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Abstract—In recent years, with the increasing popularity of
“Smart Technology”, the number of Internet of Things (IoT)
devices and systems have surged significantly. Various IoT
services and functionalities are based on the analytics of IoT
streaming data. However, IoT data analytics faces concept drift
challenges due to the dynamic nature of IoT systems and the
ever-changing patterns of IoT data streams. In this article, we
propose an adaptive IoT streaming data analytics framework for
anomaly detection use cases based on optimized LightGBM and
concept drift adaptation. A novel drift adaptation method named
Optimized Adaptive and Sliding Windowing (OASW) is proposed
to adapt to the pattern changes of online IoT data streams.
Experiments on two public datasets show the high accuracy and
efficiency of our proposed adaptive LightGBM model compared
against other state-of-the-art approaches. The proposed adaptive
LightGBM model can perform continuous learning and drift
adaptation on IoT data streams without human intervention.

I. INTRODUCTION

As Internet and mobile device use grows rapidly, the number
of Internet of Things (IoT) devices and the produced IoT data
continue to increase significantly. As presented in the Cisco
report, more than 30 billion IoT devices are estimated to be
connected in 2021, and around five quintillion bytes of IoT
data are produced every day [1]]. IoT data can be collected
from different sources and domains, like IoT sensors and smart
devices, and can then be transmitted to the central servers for
analytics through various communication strategies, including
WiFi, Bluetooth, ZigBee, etc. Meaningful insights can be
extracted from IoT data streams using data analytics methods
to support various IoT applications, like anomaly detection
[2] [3]. Fig. |1| illustrates the overall architecture of IoT data
analytics.

However, the analytics of tremendous volumes of ever-
increasing IoT streaming data and the use of ML models in
IoT systems still face many challenges [1]. Time and resource
constraints are the main issues with IoT data analytics because
of the low-power and low-cost requirements of IoT devices
[4]]. On the other hand, IoT data is usually dynamic and non-
stationary streaming data due to the ever-changing nature of
IoT systems and applications. In real-world IoT systems, the
physical events monitored by IoT sensors can change over
time, and unpredictable abnormal events can occur occasion-
ally. Additionally, IoT device components will age and need
update or replacement periodically [5]. These factors can cause
inevitable changes in the statistical distributions of IoT data
streams, known as concept drift [4]. The occurrence of concept
drift can cause IoT system failure or performance degradation.
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Fig. 1. The architecture of IoT data analytics.

Traditional offline machine learning (ML) models cannot deal
with concept drift, making it necessary to develop online
adaptive analytics models that can adapt to the predictable
and unpredictable changes in the IoT data [6].

Therefore, this article proposes a drift adaptive ML-based
framework for IoT streaming data analytics. The framework
consists of a light gradient boosting machine (LightGBM)
for IoT data learning, a particle swarm optimization (PSO)
method for model optimization, and a proposed novel method
named optimized adaptive and sliding windowing (OASW) for
concept drift adaptation. The effectiveness and efficiency of the
proposed adaptive framework are evaluated using two public
IoT cyber-security datasets: IoTID20 [7] and NSL-KDD [8],
to evaluate the proposed framework in intrusion detection use
cases as an example for IoT data stream analytics.

The main contributions of this article can be summarized
as follows:

1) We discuss the challenges and potential solutions for IoT
streaming data analytics.

2) We propose a novel drift adaptation method named
OASW to address the concept drift issue Its perfor-
mance was evaluated through comparison with other
state-of-the-art approaches.

3) We propose an optimized adaptive framework for IoT
anomaly detection use cases with offline and online

Icode is available at: https:/github.com/Western-OC2-Lab/OASW-
Concept-Drift-Detection-and-Adaptation
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learning functionalities based on LightGBM, PSO, and
OASW.
The remainder of this article is organized as follows: Section
Il discusses the challenges of IoT data stream analytics.
Section III describes the proposed adaptive framework and the
novel OASW algorithm. Section IV presents and discusses the
experimental results. Section V concludes the article.

