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Abstract—Time-critical control applications typically pose
stringent connectivity requirements for communication networks.
The imperfections associated with the wireless medium such as
packet losses, synchronization errors, and varying delays have
a detrimental effect on performance of real-time control, often
with safety implications. This paper introduces multi-service edge-
intelligence as a new paradigm for realizing time-critical control
over wireless. It presents the concept of multi-service edge-
intelligence which revolves around tight integration of wireless
access, edge-computing and machine learning techniques, in or-
der to provide stability guarantees under wireless imperfections.
The paper articulates some of the key system design aspects
of multi-service edge-intelligence. It also presents a temporal-
adaptive prediction technique to cope with dynamically changing
wireless environments. It provides performance results in a
robotic teleoperation scenario. Finally, it discusses some open
research and design challenges for multi-service edge-intelligence.

Index Terms—5G, 6G, Al, control, determinism, edge, RAN,
time-sensitive communication, uRLLC.

I. INTRODUCTION

EAL-time control systems (RTCSs) underpin critical
applications across a range of industrial domains includ-

ing manufacturing, oil and gas, energy distribution, nuclear
decommissioning, and space exploration. RTCSs are time-
critical in nature and typically involve feedback (closed-loop)
control wherein spatially-distributed controllers, sensors, and
actuators exchange command and feedback messages over a
communication medium. With recent trends toward industrial
Internet-of-Things (IoT) and Industry 5.0, new applications for
RTCSs are emerging including multi-robot formation control,
human-robot collaboration, and multi-modal teleoperation [|1]].
Performance requirements of RTCSs can be quite stringent,
especially in terms of timeliness{ﬂ and ultra-grade reliability
and responsiveness [2]. Hence, wired solutions based on Field-
bus and Ethernet technologies are dominant in industrial envi-
ronments. Wireless technologies provide a low-cost alternative
with additional benefits of flexibility and mobility support.
However, the inherent uncertainty associated with the wireless
medium manifests in the form of latency variations, packet
losses, and time synchronization errors. Such imperfections
are detrimental to the stability of RTCSs and lead of system
outage or loss of transparency, often with safety implications.
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ITimeliness refers to deterministic latency guarantees which implies that
latency arising from communication must have very low variance, i.e.,
minimal jitter, between consecutive cycles.

Untethered RTCSs based on wireless technologies are still
in infancy. Recently, the viability of closed-loop control over
wireless has been demonstrated [3[]; however, such solutions
are limited to local environments. The fifth-generation (5G)
mobile/wireless technology fulfils the latency requirements of
most real-time applications; however, it does not provide the
much-needed determinism required by RTCS. First, the perfor-
mance experienced by a user varies as a function of distance
from the base station; hence “anytime and everywhere” guar-
antees are hard to provide. Second, even though 5G natively
supports ultra-reliable low-latency communication (uURLLC),
realizing feedback control requires enhancements at different
layers of the air-interface to guarantee minimal jitter for bi-
directional exchange. Third, over-the-air time synchronization
techniques for external grandmasters necessitate frequent sig-
naling [4] which cannot always be guaranteed as a single
control-plane is often shared across different user-planes.
Last but not least, increased separation between controllers
and sensors/actuators necessitates information exchange over
interconnected systems (e.g., via the Internet) where latency
cannot be easily guaranteed to additional communication and
computation factors.

Conventional paradigms for realizing control over wireless
can be classified into (a) control-aware wireless design and
(b) wireless-aware control design. The former aims to design
high-performance wireless protocols [1] for meeting real-time
requirements, e.g., the I0-Link Wireless protocol [5]]. The
latter focuses on designing control algorithms and architec-
tures to cope with communication uncertainties, e.g., passivity-
based controllers for robotic applications [6], [7].

This paper introduces a new multi-service edge-intelligence
framework for guaranteed stability of RTCSs in the presence
of imperfections associated with the wireless medium such
as packet losses, time synchronization errors, and latency
variations. Multi-service edge-intelligence is different from
conventional paradigms for realizing control over wireless.
It revolves around tight coupling of wireless access, edge-
computing, and predictive techniques, without specially de-
signed wireless protocols or application-specific control algo-
rithms. It empowers any kind of wireless network to handle
real-time control. It unlocks the potential of real-time control
at scale for industry and society without requiring specialized
robotics hardware and devices with proprietary interfaces. To
this end, the key contributions of this work are highlighted as
follows.

