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Abstract—Artificial intelligence (AI) technologies, and particu-
larly deep learning systems, are traditionally the domain of large-
scale cloud servers, which have access to high computational
and energy resources. Nonetheless, in Internet-of-Things (IoT)
networks, the interface with the real-world is carried out using
edge devices that are limited in hardware and can communicate.
The conventional approach to provide AI processing to data
collected by edge devices involves sending samples to the cloud,
at the cost of latency, communication, connectivity, and privacy
concerns. Consequently, recent years have witnessed a growing
interest in enabling AI-aided inference on edge devices by lever-
aging their communication capabilities to establish collaborative
inference. This article reviews candidate strategies for facilitating
the transition of AI to IoT devices via collaboration. We iden-
tify the need to operate in different mobility and connectivity
constraints as a motivating factor to consider multiple schemes,
which can be roughly divided into methods where inference is
done remotely, i.e., on the cloud, and those that infer on the
edge. We identify the key characteristics of each strategy in
terms of inference accuracy, communication latency, privacy, and
connectivity requirements, providing a systematic comparison
between existing approaches. We conclude by presenting future
research challenges and opportunities arising from the concept
of collaborative inference.

I. INTRODUCTION

The philosophical idea of artificial intelligence (AI), dating
back multiple decades, is nowadays evolving into reality.
Deep learning is demonstrating unprecedented success in a
broad range of applications: deep neural networks (DNNs)
surpass human ability in classifying images; reinforcement
learning allows computer programs to defeat human experts in
challenging games; generative models create images of fake
people, which appear indistinguishable from true ones. The
successful combination of deep learning with the expected
proliferation of smart edge devices, and particularly Internet of
Things (IoT) devices, is expected to bring AI to many aspects
of our lives, ranging from intelligent wearable sensors to self-
driving vehicle and smart manufacturing systems.

Deep learning, which is the key enabler technology for AI,
relies on highly-parameterized models, trained using massive
volumes of data. Consequently, deep learning is traditionally
the domain of large scale computer servers, which have
the computational resources and the ability to aggregate the
data required to store, train, and apply DNNs. However,
edge devices do not share these computational and storage
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resources, making the transition of AI from the domain of
powerful servers to distributed and computationally-limited
edge devices a challenging task [1].

The challenges associated with using DNNs on IoT edge
devices can be divided according to the main machine learning
tasks: training and inference. The challenges related to the
former stem from the fact that edge devices have access only
to a fraction of the data that can be aggregated by centralized
AI systems, yet sharing this data with a centralized server
may give rise to privacy concerns and limit the ability to
train personalized models. Schemes for enabling learning on
the edge are widely studied in the literature, with arguably
the most common approach being the federated learning
paradigm [2], where multiple devices collaborate during train-
ing in a centrally orchestrated fashion.

Even when one has access to a trained AI model, having it
utilized by IoT devices gives rise to many different challenges.
Most notably, DNNs are often comprised of millions and even
billions of parameters. Hence, hardware-limited IoT devices
may be unable to merely apply such trained DNNs due to
storage, energy, and computational considerations. A common
practice is to have the edge device communicate their measure-
ments to a powerful centralized server for inference. Yet, this
strategy induces delay, gives rise to privacy concerns, imposes
a notable burden on the server, and limits AI-aided inference
to settings where reliable communications with the server is
attainable. These challenges can become limiting factors for
emerging applications such as, e.g., AI-empowered wearable
devices. Consequently, recent years have witnessed a growing
interest in leveraging collaboration for facilitating edge infer-
ence, with the proposal of various different techniques [3]–[5],
motivating the unified overview of these methods.

In this article we systematically review candidate ap-
proaches for enabling AI-aided inference on IoT devices.
While the successful transition of AI to IoT devices is likely
to rely on developments in both hardware as well as signal
processing and algorithmic techniques, our focus is on the
latter. We commence with discussing the diverse use-cases for
IoT inference, reviewing their associated characteristics and
positioning them in the context of the conventional paradigms
of edge vs cloud computing [6]. We particularly divide these
settings into static scenarios, as arise in, e.g., smart manu-
facturing systems, and dynamic mobile scenarios, relevant to,
e.g., wearable IoT devices and vehicular systems. This division
reveals the broad range of requirements and the need for
diverse collaborative strategies for AI-aided edge inference.