II. IOT DATA ANALYTICS CHALLENGES AND POTENTIAL
SOLUTIONS

Due to the high velocity, volume, and variability character-
istics of IoT streaming data, there are two major challenges
related to IoT data analytics: 1) time & memory constraints
and 2) concept drift [S]. In this section, the challenges and po-
tential solutions for [oT streaming data analytics are discussed.
Table [l summarizes them.

A. Time and Memory Constraints

“High velocity” and “high volume” indicate the high gener-
ation speed and large scale of IoT streaming data. This requires
that IoT data streams should be processed and analyzed as
soon as they reach the learning model. However, in IoT
systems, most IoT devices are low-power and low-cost devices
with limited computational resources, which limit their data
analytics speeds [4]. The memory constraints of IoT devices
also limit their capabilities to process and store large volumes
of IoT data and high complexity learning models. Thus, it is
essential to develop low computational complexity analytics
models.

Online learning methods that enable real-time analytics are
able to satisfy the time and memory constraints of IoT systems.
Unlike batch learning techniques that often train a learning
model on the entire training set, online learning methods can
keep updating the learning model as each new data sample
arrives within a short execution time. Sliding window (SW)
and incremental learning methods are two potential solutions
for IoT online learning [4]. SW methods retain a limited
number of recent data samples and discard the old data
samples using sliding windows. Thus, they have forgetting
mechanisms that can reduce the storage requirements of IoT
devices. Incremental learning is an online learning technique
that uses every incoming data sample in the model training and
updating process. It can retain the historical patterns and trends
of the entire data in the learning model without storing all the
data, and adapt to the new data patterns by partially updating
the learning model (e.g., replacing the nodes of Hoeffding
trees).

B. Concept Drift Detection

“High variability” implies the concept drift issue associated
with the non-stationary IoT data and the dynamic IoT envi-
ronments. [oT streaming data is prone to many types of data
distribution changes due to the dynamic IoT environments. For
example, the physical events monitored by IoT sensors can
change over time, and the sensing components age or need
updates periodically. The corresponding IoT data distribution
changes are named concept drift [S]] [6].

The occurrence of concept drift could degrade the decision-
making capabilities of IoT data analytics models, causing
severe consequences in IoT systems. For example, the mis-
leading decision-making process of IoT anomaly detection
framework could significantly degrade their detection accu-
racy, making the IoT system vulnerable to various malicious
cyber-attacks. To address concept drift, effective methods
should be able to detect concept drift and adapt to the changes
accordingly. Therefore, concept drift detection and adaptation
are the two main challenges related to the high variability issue
of IoT streaming data [6].

The first challenge of drift detection is the multiple types of
concept drift, including gradual, sudden, and recurring drifts.
The second challenge of drift detection is the various factors
that can cause concept drift in IoT systems, including the IoT
event factors (e.g., system updates, IoT device replacement,
and abnormal network events) and time-series factors (e.g.,
seasonality and trends).

Window-based methods and performance-based methods
are two potential solutions for drift detection [6]]. Adaptive
Windowing (ADWIN) is a common window-based method
that uses adaptive sliding windows to detect concept drift
based on the statistical difference between two adjacent sub-
windows [6]. Windowing methods are often fast and easy to
implement, but they may lose certain useful historical infor-
mation. On the other hand, Drift Detection Method (DDM)
and Early Drift Detection Method (EDDM) are two popular
performance-based drift detection methods that determine the
occurrence of concept drift by monitoring the degree of model
performance degradation [6]]. Performance-based methods can
effectively detect the drifts that cause model degradation, but
they require the availability of ground-truth labels.

C. Concept Drift Adaptation

After drift detection, the observed drift should be effectively
handled so that the learning model can adapt to the new
data patterns. The concept drift adaptation challenge can be
addressed using three potential solutions: adaptive algorithms,
incremental learning, and ensemble learning methods [6].