« We provide a holistic perspective on multi-service edge-

intelligence framework with some of the key system
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Fig. 1: Illustration of the multi-service edge-intelligence concept.

design aspects (Section II).

o As part of the multi-service edge-intelligence framework,
we present a temporal-adaptive prediction technique (Sec-
tion III).

« We conduct performance evaluation through realistic sim-
ulations, aided by a practical dataset, in a human-centric
robotic manipulation scenario (Section IV).

o We discuss some of the key open research and design
challenges for multi-service edge-intelligence (Section
V).

II. MULTI-SERVICE EDGE INTELLIGENCE
A. The Framework

The multi-service edge-intelligence framework adopts a co-
design approach for (a) multi-access edge-computing (MEC),
(b) artificial intelligence (AI) and machine learning (ML)
techniqueﬂ and (c) wireless access system (5G RAN). This
co-design has two integral components: (i) tight integration
from architectural aspects, and (ii) joint optimization from
protocol and algorithmic aspects. The framework is expected
to be generic to cater for any kind of control application
(running as a service) over a communication system. The
main motivation for the framework is to guarantee stability of
time-critical control applications in the presence of wireless
imperfections. However, it also enables the perception of real-
time connectivity in human-centric control applications and
overcomes the physical limitations arising due to bottlenecks
in integrated systems and the finite speed of light.

The concept of multi-service edge-intelligence is illustrated
in Fig. [[| which depicts an immersive teleoperation scenario in
an industrial environment (e.g., for nuclear waste decommis-
sioning). A time-critical control application is running over a
communication network. The first domain (Domain A or the
master domain) generates control commands, e.g., a human
operator interacting with a master robot. The second domain
(Domain B or the slave domain) receives control commands,
performs actuation, e.g., a slave robot handling a task, and
sends feedback to the first domain. The two domains are
wirelessly-connected, e.g., via 5G RANs which are connected
via either local area or wide area networking technologies.

2We use the term ML throughout the paper as it is a sub-area of AL

Multi-service edge-intelligence is realized via support en-
ginesE| running in proximity of the domains exchanging time-
critical control information as shown in Fig. [I] A support en-
gine is an edge-computing platform, providing computational
and storage resources, and tightly coupled to the 5G system.
It is equipped with model training and inference capabilities
using ML techniques. For multi-service edge-intelligence,
support engines provide crucial predictive functionalities for
locally generating command/feedback signals and their timely
delivery in case the actual signals are lost or delayed due
to imperfections of the communication system. Note that the
support engines are running in proximity of both domains. For
the slave domain, the role of support engine is to predict the
command messages, whereas for the master domain, it predicts
the feedback messages. The predicted information is delivered
to respective domain through the 5G RAN.

The co-design approach underpinning multi-service edge-
intelligence framework requires various design considerations
from a system-level perspective. These are discussed below
from the perspective of challenges as well as potential solu-
tions.

B. System-level Design: The Tightly-Coupled MEC Challenge

A key system design aspect for multi-service edge-
intelligence is tight coupling of 5G and MEC systems. This
requires architectural-level as well as protocol-level enhance-
ments. From an architectural perspective, the MEC deploy-
ment must be in close proximity of the wirelessly-connected
control/actuating edges. The 3GPP service-based architec-
ture provides flexibility in deploying the user-plane function
(UPF). Therefore, the UPF and the MEC system can be co-
located with the 5G RAN for realizing the multi-service edge-
intelligence framework. In such a scenario, the MEC system
will be deployed in a data network external to the 5G system,
i.e., on the N6 reference point, as illustrated in Fig. m One
example of connected 5G and MEC system is the Aether
platform (https://opennetworking.org/aether/).

3High-level concept of support engines has been discussed in the recent
IEEE P1918.1 standard as well [8]; however, it has not been explored from
a holistic view covering tight integration of different system elements as
described in this work. Moreover, edge-intelligence techniques have received
little attention from a protocol design perspective.
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Fig. 2: MEC deployment in 5G for multi-service edge-intelligence.

The protocol-level challenge is further split into traffic
steering, radio resource allocation, and synchronized opera-
tion aspects. The traffic steering capability to/from the MEC
becomes particularly important for model training as well
as for delivery of the predicted information to the edge. In
an integrated SG-MEC system, the traffic steering capability
becomes the responsibility of the UPF; however, MEC system
can influence traffic steering through interaction with the 5G
network functions (policy control function, application func-
tion, etc.) as various new 5G functionalities support enhanced
integration with the MEC system [9]. Selective traffic steering
can be achieved through configuring the UPF with downlink
and uplink classifiers.