Next, we categorize existing and emerging approaches for
AI-aided inference into two main strategies: 1) inference on a
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Fig. 1: Illustration of IoT inference in static settings (left),
where the devices have constant guaranteed links with the
cloud server, versus dynamic settings (right), in which the de-
vices are mobile and operate in diverse levels of connectivity.

central system, either a dedicated edge server or a remote cloud
server, with collaboration potentially used to relieve latency,
congestion, and privacy concerns; 2) on-device inference,
either in a purely decentralized or in a centrally orchestrated
manner, where collaboration can improve performance with
different levels of compensation for latency, privacy, and
flexibility. We provide comparisons between these approaches,
capitalizing on their individual pros and cons in light of
the identified families of expected use-cases. We conclude
by discussing the road ahead and key research challenges
that are yet to be explored to fully harness the potential of
collaboration techniques for facilitating high-performance low-
latency IoT inference.

II. AI-EMPOWERED IOT INFERENCE

The term IoT encompasses a broad range of devices that
possess the ability to sense and communicate. Consequently,
inference tasks associated with IoT devices span a wide scope
of diverse use-cases. Diversity in IoT inference is reflected
in multiple aspects, including hardware capabilities, energy
resources, and latency tolerance. To pinpoint some of the
core challenges and motivate the need for different forms of
collaboration, as reviewed in the following sections, we next
focus on diversity that arises from different levels of mobility
of IoT devices. To highlight this, we consider two extreme
settings, as illustrated in Fig. 1:

• Static settings: here, the IoT devices are static, and
communicate with a cloud server, possibly with the aid of
an intermediate access point or edge server, via reliable
links of fixed capacity. Such settings include, e.g., the
deployment of surveillance cameras in smart cities, wired
biomedical monitors in hospitals, or sensor networks in
industrial systems.

• Dynamic settings: in many applications, IoT devices
are mobile, and are required to operate and infer while
traversing through different environments with varying
levels of connectivity to the cloud. For instance, wearable
devices, ranging from portable bio-medical sensors to
augmented reality systems, should operate also in rural
settings without guaranteed access to a centralized server.

The above settings represent the extremes of a spectrum
of use-cases varying in mobility, with various cases lying

in between. The above settings, which represent scenarios
where an observation taken at an edge device is to be used
for inference, characterize the different requirements of IoT
DNN-aided inference. In the static setting, one can reliably
process the data on the cloud server; the main challenges here
stem from latency and privacy requirements, as well as the
storage and computation capacity of the server, which is much
larger compared with edge devices, but also has its limits.
These can be tackled via collaborative inference, by properly
dividing some of the computation between the edge device and
the cloud (and/or intermediate servers in the communication
network). In the dynamic setting, connectivity to the cloud is
not guaranteed, and inference should be carried out on the
edge, where one must cope with the limited ability of edge
devices to apply highly parameterized DNNs. Collaboration
in such cases is feasible between different edge devices,
communicating in an adaptive device-to-device fashion, with
the aim of improving inference accuracy.

The division into static and dynamic settings highlights
the need for collaboration, for both remote and on-device
inference. These can be related to the main paradigms of cloud
computing, fog computing, and edge computing [6]. The latter
infers on the device that acquires the observations, while the
former two consider remote inference: in cloud computing,
inference is carried out solely on the centralized cloud server,
while in fog computing some of the processing is offloaded to
intermediate nodes in the communication network, e.g., access
points and edge servers. Since in this article we focus on
signal processing and algorithmic collaboration approaches,
rather than on the design and exploitation of the hierarchical
structure of communication networks, we henceforth simplify
our categorization into 1) cloud-centric inference, which is
carried out remotely regardless of whether it is partitioned
between the cloud server and fog nodes; and 2) edge inference
that is done on the edge device itself.