Adaptive algorithms handle concept drift by fully retraining
or altering the learning model on an altered dataset after
detecting a drift. They are often the combinations of a ML
model and a drift detection technique. For example, Losing
et al. [9] proposed the self-adjusting memory with k-nearest
neighbor (SAM-KNN) algorithm that uses KNN to train a
learner and a dual-memory method to store both new and old
useful data to fit current and previous concepts.

In incremental learning methods, the learning model is often
partially updated when new samples arrive or drift is detected.
Manapragada et al. [[10] proposed an incremental learning
method named Hoeffding Anytime Tree (HATT) that selects
and splits nodes as soon as the confidence level is reached
instead of identifying the best split in Hoeffding trees. This
strategy makes HATT more efficient and accurate to adapt to
concept drift.

Ensemble learning is the technique of combining multiple
base learners to construct an ensemble model with better gen-
eralization ability. Gomes et al. proposed Adaptive Random
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TABLE I
10T DATA ANALYTICS CHALLENGES AND SOLUTIONS
g)];l; racte:i)si;: Challenge Description Potential Solutions
Large volumes of IoT data are continu- | Online learning methods with low computational complexity and forgetting
ously produced at a high rate, making it | mechanisms are potential solutions to achieve real-time processing of IoT
difficult to process and store all the data | data streams:
. due to the time and memory constraints 1) Sliding window methods: They use a sliding window to retain and
High Velocity l\l;llme & of low-cost IoT devices. Thls. requires process only the most recent data samples and discard old samples
emory that the average IoT data analytics speed to save learning time and storage space.

and Volume Constraints

is higher than the average data gener-
ation/collection time to meet the real-
time processing requirements; otherwise,
it could cause IoT service unavailability

or system failure.

2) Incremental learning methods: They can process every incoming new
data sample by partially updating the learning model. The data and
model complexity can be reduced by discarding the historical data
samples and model components to address the execution time and
memory constraints of IoT data analytics.

Due to the non-stationary IoT data and
dynamic IoT environments, concept drift

Concept drift can be detected using the following techniques:
1) Window-based methods (e.g., ADWIN): They use fixed-sized slid-

Cc]))r;ffetpt issues often occur in IoT data, causing ing windows or adaptive windows as data memories for different

Detection analytics model degradation. Drift detec- concepts to detect the occurrence of concept drift.
tion faces two main challenges: many 2) Performance-based methods (e.g., DDM & EDDM): They monitor
causing factors and multiple types of the model performance degradation rate to detect concept drift.
drifts in IoT systems.

High Variability After drift detection, the observed drift | Concept drift can be handled using the following techniques:

should be effectively handled so that the 1) Adaptive algorithms (e.g., SAM-KNN): They handle concept drift by

Concept learning model can adapt to the new data fully retraining or altering the learning model on an updated dataset

Drift patterns. after detecting a drift.
Adaptation 2) Incremental learning methods (e.g., HATT): They partially updated

the learning model when new samples arrive or drift is detected.
3) Ensemble learning methods (e.g., ARF & SRP): They combine
multiple base learners trained on data streams of different concepts.

Forest (ARF) [11] and Streaming Random Patches (SRP) [12]]
ensemble algorithms that both use Hoeffding trees as the base
learners and ADWIN as the drift detector. Ensemble models
can retain historical and new data patterns in different base
learners to address concept drift adaptation, but they often
require high execution time.

III. PROPOSED SYSTEM FRAMEWORK
A. System Overview

The purpose of this work is to develop an adaptive IoT
streaming data analytics framework that can address the time
& memory constraints, as well as the concept drift issues
described in Section II-C. Fig. [2| demonstrates the overall
architecture of the proposed adaptive LightGBM model. It
comprises two stages: offline learning to obtain an initial
trained model, and online training to detect IoT attacks in
online data streams.