The resource allocation technique in the 5G RAN must
ensure timely and reliable delivery of the actual as well as
the predicted control/feedback information for actuation as
well as necessary information for the predictors. This implies
a window of opportunity for the air-interface during which
downlink/uplink resource allocation must take place. This
can be achieved through either proactive or reactive resource
allocation, potentially with joint allocation for downlink and
uplink.

The radio resource allocation aspects are directly influenced
by the level of synchronization between the MEC and the 5G
RAN. A loosely-synchronized integrated system will require
an event-triggered approach for resource allocation. However,
a tightly-synchronized system, underpinned by a time-sensitive
networking (TSN) interface connecting MEC and RAN, paves
the way for time-triggered resource allocation.

C. System-level Design: The ML at the Edge Challenge

Another crucial system design aspect is the integration
of MEC system with ML techniques. This is important for
realizing predictive intelligence as an edge application. The
MEC framework and reference architecture, as defined in
ETSI [10], enables implementation of MEC applications as
software-only entities running on top of a virtualization in-
frastructure. Tight coupling of MEC and ML implies that
the MEC system is utilized as a platform for running edge-
intelligence as a MEC application. The main functional blocks
for edge-intelligence as a MEC application include a predictive
engine, a training module, an event handler, and a system
controller for traffic routing and allocation of computation
resources. These functional blocks must be mapped onto the
MEC reference architecture and reference points, particularly

in terms of interaction with (a) the MEC platform (via the Mp
reference points), (b) host-level and system-level management
(via the Mm reference points), and (c) external 3GPP system
(via the Mx reference points).

An alternative solution is provided in the form of the O-
RAN architecture (https://www.o-ran.org/), which is built on
the principles of openness and intelligence, and shares some
conceptual similarities with the MEC architecture. Integration
of MEC and O-RAN architectures is beneficial from various
perspectives [11]]. O-RAN brings intelligence at the edge of
the RAN in the form of RAN intelligent controllers (RICs)
[12], thereby paving the way for native integration of ML
capabilities in 5G networks. In particular, the non-real-time
RIC (non-RT RIC) supports ML workflow including model
training and policy-based guidance of applications/services.

D. System-level Design: The ML for Wireless Challenge

Optimizing ML techniques for the peculiarities of wireless
environments plays an important role in multi-service edge-
intelligence. Conventional ML prediction functions (e.g., expo-
nential smoothing) provide fast convergence and consume less
computational resources. However, such predictors suffer from
significant reduction in accuracy when the observations are de-
creasing (e.g., due to wireless link outage), and therefore only
suitable for predicting over a single slot. On the other hand,
deep learning predictors offer higher accuracy and can be used
for multi-slot prediction; however, these are intensive in terms
of computational resource requirements and their execution
time can be high. Multi-slot prediction becomes particularly
important considering exchange of command/feedback mes-
sages with multiple degrees-of-freedom (DoF) in teleoperation
applications and also to mitigate the impact of burst errors in
wireless environments. It is important to dynamically adapt the
prediction horizon, by utilizing different types of predictors,
as per the wireless channel; however, it entails changing the
underlying model and the training requirements. In the next
section, we describe a prediction technique for addressing this
challenge.

III. TEMPORAL-ADAPTIVE PREDICTION TECHNIQUE

To provide a generic service-agnostic framework, and to
cope with dynamically changing wireless environments, we
design a temporal-adaptive prediction (TAP) technique where
different prediction models, with different capabilities and
complexities, are deployed to run in parallel. Due to its lower
complexity, the prediction horizon of the short-term predictor
is limited, i.e., it only predicts command/feedback signals in
the near future. The long-term predictor, with higher prediction
capabilities, has a broader prediction horizon. It can support
operation at the edges until new command/feedback signals are
successfully received. Note that previous prediction results are
discarded once new command/feedback signals are received.

The TAP technique is illustrated in Fig. [3] which depicts
a time-slotted model for communication between the master
and slave domains in a teleoperation scenario. In each timeslot,
the master domain generates a new command message which
is transmitted to the slave domain via the communication
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Fig. 3: The TAP technique for multi-service edge-intelligence.

network. The figure also shows a support engine, containing a
packet buffer and the two predictors, for providing predictive
capabilities in proximity of the slave domain. As shown,
the short-term predictor is solely responsible for predicting
the lost commands in the fourth timeslot. The long-term
predictor supports the slave domain until the new commands
are successfully received, i.e., it provides multi-slot prediction
and predicts commands in fifth, sixth, and seventh timeslots.

