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Introduction
Recent technological advances have paved the way for remote 
agricultural sensing and automation. Consequently, sophisti-
cated energy neutral low cost sensors [1] and communication 
systems [2] can be used as components to monitor and control 
systems for a sustainable and healthy environment, which is a 
requirement for smart agriculture applications [3]. However, 
current wireless sensing platforms and communication systems 
are designed for bare remote monitoring without making any 
immediate decision after the damage has already been done 
[4]. Moreover, the large-scale deployment of sensors would 
result in a tremendous increase in the number of connections 
and the amount of data to be transmitted, which could over-
whelm current communication systems and also data analysis 
algorithms [5]. 

Reconceiving the paradigm of remote sensing operation is 
imperative to improve the operational performance of preci-
sion agriculture. Adding intelligence to the nodes, shifting the 
detection of anomalies near the sensor to permit decisions and 
actions as soon as possible, is the key to reduce the communi-
cation costs and latencies, and to permit high scalability of IoT 
solutions in agricultural environments. 

Nowadays, machine learning (ML) algorithms are widely 
used in many fields and are particularly innovative in agricul-
ture to compute tasks such as species recognition [6], water 
management, crop quality [7], disease detection, and weed 
detection. 

This article focuses on an automatic method for monitoring 
parasite insects from images taken in pest traps. The codling 
moth is a particular insect that looks like a butterfly, and it is a 
dangerous parasite for apple fruit crops. An energy-efficient IoT 
solution shows how the feasibility of classifying parasites from 
other general insects autonomously, using low power consump-
tion hardware directly infield. Moreover, the article shows the 
fast and cost-effective realization of an intelligent sensor and 
communication system that can be applied in agricultural mon-
itoring and control. It runs ML on the sensor board, and if the 
insect captured by the camera is classified as a codling moth, a 
report is sent for an immediate counteraction. 

IoT System
Current methods to monitor pests consist of capturing insects 
using commercial pheromone-based glue traps, as shown in 
Fig. 1a, that attract insects even if present at very low densities. 
Periodic in-field inspections or simple wireless cameras permit 
the farmer to watch each insect and determine if it is a codling 
moth [8]. This process is not as smart as an IoT solution could 
be. In fact, it is slow because it requires the full time presence 
of an expert, and it is inefficient because even though ML is 
used, it requires full images sent for remote classification [6]. 

The proposed system, as shown in Fig. 1b, processes the 
picture in situ near the sensor (preprocessing algorithm), returns 
a classification of the insects (ML algorithm) in the trap, and 
eventually sends a notification to the farmer if it recognizes a 
codling moth. 

As presented in Fig. 2, the system is embedded on a Rasp-
berry PI 3 that provides the preprocessing stage. Then an Intel 
Movidius neural compute stick (NCS) with an Intel Myriad X 
neural accelerator as a vision processing unit (VPU) classifies 
the images using the model obtained after the training of the 
deep neural network (DNN). 

The system, shown in Fig. 3, has been designed to bring IoT 
technologies in agriculture where the need to collect the output 
over vast areas requires long-range communication. Thanks to 
the onboard intelligence, the output of the smart trap is limited 
to the few bytes for the report after the classification process, 
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Figure 1. Codling moth traps: a) commercial trap; b) prototype of 
the IoT neural network codling moth smart trap.
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and output messages can be managed even with low bit rates. 
If the farmer needs a visual confirmation from the captured pic-
ture, a few images per day can be transmitted as well. Therefore, 
the trap uses low-power wide area network (LPWAN) technolo-
gies and specifically the long-range WAN (LoRaWAN) protocol, 
which has gained momentum in the market recently. LoRa is a 
wireless modulation designed for long-range communication at 
very low energy consumption and bit rate [9]. The LoRaWAN 
stack defines the communication and security protocols to guar-
antee interoperability on top of the LoRa network [10, 11]. 

ImAGe PreProceSSInG And deeP LeArnInG 
The dataset used to start the DNN training contained approxi-
mately 1300 pictures and was incremented when more insects 
were trapped during the earliest experiments. The dataset rep-
resents two classes: codling moth and general insects. These 
figures are used to feed and train the DNN with a TensorFlow 
model. We used the VGG16 model developed by Oxford Uni-
versity [12]. Then it was converted to a graph model used to 
perform the classification on the VPU. 

The dataset was created with the same camera and trap. 
The camera captures the bottom side of the insect glue trap; 
thus, as shown in Fig. 4, pictures may contain a high number 
of trapped insects to classify. Thus, the images are processed in 
situ to separate each insect in sub-tiles from the original picture. 
This step is essential since it filters the raw pictures, as shown 
in Fig. 4, and produces tiles that contain only one insect. This 
algorithm is used in two diff erent cases: 
• To build a large and comprehensive dataset of pictures for train-

ing the DNN model. We started with 100 raw pictures that 
generated more than 1300 tiles containing only one insect. 