At the offline training stage, current IoT traffic data is
collected to create a historical dataset. The historical dataset is
then used to train an initial LightGBM model. Moreover, the
hyperparameters of the LightGBM model are tuned by PSO, a
hyperparameter optimization (HPO) method, to construct the
optimized LightGBM model.

At the online stage, the proposed system will process the
data streams that are continuously generated over time. At the
beginning of this stage, the initial LightGBM model obtained
from the offline learning is used to process the data streams.
If concept drift is detected in the new data streams by the
proposed OASW method, the LightGBM model will then be
retrained on the new concept data samples collected by the

A Drift Adaptive LightGBM Framework for loT Streaming Data Analytics
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Fig. 2. The framework of the proposed drift adaptive IoT data analytics model

adaptive window of OASW to fit the current concept of the
new IoT traffic data. Thus, the proposed system can adapt to
the ever-changing new IoT traffic data patterns and maintain
accurate cyber-attack detection.

B. Optimized LightGBM

LightGBM is a fast and high-performance ML model based
on the ensemble of multiple decision trees [13]]. Unlike many
other ML algorithms, LightGBM is still an efficient model on
large-sized and high-dimensional data, mainly due to its two
utilized methods: gradient-based one-side sampling (GOSS)
and exclusive feature bundling (EFB). GOSS is a down-
sampling method that only retains the data samples with large
gradients and removes the samples with small gradients during
model training, which greatly reduces the time and memory
usage. EFB method is used to reduce the feature size by
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bundling mutually exclusive features, which significantly re-
duces the training speed without losing important information.

The reasons for choosing LightGBM as the base model for
IoT attack detection are as follows:

1) LightGBM is an ensemble model that has better general-
izability and robustness than many other ML algorithms
when working on non-linear and high-dimensional data.

2) By introducing GOSS and EFB, the time and space com-
plexity of LightGBM has greatly reduced from O(NF)
to O(N’'B), where N and N’ are the original and the
reduced number of instances, respectively, and F' and
B are the original and bundled number of features,
respectively.

3) LightGBM has built-in support for categorical data pro-
cessing and feature selection, which simplifies the data
pre-processing and feature engineering procedures.

4) LightGBM supports parallel execution by multi-
threading, which substantially improves the model
efficiency.

To summarize, LightGBM can achieve both high accuracy
and efficiency for data analytics, which is suitable for IoT
systems with time and resource constraints.

To build an effective model with high prediction accuracy,
the hyperparameters of the LightGBM model are tuned by
PSO, a HPO technique. HPO is the process of automatically
detecting the optimal hyperparameter values of a ML model
to improve model performance [14].

Among HPO methods, PSO is a popular population-based
optimization algorithm that detects the optimal values through
communication and cooperation among individuals in a group
[14]. In PSO, each particle in the swarm will continuously
update its own position and velocity based on its current
individual best position and the current global best position
shared by other particles. Thus, the particles will move towards
the candidate global optimal positions to detect the optimal
solution.

The reasons for choosing PSO to tune hyperparameters are
as follows [14]:

1) PSO is easy to implement and has a fast convergence

speed.

2) PSO is faster than most other HPO methods, since it
has a low computational complexity of O(N log N) and
supports parallel execution.

3) PSO is effective for different types of hyperparameters
and large hyperparameter space, like the hyperparameter
space of LightGBM.

Five main hyperparameters, the number of leaves
(num_leaves), the maximum tree depth (max_depth), the min-
imum number of data samples in one leaf (min_data_in_leaf),
the learning rate(learning_rate), and the number of base
learners (n_estimators), are tuned by the PSO method. By
detecting the optimal values of these hyperparameters, an
optimized LightGBM model can be obtained for accurate IoT
data analytics.