The TAP technique operates as follows. At any given
time ¢, once a new command (or feedback) signal/message
O! has been received, the short-term as well as the long-
term predictors are triggered to predict the forthcoming sig-
nals. This is achieved by gathering a set of signals W! =
[Ot=¢,0t=9+L .. O'=1 0! from the buffer and feeding
into both predictors. At the same time, the slave robot executes
actions according to the newly received command O°. In the
next slot, the predictors are re-initialized if a new command
has been successfully received. Otherwise, it executes actions
according to the commands generated by predictors.

The short-term predictor utilizes time series analysis tools
like vector autoregressive (VAR) and auto regressive integrated
moving average (ARIMA). These predictors exploit the inher-
ent natural structure in the time series data by learning through
partial historical data via unsupervised clustering mechanisms.

The long-term predictor, which is illustrated in Fig. []
utilizes a supervised learning model, which aims at accurately
capturing the temporal dynamics of the long-memory time
series data and the complex correlation among multiple DoF.
We adopt a recurrent neural network (RNN) based on the
gated recurrent units (GRU) architecture. At any given slot
t, the original command (or feedback) signal O! is received
by the predictive learning model stored in the buffer. The
generation system is a well-trained RNN located in the support
engine. The generation RNN consist of several layers of
a RNN cell where the last RNN layer is connected to an
output layer consisting of several activation functions. Once
the buffer receives a new original signal, it immediately
inputs the nearest time series data W? into the generation
system such that Wt = [O*=¢ Ot=¢+l ... O'~! O!. Dur-
ing the feedforwarding progress, the RNN is progressively
fed the previous signals O~ O!=¢+1 .. O!~1 Ot and it
then progressively produces the vector of predicted signals
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R = [OM,012,. . 0],

The predictive horizon is limited by the factor ~. As
execution delay of the RNN predictor can be longer than
one slot, the actuator in physical environment always relies
on the short-term predictor at the beginning of a prediction
cycle, and then it switches to the long-term predictor once the
initial prediction procedure is complete. Finding the optimal
number of timeslots for the operation of short-term and long-
term predictors is left as part of any future work.

In some scenarios, the training procedure mainly occurs
offline through prior data from simulation or training. In
these cases, a training/evaluation system is still employed in
the support engine for on-the-fly fine-tuning. The evaluation
RNN has the same architecture as the generation RNN. The
training frequency depends on the requirement, which is
not synchronized with generation cycle. Once required, the
buffer randomly picks a batch of normalized training samples,
each sample at slot 7 contains an input matrix (historical
signals) W™ = [O7=¢, O™—¢+l ... O™1 O7], and and a
label matrix L7 = [O™F1, 072 ... O™ +7].

These training samples are fed into the evaluation RNN to
calculate an average loss for the gradient descent. For instance,
in one training method, the loss can be obtained by calculating
the mean squared error between output results and labels. In
both generation and training/evaluation systems, the prediction
accuracy is measured by a method, e.g., calculating average
absolute errors between predictive results and labels. Once the
performance of the training/evaluation systems outperforms
that of the generation one, the obtained gradient during train-
ing will be shared between them for updating the weights.

Note that the training procedure can also be conducted in
an online manner without any pre-training. At the beginning,
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the system executes the single prediction mode, where only
the short-term predictor is triggered. The training/evaluation
system in the long-term predictor is initialized by randomly
generating weights. The training/evaluation system is trained
using the samples in the buffer. Note that the training is not
synchronized with the generation cycle, which will not occupy
computational resource during generation procedure. In this
scenario, the prediction accuracy of the short-term predictor is
also measured. After every training epoch, the long-term pre-
dictor will be evaluated by comparing its prediction accuracy
with the short-term predictor. Once the prediction accuracy of
the long-term predictor outperforms the short-term predictor,
the weights of the training/evaluation system are shared with
the generation system, and the TAP mode will be triggered.