III. CLOUD-CENTRIC INFERENCE

By cloud-centric inference we mean a scenario in which
the inference result is produced in the cloud. This result may
then be sent back to the edge, if necessary. Two versions of
cloud-centric inference are illustrated in Fig. 2; in one case
(Fig. 2(a)), input data, such as an image, is uploaded to the
cloud, and in the other case (Fig. 2(b)), features derived from
the input data are sent to the cloud. Imperfections in the
uplink channel will affect the performance in either case. To
deal with such channel impairments, for the former strategy,
established error resilient coding techniques can be used. For
the latter one, there has been recent work on decoder-side error
mitigation [7], as well as joint source-channel coding [8].

A. Non-Collaborative Cloud Inference

In non-collaborative cloud inference (Fig. 2(a)), the entire
DNN is deployed in the cloud. The edge device merely
captures the data, for example an image, and sends it to
the cloud. An advantage of such a simple scheme is that it
is relatively easy to deploy with the current technology –
modern cameras are equipped with advanced hardware-based
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Fig. 2: Illustration of existing approaches for DNN-aided inference on the cloud of samples acquired by edge devices, for
an example scenario of classification of images gathered by a surveillance camera. The depicted schemes include a) non-
collaborative cloud inference, where the server processes the raw sample using a highly-parameterized DNN; b) collaborative
inference by partitioning a DNN into a light-weight encoder employed at the edge and a highly-parameterized decoder utilized
by the server.

image/video codecs and communication capabilities, while
large DNNs easily run in the cloud. There are, however, a
number of downsides to this scheme. First, sending the entire
datum (e.g., an image) to the cloud to perform inference uses
up more bits than necessary. It is shown in [9] that, at a given
inference accuracy, features from any layer of an arbitrary non-
generative DNN are more compressible than its input. This
means that uploading intermediate features from a DNN, rather
than its input, is more bit-efficient. Reducing the number of
uploaded bits could also reduce the overall latency. Finally,
uploading data directly to the cloud raises privacy concerns.
All these issues may be alleviated via collaborative edge-cloud
inference, which we discuss next.

B. Collaborative Edge-Cloud Inference

In this scenario, shown in Fig. 2(b), a DNN is partitioned
into a front-end (initial few layers) deployed on an edge
device, and a back-end (remaining part) residing in the cloud.
The edge device computes the features that are then uploaded
to the cloud. As discussed above, this strategy is more bit-
efficient, which will in turn reduce the communication latency
of uploading to the cloud, compared to the non-collaborative
cloud inference. The overall inference latency is a combination
of this communication latency, the computation time on the
edge device, and the computation time in the cloud.

Typical plots of the overall inference latency as a function
of the available upload bitrate for edge inference (where the
entire DNN is on the edge device, see Subsection IV-A), non-

collaborative cloud inference, and collaborative edge-cloud
inference are shown in Fig. 3, with some actual measurements
provided in [10]. In interpreting these plots, it is important to
remember that the hardware available in the cloud is faster
than that available on the edge device, and that uploading
intermediate DNN features is more bit-efficient than uploading
its input. When the available bitrate is very small, communi-
cation latency is higher than the computation time even on the
edge device, and in this regime, edge inference is the fastest.
Since edge inference does not require upload to the cloud,
its inference latency is shown as a constant. At the other
extreme, when the bitrate is large, communication latency
becomes negligible compared with the computation time. In
this case, non-collaborative cloud inference is the fastest, since
the cloud operates faster hardware. In between these extremes,
there is an interval of available bitrates over which edge-cloud
collaborative inference is the fastest.

Finally, the fact that collaborative edge-cloud inference
avoids uploading original data and sends features instead
may alleviate privacy issues. However, features uploaded to
the cloud can still carry some private information, which
may be revealed through various attacks. For example, the
model inversion attack [11] tries to recover the original data
from the features, which essentially means inverting the front-
end of the DNN on the edge device. If successful, private
information in the original data will be revealed. There are
currently limited defenses against such attacks, one being an
information-theoretic approach coined privacy fan [12], where
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Fig. 3: Typical inference latency plots for edge, cloud, and
collaborative edge-cloud inference, as a function of available
bitrate of the channel connecting the edge device to the cloud.

non-private inference-relevant features are lightly compressed
while privacy-revealing features are more heavily compressed
to remove private information. It should be mentioned that
this is a relatively unexplored area, where much future work
is required to develop effective solutions, as discussed in
Section V.