C. OASW: Proposed Drift Adaptation Algorithm

The OASW method is proposed in this article to de-
tect concept drift and adapt to the ever-changing IoT data

streams for accurate analytics. OASW is designed based on
the combination of ideas in sliding and adaptive window-
based methods, as well as in performance-based methods.
The complete OASW method is given by Algorithm 1. It
has two main functions named “DriftAdaptation” and “HPO”.
The “DriftAdaptation” function aims to detect concept drift
in the streaming data and update the LightGBM model with
the new concept samples for drift adaptation using the given
hyperparameter values. The “HPO” function is used to tune
and optimize the hyperparameters of the “DriftAdaptation”
function using PSO.

In OASW, there are two types of windows: a sliding window
used to detect concept drift and an adaptive window used to
store new concept samples. The size of the sliding window
is ¢, and the maximum size of the adaptive window is ¢/ ...
Additionally, two thresholds, « and /3, are used to indicate
the warning level and the actual drift level for concept drift
detection.

The main procedures of OASW are as follows. For each
incoming data sample ¢ in the new stream, its sliding window,
W, contains (i — )y, to iy, samples. The accuracies of W;
and W,_; (indicating the current and last complete windows,
respectively) are calculated and compared. If the accuracy of
the sliding window drops « percent from timestamp ¢ — ¢
to ¢, the warning level is reached, and the adaptive window
starts to collect incoming data samples as new concept samples
(lines 6-12). After that, if the sliding window accuracy keeps
dropping /3 percent to the drift level, a drift alarm will be
triggered, and the old learner will be updated by retraining
on the new concept samples collected in the adaptive window
(lines 13-18).

Moreover, to obtain a robust and stable learner, the adap-
tive window will keep collecting new samples until one of
the following two conditions are met: 1) The new concept
accuracy drops to the warning level o when compared to the
drift starting point, indicating the current learner is incapable
of processing the new concept and requires updating. 2) The
size of the adaptive window reaches ¢/, which ensures that
the memory and real-time requirements are met.

Then, the learner will be updated again on the samples in
the adaptive window to become a more robust learner, and the
system will change to the normal state for the next potential
drift detection (lines 26-35).

On the other hand, if in the warning state, the sliding
window accuracy stops dropping, or even increases to the
normal level, it will be seen as a false alarm. The adaptive
window will then be released, and the system will change
back to the normal state to monitor potential new drift (lines
19-24).

In the OASW algorithm, four parameters, «, /3, t, and ¢/ .,
are the critical hyperparameters that have a direct impact on
the performance of the OASW model. Therefore, PSO is used
to tune these four hyperparameters to obtain the optimized
adaptive learner, since PSO is efficient for both continuous
and discrete hyperparameters to which the hyperparameters of
OASW belong.

To implement OASW, the “HPO” function is given the
configuration space of the four hyperparameters. PSO will then
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Algorithm 1: Optimized Adaptive and Sliding Windowing (OASW)

Input:

Stream: a data stream,

«, (3: the warning and drift thresholds,

t: the fixed size of a sliding window,

t!  ax: the maximum size of the adaptive window,

Classifier: a classifier trained on offline dataset,

Space: hyperparameter configuration space,

M axTime: the maximum hyperparameter search times.
Output:

H Py p¢: the detected optimal hyperparameter values,

Max Acc: the average overall accuracy.
Function DriftAdaptation (Stream, Classifier, o, 3, t, t:mw):
W'« 0; // Initialize the adaptive window
State < 0; /I An indicator of normal, drift, and warning states
for all samples x; € Stream do

1
2
3
4
5 W; < a sliding window of the last ¢t samples of x;;
6
7
8

AccWin; <+ accuracy(W;); /I Current window accuracy

AccWin;_¢ < accuracy(W;—_¢); /I Last window accuracy

if (Indicator == 0)&&(AccWin; < a x AccWin;_¢)
then // New window accuracy drops from the normal to warning