The size of control commands can be smaller than the
maximum payload carrying capacity of a packet on the air-
interface. In such scenarios, a command-bundling transmission
(CBT) technique can be adopted which improves resource uti-
lization while providing additional features for prediction. We
assume that multiple successive commands can be included
in the same packet. The received packet may include out-of-
date control signals, which will be used as the extra input
for the predictors. Let, f; denote the sampling rate of the
controller and f; denote the maximum transmission rate of the
network. Then, at each transmission interval, u = [ fs/f;] can
be included into one packet and transmitted via the network.
Considering a single packet is received by the predictor under
the timing constraint, only the pth command will be directly
applied to the actuator, while ¢ — 1 commands are outdated
and these will only be utilized for future prediction.

IV. PERFORMANCE EVALUATION

We simulate a robotic manipulation scenario, using a cus-
tomized simulator written in MATLAB, Gazebo, and Python,
where a remotely-controlled (by a controller) robotic arm with
7 DoF aims at picking an object (a coke can in this case) and
putting it into a container as shown in Fig. 5} The controller
has prior knowledge of the location of the target object and
it is responsible for calculating all required control signals
of the manipulator. The operation is time-slotted and the
control signals are time-varied sequences, where, at a single
slot, a command matrix includes the information of planned
positions, speeds, and accelerations of each DoF. At each slot,
the controller transmits the current command matrix to the
manipulator and waits for the feedback matrix. The controller
transmits the next command matrix only when it confirms the
manipulator arriving at the expected posture according to the
received feedback matrix. We assume that the network link
for transmitting commands is not perfect and it introduces a
random latency in communication. We model the latency by
a Normal distribution with a mean of 10 millisecond (msec)
and a variance of 20 msec. At each slot, if the packet with the
current command matrix was successfully received within the
delay constraint, the manipulator executes actions according
to the received commands. If this packet was lost or received
with a delay, we consider two different control strategies: 1)
benchmark strategy (non-predictive model) where the control

Fig. 5: Simulation environment for the robotic manipulation experiment.

happens according to the last available successful command,
and 2) predictive method where the control takes place ac-
cording to the TAP-based predictive model, where the VAR
method is used as the short-term predictor.

The position signals from the source, the non-predictive
model, and the predictive model, at each slot ¢, are denoted
by P!, Py, and P!, respectively. Input signals are re-scaled
between 0 and 1 as a pre-processing step prior to model
training. Such data scaling ensures stabilized training with
lower gradient errors as well as reduced convergence time [[13]].
The absolute error (AE) between the signals from the source
and the non-predictive model is given by E}, = |P}, — P¢],
whereas the AE between signals from the source and the
predictive model is given by Ef = |P} — P{|.

Fig. shows the AE (in normalized scale) comparison
between the predictive and the non-predictive models. The
results reveal that the AE of the predictive model is sig-
nificantly smaller and it exhibits much lower fluctuations as
compared to the non-predictive model. Next, we capture the
success probabilities of achieving the pick-and-plance task for
different models. We consider two scenarios: a high latency
scenario where the mean and variance of latency, as per the
Normal distribution, are 10 msec and 20 msec, respectively,
and a low latency scenario where the mean and variance are
5 msec and 10 msec, respectively. The results, averaged over
100 iterations, are as follows.

o Predictive model: 0.83 (high latency) & 0.87 (low la-
tency)

o Non-predictive model: 0.36 (high latency) & 0.49 (low
latency)

The results show that the predictive model considerably
outperforms the non-predictive model in terms of task per-
formance.

Next, we conduct performance evaluation of the TAP tech-
nique using a practical dataset [14], which collects kinematics
data of human hands during the performance of a wide variety
of activities of daily living involving feeding and cooking. This
dataset was recorded with measurements in 18 DoF on each
hand (see Fig. 3 in for more details). For simplicity, we
only consider the data from one hand here.
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Fig. 6: Performance comparison of (a) the AE from predictive and non-
predictive models where the former is based on the TAP technique, and (b)
the TAP technique and its benchmarking.

We consider the scenario of remotely controlling a slave
robot via transmitting the kinematics data through a wireless
network. We assume that the transmission rate of the network
is limited such that only one command can be transmitted
every six slots. Therefore, after receiving a new command,
the predictor is responsible to predict the commands in the
next five slots. Our aim is to create a challenging scenario
for the predictor. Besides, transmitting one command every
six slots represents the scenario where the frequency of
incoming signals is higher than maximum possible frequency
of delivering, e.g., in the case of haptic streams which are
typically sampled at a very high rate of 1 kHz [1].