IV. EDGE INFERENCE

In this section we consider settings where inference is to be
carried out on the edge, e.g., by an IoT device. Applying DNNs
on IoT devices as a form of edge computing allows to infer
on the same device where the data is collected, rather than
having the samples sent to a centralized cloud server. Such
DNN-aided edge devices can operate at various connectivity
conditions with reduced latency, as well as alleviate privacy
issues and facilitate the personalization of AI systems [5].

The core challenge with applying trained DNNs on IoT
devices stems from their limited computational resources.
Existing strategies for on-device AI-based inference can be
divided into non-collaborative and collaborative ones. The
former aims at designing compact DNNs that are applica-
ble on hardware-limited devices, as illustrated in Fig. 4(a)
and briefly discussed in Subsection IV-A. Collaborative ap-
proaches, which are the focus of this article, leverage the
ability of IoT devices to communicate with neighbouring peers
to enable high performance inference. This is achieved via
partitioning of complex computations over multiple devices
(Fig. 4(b)), or by forming an ad hoc deep ensemble (Fig. 4(c)).
In the following we elaborate on these families of methods.

A. Non-Collaborative Edge Inference

To enable the application of trained DNNs on edge devices
without having multiple devices collaborate, one typically has
to utilize compact DNNs. As deep learning usually employs
highly-parameterized models, a key challenge here is to design

models that are compact without compromising too much on
performance.

Various techniques have been proposed in the literature
for compacting DNNs, see survey [13]. The conventional
framework deals with scenarios where one has access to
a highly-parameterized high-performance DNN, and aims at
making it more compact. Among the leading techniques for
compacting DNNs are knowledge distillation, where a compact
DNN is trained to imitate the highly-parameterized pre-trained
model; network pruning, which intentionally throws away
neurons and/or nullifies weights in the trained model; and
network quantization, where the weights of the network are
coarsely discretized, possibly to a single bit.

The above approaches aim at compacting a given DNN.
Alternatively, one can design an AI model to be light-weight
in the first place, rather than starting from a pre-trained highly-
parameterized DNN. For instance, the fact that a DNN is to
be pruned or quantized can be accounted for in its training
procedure, boosting the trained model to facilitate compaction.
Furthermore, one can prefer deep architectures, such as con-
volutional networks with small kernels and shortcut connec-
tions [13], that are inherently more compact compared with
conventional ones. An alternative strategy is to design DNN-
aided systems that utilize compact networks by incorporating
statistical model-based domain knowledge and augmenting a
suitable classic inference algorithm with trainable models, see,
e.g., survey in [14].

Non-collaborative edge-inference strategies focus on a sin-
gle edge user, e.g., a single IoT device. As such, they do
not exploit the fact that while each device is limited in its
hardware, multiple users can confidently collaborate, even in
the absence of reliable connectivity to a centralized server.
Such collaboration, discussed in the following sections, allows
the system to benefit from the joint computational resources
of multiple IoT devices.

B. Computation Partitioning
The ability of edge devices to communicate and collaborate

can be harnessed to enable AI-aided inference by partitioning
and dividing a highly-parameterized DNN among multiple
devices. Such techniques, coined computation partitioning or
offloading [5], are schematically illustrated in Fig. 4(b).

There are several schemes to partition a DNN among
multiple devices. The most straight-forward approach divides
the DNN by layers (or blocks of layers). In such layer-based
collaborative inference, each participating device only applies
a subset of the layers of the DNN, and communicates its
output features, which are possibly compressed to reduce the
overhead, to the specific device that applies the subsequent
layers. Layer-based partitioning of a DNN can also be com-
bined with horizontal partitioning, where the computations of
each layer are divided among multiple users, i.e., different
users apply different neurons of the same layer [3]. The latter
is essential when utilizing wide DNNs, in which some layers
may be comprised of too many neurons to be applicable on
hardware-limited edge devices.