9 W' W' U {z;} /I W' starts to collect new samples
10 State «+ 1; /I ' Warning occurs
11 end
12 if State == 1 then /I In a warning state
13 t' « Size(W');
14 if AccWin; < 8% AccWin;_, then // New window
accuracy drops to drift level
15 State < 2; /I Drift occurs
16 f < i; // Obtain the first new concept window accuracy
as a baseline
17 Classifier’ < Retrain Classifier on W',
/I Retrain the classifier on new concept samples
18 else if (AccWin; > a* AccWin;_)||t' ==t ..)
then // False alarm (the warning state changes back to
normal or stay constant)
19 W'« 0; /I Release the adaptive window
20 State < 0 /I Change to a normal state
21 else /I Still in the warning state
2 | W'« W' U{z;} I/ W' keeps collecting new samples
23 end
24 end
25 if State == 2 then // In a drift state
26 t' + Size(W');
27 if (AccWin; < o x AccWingiy)||t’ ==t],,..) then

// When new concept accuracy drops to the warning level or
sufficient new concept samples are collected

28 Classifier’ < Retrain Classifier’ on W',

/I Construct a robust classifier

29 W'« 0; /I Release the new concept window
30 State < 0 /I Change to a normal state
31 else

32 W' « W' U{z;} //| W’ keeps collecting new samples
33 end

34 end

35 end

36 return AvgAcc; /I The average accuracy
37 Function HPO (Stream, Space, MaxTime):

38 MaxAcc < 0;

39 for j < 1 to MaxTime do

40 o, Byt th, 0 + SelectConfiguration(Space); /I Search

optimal HP values by PSO

41 Acc +

DriftAdaptation(Stream, Classifier, o, B,t,t,, ..);
// Evaluate the current HP configuration

42 if MaxAcc < Acc then

43 MaxAcc < Acc;

44 HP,pt < @, B,t,t), ..+ // Update accuracy and optimal
hyperparameter values

45 end

46 end

47 return MaxAcc, HP,p¢; /I The best accuracy & hyperparameters

detect the optimal hyperparameter combination that returns the
highest overall accuracy (lines 38-48). The detected optimal
hyperparameters will then be given to the “DriftAdaptation”
function to construct the optimized model for accurate IoT
data analytics.

OASW has a training complexity of O(NM), and a low
run-time and space complexity of O(N), where N is the

number of instances, and M is the maximum hyperparameter
search times in PSO.

Compared to other concept drift handling methods, the
proposed OASW method has the following advantages:

1) Unlike many other methods that focus on either drift de-
tection or drift adaptation, OASW has both functionalities
because it uses a sliding window for drift detection and
an adaptive window for drift adaptation.

2) OASW has better generalization capability and adaptabil-
ity than most other approaches when applied to different
datasets or tasks since it can automatically tune the
hyperparameters to fit specific datasets by using PSO.

3) OASW detects concept drift and updates the learning
model mainly based on model performance degradation,
which ensures that the learner is only updated when
necessary.

4) OASW makes a trade-off between the model accuracy
and computational complexity by using the adaptive
window to collect sufficient new concept samples while
removing previous concept samples.

IV. PERFORMANCE EVALUATION
A. Experimental Setup

The experiments were implemented in Python by extending
the Scikit-multiflow [[15] framework on a Raspberry Pi 3 ma-
chine with a BCM2837B0 64-bit CPU and 1 GB of memory,
representing a real IoT device. Two IoT anomaly detection
datasets, IoTID20 [7] and NSL-KDD [8]], are used to evaluate
the proposed framework as examples for IoT classification
problems. The proposed framework can be applied to other IoT
classification problems using the same procedures. Addition-
ally, the proposed framework can also be applied to general
IoT regression problems by only changing the performance
metric to a regression metric (e.g., negative mean squared error
or negative mean absolute error).