Fig. [6D] plots the average AE between the source and the
predictive models, including the proposed TAP technique, the
non-predictive method, and classical single-predictive method
which only utilizes a single predictor, i.e., the VAR technique.
The average AE is obtained by averaging the absolute error
over the samples and over each DoF. The results indicate that
the proposed TAP technique considerably outperforms other
methods in terms of the minimizing the AE; hence, making it
a crucial component of multi-service edge-intelligence.

V. OPEN RESEARCH AND DESIGN CHALLENGES
A. Edge-Intelligence-in-a-Box

Real-time control applications have also started to emerge
in the consumer sector. For instance, during the COVID-
19 pandemic, teleoperation technology was used to remotely
restock supermarket shelvesﬂ However, it relied on a spe-
cialized robot with complex hardware/software design. To
fully unleash the benefits of teleoperation for businesses and
industries and to bring it at scale, we introduce the concept of
edge-intelligence-in-a-box. Such a box with predictive control
capabilities will enable stable teleoperation for any application,
utilizing off-the-shelf robotic hardware and haptic modules,
and over any kind of connectivity interface, i.e., using both
private and public 4G/5G or Wi-Fi. The box will deliver
predicted command/feedback to its proximity operator/robot
in a deterministic way using a TSN interface. Realizing such
a box and conducting its trials is an open challenge which will
be the focus of our future work.

B. Edge-Intelligence under Mobility

User mobility associated with either master or slave domains
directly affects the multi-service edge-intelligence framework.
Realizing multi-service edge-intelligence under mobility be-
comes particularly challenging as it is not just a simple traffic
path update problem, as in the case of conventional mobility
solutions for MEC architectures. It requires extending the
aforementioned co-design aspects (Section involving the
source and target MEC hosts. Coordinated resource allocation,
multi-connectivity, and federated ML techniques [15] are the
key enablers for designing a robust edge-intelligence frame-
work under mobility, especially when the source and target
MEC hosts have heterogeneous capabilities.

“https://www.youtube.com/watch?v=UxWH5XAcFnM
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C. Co-design with Time-critical Computing

Recent developments in the area of time-critical computing
have led to a new class of hardware processors which are
optimized for meeting the stringent temporal requirements of
real-time applications. A prominent example is Intel® Time
Coordinated Computing solution which fulfils hard real-time
requirements in terms of jitter and latency. The time-critical
computing paradigm enables industrial IoT devices to execute
operations at fixed time scales. It also enables predictive
engines to tightly couple model training and inferences phases.
Extending multi-service edge-intelligence with co-design of
TSN and time-critical computing is critical to unlocking the
potential of time-critical control at scale, especially in safety-
of-life applications.

D. Multi-modal Prediction Challenge

Perception in human-centric control applications is largely
related integration of multiple sensory modalities (e.g., audio,
visual, haptic, and tactile). Feedback in control applications
typically involve multiplexing of different types of sensory
information. However, different modalities have different toler-
ance levels to communication imperfections. This necessitates
a multi-modal predictive framework that jointly predicts differ-
ent types of sensory information while considering perceptual
performance as well as optimized multiplexing strategies for
the communication network.

VI. CONCLUDING REMARKS

Multi-service edge-intelligence is a promising new
paradigm to guarantee stability of time-critical control
applications under a wide range of wireless imperfections.
This paper introduced its fundamental concept, which is
based on tight coupling of MEC, ML techniques, and 5G
RAN, along with some of the key system design aspects
from a holistic perspective. Integrated MEC-5G systems
for multi-service edge-intelligence heavily rely on the
right deployment model with architectural, protocol, and
radio resource allocation enhancements. Multi-service edge-
intelligence can be realized as an edge-centric application
via the ETSI-defined MEC reference architecture or in
accordance with the O-RAN reference architecture. The
paper also introduces a TAP technique which utilizes
both short-term and long-term predictors to cope with
the peculiarities of the wireless environment, and more
importantly, to provide an application-agnostic approach to
edge-intelligence functionality. Performance evaluation in a
robotic manipulation scenario shows that the TAP technique
outperforms conventional techniques in terms of overcoming
wireless imperfections. To fully unleash the potential of
multi-service edge-intelligence for time-critical control in
industrial as well as consumer sectors, a number of challenges
remain including edge-intelligence-in-a-box, operation under
mobility, multi-modal predictive framework, and co-design
involving real-time computing engines.
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