The partitioning of a multi-layered DNN among multiple
users allows to jointly form a large network during inference.
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Fig. 4: Illustration of existing approaches for DNN-aided inference on edge devices, for an example scenario of inference
carried out by UAVs. The depicted schemes include a) non-collaborative local inference using compact DNNs, design via
model compression (e.g., distillation or pruning) or via model-aware design; b) collaborative inference by partitioning of a
highly-parameterized DNN among multiple devices; c) collaborative inference via edge ensembles with diverse DNNs used
by the different collaborating devices.

As such, in the absence of communication errors, it enables
AI-aided edge inference without compromising on accuracy
compared with cloud-centric inference. Nonetheless, each user
cannot infer on its own, and must rely on the availability of
neighbouring nodes, which have access to the required DNN
partitions. This notably complicates the ability to form an
ad hoc collaboration, and typically involves some centralized
orchestration and model distribution. Finally, the repeated
communications among the multiple devices, and the potential
presence of stragglers due to the heterogeneous nature of
IoT devices, results in possibly increased inference latency,
and requires dedicated optimization of the workload and
communication among the participating devices [3].

C. Edge Ensembles

The above edge inference approaches either rely solely
on local inference (via compact DNNs), or require reliable
communications with a set of edge devices (in computation
offloading), which is either pre-defined or determined via a
dedicated protocol with additional overhead and orchestration.
Edge ensembles [4], [15] is a collaborative inference strategy
that supports purely local inference while enabling the benefit
from collaboration among multiple devices.

The rationale here is to have the edge devices utilize
compact DNNs, such that each device can infer locally in

the absence of reliable connectivity [4]. Nonetheless, while
the individual models used by each device are designed for
the same inference task, they are diverse. For instance, each
device may posses a DNN with different weights, activations,
or architectures. The diversity among the users allows mul-
tiple devices to form a deep ensemble during inference, by
aggregating predictions made by multiple devices. Doing so
leverages the known performance gains of ensemble models,
allowing devices to improve inference accuracy via collabora-
tion.

The direct scheme for edge ensembles requires the inferring
user to share the observations with its available neighbouring
devices. Each participating user applies its local DNN to the
data and transmits the prediction to the inferring user, which
in turn aggregates them into a decision via, for instance,
ensemble averaging, majority vote, or even as a form of over-
the-air computation [15]. As sharing the observations, e.g., a
set of images, may give rise to communication latency and
privacy concerns, one can also first apply a shared encoder to
map the data into low-dimensional features that are shared
with the neighbours, which use diverse decoders for local
inference. This procedure is illustrated in Fig. 4(c).

Edge ensembles are inherently adaptive. When the only
participating user is the one inferring, e.g., in the absence of
available neighbouring devices, edge ensemble boils down to
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Fig. 5: Accuracy comparison of edge ensembles with up
to 16 users when inferring with MobilenetV2 with different
width factors compared with centralized inference with a large
network of width factor 1.

local inference discussed in Subsection IV-A. Collaboration
can be formed ad hoc in a decentralized manner, making it
suitable for mobile settings with varying connectivity levels.
While each user infers with a compact DNN whose perfor-
mance may be limited, collaboration mitigates the performance
loss compared to using a single large DNN, and in fact allows
to achieve performance improvements in some settings. This is
exemplified in Fig. 5, which depicts the accuracy achieved by
an edge ensemble for image classification with the CIFAR10
data set versus the connectivity probability for 16 devices. The
edge devices infer with diverse MobilenetV2 DNNs with width
factors of 1

4 ,
1
3 , and 1

2 , for which the number of parameters
is {2.51, 3.96, 7} · 105, respectively, and the accuracy is com-
pared with a baseline centralized full MobilnetV2 (abbreviated
MobilenetV2 1.0) comprised of over 2.3 ·106 parameters. The
complete details of the numerical study can be found in [4].
It is observed in Fig. 5 that while the full MobilenetV2 is
the most accurate among the individual models, collaboration
among multiple users allows devices utilizing a DNN with
width factors of 1

4 and 1
2 , which have roughly 6% and 30%

the number of weights as MobilenetV2 1.0, respectively, to
approach and even outperform the large centralized model.

V. SUMMARY AND THE ROAD AHEAD

Here, we provide a qualitative comparison between the
aforementioned strategies for DNN-aided edge inference.
Then, we detail a few important research directions that should
be explored to fully unveil the potential of the considered
strategies, and provide concluding remarks.