[IoTID20 is a novel IoT traffic dataset with unbalanced
data samples (94% normal samples versus 6% abnormal
samples) for abnormal IoT device detection, while NSL-
KDD is a balanced benchmark dataset for concept drift and
network intrusion detection. They are both widely used in
many research projects to validate anomaly detection models
in IoT environments. Using these two datasets enables the
model evaluation on both balanced and unbalanced datasets.
For the purpose of this work, a reduced IoTID20 dataset
that has 62,578 records and a reduced NSL-KDD dataset
that has 35,140 records are used. The IoTID20 dataset was
randomly sampled based on the timestamps (1 data point per
10 timestamps). For the NSL-KDD dataset, it is known that
there is a sudden drift from the training set to the test set,
but there is no drift in the training set [[L1]; hence, for a clear
comparison between the two concepts, the last 10% of the
training set and the entire test set is used for model evaluation.

The proposed method aims to distinguish attack samples
from normal samples in IoT systems, so the datasets are uti-
lized as binary classification datasets. Hold-out and prequential
validation methods are used for model evaluation. For hold-out
validation, the first 10% of the data samples in each dataset
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Fig. 3. Accuracy comparison of different drift adaptation methods on two datasets: a) IoTID20; b) NSL-KDD.

TABLE II
HYPERPARAMETER CONFIGURATION OF LIGHTGBM AND OASW
Optimal Optimal
Model Hyper- Search \l;alue \I;alue
parameter Range (IoTID20) | (NSL-KDD)
n_estimators [50, 500] 300 300
max_depth [5, 50] 40 42
LightGBM learning_rate ©, 1) 0.56 0.81
num_leaves [100, 2000] 200 100
min_data_in_leaf [10, 50] 35 45
« (0.95, 1) 0.999 0.978
8 (0.90, 1) 0.990 0.954
OASW t [100, 1000] 300 350
[ [500, 5000] 1000 3100

are used as the training set for offline/initial model training,
and the last 90% are used as the test set for online learning.
Prequential validation, or named test-and-train validation, is
only used in online learning, where each input instance is first
used to test the model and then used for model updating. To
evaluate the performance of the proposed framework, multiple
metrics, including accuracy, precision, recall, and f1-score, are
used in the experiments.

For model comparison, four methods introduced in Section
II-B, including SAM-KNN [9]], HATT [10]], ARF [11]], and
SRP [12], are also evaluated on the two considered datasets.
These four methods are state-of-the-art drift adaptation ap-
proaches that have proven effective in many drift datasets
and applications. All the drift adaptation methods were im-
plemented using the default parameter values set in Scikit-
multiflow or the original papers.

B. Experimental Results and Discussion

To obtain optimized LightGBM and OASW models, their
hyperparameters are automatically tuned by PSO. The initial
hyperparameter search range and detected hyperparameter
values of the LightGBM and OASW models on the two
considered datasets are shown in Table[[ll After using PSO, the
optimal hyperparameter values were assigned to the proposed
models to construct optimized models for IoT attack detection.

Fig. 3| and Table show the accuracy comparison of the
proposed OASW & LightGBM model against the state-of-the-

art drift adaptive methods introduced in Section II-C. It can be
seen in Table [lII that the proposed adaptive model outperforms
all other methods in terms of accuracy. On the IoTID20, as
shown in Fig. [3(a)l the proposed method can achieve the
highest accuracy of 99.92% among all implemented models
by adapting a slight concept drift detected at point 13408.
Without drift adaptation, the offline LightGBM model has a
slightly lower accuracy of 99.78%. The accuracies of the other
four state-of-the-art methods are also lower than the accuracy
of our proposed method (99.01% - 99.27%).

For the NSL-KDD dataset, there is a severe drift at the
beginning of the test set [11]. As shown in Fig. and
Table by adapting to the sudden drift detected at point
9183, the proposed method can achieve the highest accuracy
of 98.31%, while the offline LightGBM model’s accuracy
drops significantly to only 84.25% without drift adaptation.
This emphasizes the development of drift adaptation methods.
The other four compared methods, SAM-KNN, SRP, ARF, and
HATT, have much lower accuracy than the proposed method
(94.11% - 96.58%).