• At each application startup, a picture of the trap is taken first, 
and then, thanks to the preprocessing algorithm, each new 
trapped insect is cropped for the classification step. 
The task efficiently exploits features such as color (dark sub-

jects on a white background) and the shape of the insects with a 
Blob Extraction algorithm. The process for image crop consists of: 
• Conversion of the frame from RGB to gray scale
• Smoothing (or blurring) of the frame with a Gaussian filter
• Edge extraction through a Canny operator
• Some dilation and erosion of the picture

After these operators, the blobs are detected through the 
OpenCV blob detector. Then each blob is collected in a vector, 
and the corresponding regions of interest are cropped. All the 
new pictures are saved for neural network classification. 

trAInInG, VALIdAtIon, And teSt
For the training stage, we used the rapid development of neu-
ral networks for image classification provided by the Tensor-
Flow library [13]. In an ML approach, an initial training step is 
required. The training consists of an offline process that optimiz-
es the neural network using a large dataset of labeled images. In 
this way, the system learns the classes assigned to the images. 
The basic unit of a DNN is the neuron (or node) that multiplies 
by weight values the input signals. The training phase adjusts 
the weight values, while some parameters, such as the number 
of epochs and the image size, can improve the accuracy of a 
DNN. Epochs represent the number of times all of the training 

vectors are used once to update the weights. Each epoch finish-
es with a validation step that evaluates the ongoing training 
process. A good trade-off  between the number of epochs and 
image size is necessary for a correct training stage and to meet 
the hardware constraints. The training stage of this application 
has been assessed with three diff erent configurations: 
• 75 epochs, image size 224  224
• 10 epochs, image size 112  112
• 10 epochs, image size 52  52

The results of the training tests are presented in Fig. 5. 
Notice that training and validation accuracy using 75 epochs 

Figure 2. Overall system diagram.

Figure 3. Hardware implementation

Figure 4. Examples of cropped images after pre-processing: a) 
raw picture; b) tile with a codling moth; c) tile with a general 
insect; d) tile with a codling moth.

(a)

(b) (c) (d) 
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is going to be saturated, which suggests that the number of 
epochs can be decreased to achieve similar performance. As 
shown in the graphs, 10 epochs are enough for the target accu-
racy. Moreover, to avoid possible overflow in the Movidius NCS 
and to save memory on the Raspberry PI 3, the image size can 
be decreased to meet the hardware constraints because we 
can use simpler models. We used and tested images of 112 
112 and 52  52 pixel size, as shown in Fig. 5. Small images 
clearly show worse performance with respect to bigger tiles. 
Nevertheless, about 98 percent accuracy has been achieved, 
that satisfies the requirements expected by farmers for an IoT 
service of parasites monitoring. 

Figure 6 shows an example of the output from the classifi-
cation. The DNN provides a confidence measure that indicates 
how close the detected object is to a general insect or the tar-
get Codling Moth. 

The tests of the DNN model were carried out during 12 
weeks in an apple orchard with the insect glue trap shown in 
Fig. 1. Tests have involved 262 new insects where: 
• 80.6 percent were classified correctly.
• 4.8 percent were false positives.
• 6.4 percent were false negatives.
• 8.2 percent were uncertain.

Thus, the precision is 94.38 percent, the recall is 92.6 per-
cent, and only 8.2 percent need a user assessment watching the 
raw image. 

PoWer ASSeSSment
In apple orchards, codling moth checking is usually executed twice 
every day. We evaluated the power consumption of the overall 
system’s classification, as shown in Fig. 3, which is divided into five 
general tasks with diff erent execution time and current consumption:
• Task 0: Boot of the Raspberry (Time 43.68 s, Average Current 

345 mA)
• Task 1: Image capture (Time 3.45 s, Average Current 394 mA)
• Task 2: Preprocessing (Time 4.07 s, Average Current 501 mA)
• Task 3: Classification (Time 10.19 s, Average Current 525 mA)
• Task 4: Report/Alarm generation (Time 0.34 s, Average Cur-

rent 525 mA)
When the system finishes Task 4, it shuts down, and zeroes 

its power consumption, while a nanowatt real-time clock (RTC) 
is activated to trigger and boot the application when planned. 

As expected, it is possible to observe that T3 is the most 
power hungry task because it combines the usage of the Rasp-
berry and the Intel Movidius. Figure 7 shows the power con-
sumption of the overall system from T0 to T4, and the total 
energy necessary is 124.1 J; thus, a 9000 mAh battery is 
sufficient to sustain the system for more than one year. More-
over, when combining the system with a 0.5 W solar panel of a 
few hundred square centimeters, as presented in [14], the ener-
gy intake will be enough to permit the smart camera to operate 
unattended indefinitely. 

This particular aspect represents a breakthrough for agri-
cultural activities because this means that a farmer could use a 
smart IoT insect trap, forget about its maintenance, and wait for 
only automatic alerts if a codling moth is captured. 

Figure 5. Training and validation accuracy and loss function.

(a) 75 epochs, image size 224x224. (b) 10 epochs, image size 112x112. (c) 10 epochs, image size 52x52.

(d) 75 epochs, image size 224x224. (e) 10 epochs, image size 112x112. (f) 10 epochs, image size 52x52.

Figure 6. Example of moth detection from the system.
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concLuSIonS
Even though the proposed system does not use ultra-low-power 
microprocessors or microcontrollers, its average power con-
sumption is minimal because of its low duty cycle. Due to the 
low cost of the hardware, this type of system can scale to sever-
al installations in the farmer’s apple orchard, and save time and 
money for human intervention in trap checking every day. This 
type of application is straightforward and innovative, and gives 
an additional value to agriculture. In this way, it is possible to 
use treatments for codling moth only when the system detects 
threats for crops, optimizing the use of chemicals and mitigating 
their impact on the environment. 
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Figure 7. System power consumption.