A. Comparison

The approaches detailed in Sections III-IV for facilitating
AI-empowered IoT inference differ in their properties, and
are each suitable for different types of scenarios. Broadly
speaking, cloud-centric inference is geared towards settings
with guaranteed reliable connectivity, e.g., static IoT systems,

while edge inference is most suitable for applications with
strict latency constraints or a need to operate in mobile
settings. To provide a meaningful comparison, we focus on
four key figures-of-merit – inference accuracy, communication
latency, privacy, and connectivity requirements.

1) Accuracy: The starting point for AI-empowered infer-
ence is typically some large high-performance DNN, whose
accuracy is degraded by modifying and compressing it. As
such, inferring solely on the cloud, which can host the large
DNN, is expected to be most accurate. Techniques that par-
tition the DNN, either via collaborative edge-cloud inference
or by offloading over multiple edge devices, may induce some
degradation as features being shared between the entities often
undergo lossy compression. Compacting the DNN is likely to
yield the most notable degradation, though its effect can be
mitigated by collaboration via edge ensembles.

2) Communications: Non-collaborative inference on the
edge does not entail any communication overhead, as pro-
cessing is carried out solely on-device, and thus offers the
least communication latency of all considered methods. Cloud-
centric inference may involve notable communication latency
due to the need to convey the observed data from the edge
to the cloud over the network, though this overhead can
be reduced by sharing compressed features via collaborative
edge-cloud inference. Among collaborative edge inference
schemes, computation partitioning may induce substantial
communication latency due to the repeated exchange of fea-
tures among the participating devices and the need to coor-
dinate the procedure, while edge ensembles entails minimal
excessive overhead, as it involves a single round of multi-
casting compressed features between the inferring user and its
neighbouring devices.

3) Privacy: The data used for inference may contain private
information. Thus, sharing the data over the communication
network, as done in cloud inference, does not preserve privacy.
In all collaborative schemes, one can enhance privacy by shar-
ing extracted features rather than the data itself, though this
requires dedicated crafting of the features. Clearly, inferring
locally with a compact DNN is most privacy preserving.

4) Connectivity: Cloud-centric inference requires reli-
able connectivity between the IoT device and the cloud
server, where non-collaborative cloud inference needs high-
throughput links for sharing the full observations. Edge in-
ference can typically be robust to limited connectivity and
applicable in mobile settings, though computation partitioning
still requires reliable communications between a (possibly pre-
defined) set of users that jointly possess all the partitions of a
complete large DNN.

The comparison detailed above is summarized in Table I.

B. Future Research Directions

Collaborative inference bears the potential of paving the
way to a smooth transition of AI from the domain of powerful
centralized servers, into a multitude of easily accessible and
portable devices. However, there are several research direc-
tions that should be further explored in order to realize the
potential of these methods. In the following we discuss a few
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Method Collaborate Accuracy Communications Privacy Connectivity
Cloud-
centric
inference

Cloud
inference

None Highest – usage of
large DNNs

High – due to
communications
of observations

None – data
shared over
communications
network

Requires reliable
high-throughput
link to server

Collaborate
edge-cloud
inference

Edge-cloud High – usage of
large DNNs, possi-
ble distortion due to
feature compression

Medium -
sharing of
compressed
features

Partial - shared
features that can
be crafted to en-
hance privacy

Requires reliable
link server

Edge
inference

Compact
networks

None Typically degraded
due to network com-
pacting

Minimal – no
communications

Fully private - no
data sharing

Invariant

Computation
partitioning

Multiple
edge devices

High – usage of
large DNNs, possi-
ble distortion due to
feature compression

High – due to re-
peated device-to-
device communi-
cations

Partial – shared
features that can
be crafted to en-
hance privacy

Requires reliable
links with spe-
cific edge devices

Edge
ensembles

Multiple
edge devices

Adaptive – degraded
in low connectivity,
increases when col-
laboration is feasi-
ble

Low – multi-
casting of
compressed
features via
device-to-device
links

Partial – shared
features that can
be crafted to en-
hance privacy

Fully adaptive –
operable in dif-
ferent connectiv-
ity levels

TABLE I: Qualitative comparison between the considered approaches for IoT AI-empowered inference.

representative topics, considering both theoretical studies as
well as algorithmic aspects and system design.