The average online prediction time for each instance and
the total memory usage are also calculated to evaluate the
proposed method for real-time online learning considering the
time and memory limitations of IoT devices, as shown in
Table Among the six methods implemented, the memory
usage of the proposed method is the smallest on both datasets,
because the proposed model updates itself on a relatively
small subset obtained by OASW instead of on the entire
streaming data. The average prediction time of the proposed
model for each instance on the Raspberry Pi 3 machine is
only 7.8 ms and 9.1 ms on the two used datasets, much
shorter than SAM-KNN and SRP. This is mainly due to the
sliding window strategy and the efficiency of LightGBM. The
prediction time of ARF and HATT for each instance is shorter
than the proposed model, but their accuracy is much lower
than the proposed method. Therefore, the proposed method
still performs the best among the drift methods in terms of
the trade-off between accuracy and efficiency. Moreover, the
average execution time of the proposed framework for each
sample on a desktop machine with an i7-8700 processor & 16
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TABLE III
PERFORMANCE COMPARISON OF DRIFT ADAPTATION METHODS

IoTID20 Dataset NSL-KDD Dataset
Method Accuracy | Precision Recall F1 Avg Test Memory Accuracy | Precision Recall F1 Avg Test Memory
(%) (%) (%) (%) Time (ms) Usage (MB) (%) (%) (%) (%) Time (ms) Usage (MB)

SAN[[;(NN 99.25 99.40 99.80 | 99.60 434 179.7 96.58 96.13 976 | 96.86 216 137.2
HATT [10] 99.01 99.21 99.74 99.47 4.8 0.8 94.11 94.26 94.86 94.56 3.5 7.3
ARF [11] 99.26 99.37 99.85 99.61 59 0.9 96.11 95.81 97.05 96.42 5.6 6.8
SRP [12] 99.27 99.35 99.88 99.61 67.8 3.8 96.26 96.21 96.88 96.55 35.7 15.3

Offline
LightGBM 99.78 99.82 99.95 99.88 0.6 1.9 84.25 97.75 72.51 83.26 0.3 3.7
Proposed

OASW & 99.92 99.93 99.98 99.96 7.8 0.4 98.31 98.57 98.30 98.43 9.1 1.8
LightGBM

GB of memory and a powerful Google Colaboratory Cloud
machine with a Xeon processor is only 1.3 ms and 0.9 ms,
respectively. The high data processing speed on powerful cloud
machines shows the feasibility of implementing the proposed
framework in real-time environments.

In conclusion, the experimental results show the effec-
tiveness and robustness of the proposed adaptive LightGBM
model for IoT streaming data analytics.

V. CONCLUSION

The increasing popularity of IoT systems has brought great
convenience to humans, but it also increases the difficulty to
collect and process large volumes of IoT data collected from
various sensors in IoT environments. Compared to conven-
tional static data, [oT data is often big streaming data under
non-stationary and rapidly-changing environments. Adaptive
ML methods are appropriate solutions since they have the
capacity to process constantly evolving IoT data streams by
adapting to potential concept drifts. In this article, we proposed
the adaptive LightGBM model for IoT data analytics with
high accuracy and low time and memory usage. Through the
integration of our proposed novel drift-handling algorithm (i.e.,
OASW), an ensemble ML algorithm (i.e., LightGBM), and a
hyperparameter method (i.e., PSO), the proposed model has
the capacity to automatically adapt to the ever-changing data
streams of dynamic IoT systems. The proposed method is
evaluated and discussed by conducting experiments on two
public IoT anomaly detection datasets, [oTID20 and NSL-
KDD. Based on the comparison with several state-of-the-art
drift adaptation methods, the proposed system is able to detect
IoT attacks and adapt to concept drift with higher accuracies
of 99.92% and 98.31% than the other methods on the [oTID20
and NSL-KDD datasets, respectively.
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