavior 
need to inform the decision. 

The rate of supply of feed can be related to the monitoring 
of cage biomass and activity. Namely, when monitoring activ-
ity indicates that feeding behavior has concluded (i.e., the fish 

Figure 2. Mechanistic models contain errors that increase with 
time due to model imperfections and deviations of forcing 
conditions from reality. Data assimilation minimizes these 
errors by correcting the model stats using new observations 
(from [10]).
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move away from the surface where feed is supplied), feeding is 
stopped to prevent waste and environmental pollution. This is 
implemented via an AI system that processes information from 
video or the acoustic monitoring sensor to label observed data 
as “feeding” or “not feeding.”

As with terrestrial farming, there is extensive knowledge 
on the most appropriate feed composition at different stages 
of fish growth, health, and seasonal cycle. A key challenge is 
applying this knowledge to real-world scenarios in the face of 
uncertainty. An IoT solution provides continuous update of 
measured fish size against predicted values, enabling response 
to deviations. Namely, an online AI system monitors current 
biomass and recommends the most appropriate feed compo-
sition based on a database of growth conditions and nutrient 
requirements.

Parasite and pathogen outbreaks have traumatic impact on 
farms, leading to mass mortalities, causing fish to be unmar-
ketable, and generating huge damage to public perception. As 
is often the case, prevention is preferable to a costly cure that 
is dependent on harsh chemicals or highly invasive mechani-
cal removal. Predictive models, as described above, allow for 
advanced treatment to avoid these symptoms, reducing fish loss 
and economic losses.

Figure 3 presents a schematic of the different components 
of a precision aquaculture framework. It can be broadly decom-
posed into four pillars: the monitoring of environmental and 
operational conditions at the cage, farm, bay, and ocean scales 
(considering both in situ generated data and existing data from 
sources such as NASA Modis or ECMWF); integration of data 
from available sources into an accessible form; applying models 
and analytics on the data to generate insight; and the dissem-

ination of that insight to stakeholders in an actionable format 
(directly to farm operators, summary metrics to management, 
report generation for regulatory requirements, etc.).

The Future of Precision Aquaculture
Fish farming is a relatively young industry but, in some ways, has 
been quicker to adapt to difficult circumstances than land-based 
farming because of modern technology. The next phase of 
industrialization is dependent on using data to inform decisions. 
Certain challenges exist related to its location in the ocean – 
requiring robust, low-cost sensors capable of underwater and 
in-air wireless connectivity. However, the industry has seen 
huge progress in this regard with many farms being equipped 
with a dense network of sensors streaming data in real time. 
Similar to other industries, the current focus is extracting action-
able insight from IoT data [15].

Interoperability poses a significant challenge as sensors 
currently cover a wide range of types, suppliers, and levels of 
sophistication. This extends from legacy sensors storing data 
in onboard data loggers to modern sensor stacks reporting in 
proprietary format to dedicated cloud platforms. DeepSense 
is committed to an open standards approach based on MQTT 
protocol. Extensive work is ongoing with sensor manufacturers 
as well as the aquaculture industry more broadly to standardize 
messaging protocols. These include activities we are developing 
as part of Horizon 2020 project GAIN (Green Aquaculture 
Intensification; https://www.unive.it/gainh2020_eu) and previ-
ous work conducted by IBM with seven different Norwegian 
aquaculture companies as part of the AquaCloud project for 
sea lice data. Security and sovereignty of data is critical to fully 

Figure 3. Schematic of the precision aquaculture framework encompassing the in situ monitoring of farm 
conditions and operations, integration of the generated and existing data in a unified cloud platform, analytics 
and machine learning applied to the data to generate insight, and the dissemination of that data to stakeholders 
in an actionable format.
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exploit AI capabilities in an ethical and commercially sustain-
able way. An often overlooked part is the content returning 
from sensors and empowering analytics to understand and 
process these messages. Interoperability of these messages with 
agnostic IoT platforms requires insight into what the value or 
content of each sensor refers to via semantic domain models, 
for example [16]. 

Computer vision is currently receiving a lot of attention at 
the academic and venture capital level. Proponents claim that 
computer vision and AI can be used to monitor feeding behav-
ior and fish biomass, detect sea lice, and optimize the supply of 
feed, medicine, and other resources to farms [17].  

At its core, precision aquaculture is dependent on leverag-
ing IoT technologies to move beyond data toward insight. By 
integrating data from heterogeneous, disparate sources into a 
unified cloud platform, it promises to move from heuristics and 
experience toward evidence and information. Aquaculture is 
projected to supply 62 percent of fish for human consumption 
by 2030, and securing this supply is contingent on eco-intensifi-
cation of the industry based on data.

Conclusion
Because precision fish farming is in its early stages, the devel-
opment and proliferation of sensors is a growth area. A wide 
variety of sensors are feasible, including optical, acoustic, and 
biological sensors for currents, particles, pathogens, and harm-
ful algal blooms. Moreover, a similarly diverse array of image-
based data are being applied to fish farming ranging from 
direct videography of fish to satellite remote sensing. The use 
of drones in data capture is an obvious application of airborne 
technology. The attendant development of AI to analyze images 
and interpret essential information related to fish behavior and 
health is an active area of research. While the benefits of these 
advances in husbandry are apparent, their application to public 
facing indicators of sustainability is critical. The expansion of big 
data in fish farming should have spinoffs for a larger conversa-
tion regarding indicators of sustainability in aquaculture. 
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