1) Privacy Guarantees: Collaboration during inference nat-
urally gives rise to privacy considerations, as it involves
sharing of data samples that may contain private information.
However, measuring privacy, which is essential to characteriz-
ing privacy guarantees, is not trivial in the context of inference
tasks. A widely-accepted concept in the machine learning
literature is differential privacy, which deals with guaranteed
obscuring of individual samples in large data sets, and may
thus be less suitable for inference based on a single data sam-
ple. An alternative privacy measure is information theoretic
privacy considered in [12], which represents the statistical
dependence between the shared and private features. The
study and characterization of meaningful privacy measures
for inference tasks is thus critical for allowing collaborative
inference that is free of privacy concerns.

2) Hybrid Collaboration Design: The division into cloud-
centric and edge inference is motivated by the categorization
of static and mobile IoT settings discussed in Section II.
However, one can also expect situations involving both static
and mobile users. For instance, inference carried out by a
mobile autonomous vehicle that can ad hoc communicate with
both neighbouring vehicles and road-side units that are wired
to the network infrastructure. Such scenarios motivate the
study of hybrid collaboration strategies, which can adaptively
benefit from collaboration among multiple edge devices, as in
edge ensembles, while leveraging possible connectivity with a
centralized server, as in collaborative edge-cloud inference.

3) Over-the-Air Computations: Recent years have wit-
nessed a growing interest in over-the-air computation tech-
niques for reducing the communication latency when learning

on the edge, particularly in a federated manner [2]. These
techniques are most relevant when the edge users communicate
over a shared wireless channel, such that a desired joint
computation can be achieved by non-orthogonal synchro-
nized communications with suitable precoding. This motivates
studying over-the-air schemes for edge inference, initially
explored in [15], being naturally suitable for edge ensembles,
with the promise of reducing latency and possibly enhancing
privacy (as the channel noise is now added to the shared
features and decisions).

4) Joint Hardware-Algorithmic Design: While we focus
on algorithmic aspects to facilitate AI-empowered edge infer-
ence, using DNNs on IoT devices will also involve hardware
developments. The fact that DNN-aided edge inference will
require novelty in both system hardware and collaboration al-
gorithms indicates the potential of joint hardware-algorithmic
designs. For instance, algorithmic approaches can possibly
guide hardware design, or alternatively, the characteristics
of hardware accelerators can reveal unique requirements for
efficient collaborative inference.

5) Diverse Edge Models: Collaboration via edge ensembles
requires having diverse models among the users. Achieving
such diversity is thus key to this form of collaboration. When
training is done on the edge, diverse models typically emerge
as the training data differs between devices. Diversity can also
be obtained when compacting a trained large DNN by, e.g.,
having each small model trained with a different initialization
via knowledge distillation, or by compressing a large network
with stochastic quantization, resulting in different compressed
realizations of the same network. These initial ideas, though,
all require further exploration to understand what technique is
most suitable for which scenario.
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C. Conclusions

In this article, we reviewed approaches for facilitating AI-
aided IoT inference via collaboration. We categorized existing
methods into two main strategies – cloud-centric inference
and edge inference – and highlighted the main characteristics
and challenges of each approach. By harnessing collaboration,
either with a cloud server or among multiple devices, it is
shown that one can achieve improvements compared with
inferring solely on the cloud and/or an edge device in terms
of accuracy, communication latency, privacy, and adaptivity.
We discussed several research directions that arise from the
concept of collaborative inference, which are expected to pave
the way in unveiling its potential for bringing AI to the edge.
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[9] H. Choi and I. V. Bajić, “Scalable image coding for humans and
machines,” IEEE Trans. Image Process., vol. 31, pp. 2739–2754, 2022.

[10] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 1, pp. 615–629, 2017.

[11] Z. He, T. Zhang, and R. B. Lee, “Model inversion attacks against collab-
orative inference,” in Proc. 35th Annual Computer Security Applications
Conference, 2019, p. 148–162.
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