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Abstract—Building accurate Machine Learning (ML) at-
tack detection models for 5G and Beyond (5GB) vehicular
networks requires collaboration between Vehicle-to-Everything
(V2X) nodes. However, while operating collaboratively, ensuring
the ML model’s security and data privacy is challenging. To
this end, this article proposes a secure and privacy-preservation
on-demand framework for building attack-detection ML models
for 5GB vehicular networks. The proposed framework emerged
from combining 5GB technologies, namely, Federated Learning
(FL), blockchain, and smart contracts to ensure fair and trusted
interactions between FL servers (edge nodes) with FL workers
(vehicles). Moreover, it also provides an efficient consensus
algorithm with an intelligent incentive mechanism to select the
best FL workers that deliver highly accurate local ML mod-
els. Our experiments demonstrate that the framework achieves
higher accuracy on a well-known vehicular dataset with a lower
blockchain consensus time than related solutions. Specifically,
our framework enhances the accuracy by 14% and decreases
the consensus time, at least by 50%, compared to related works.
Finally, this article discusses the framework’s key challenges and
potential solutions.

Index Terms—5G and Beyond Vehicular Networks; Security
and Privacy; Federated Learning; Blockchain

I. INTRODUCTION

The fifth-generation mobile communications networks (5G)
are revolutionizing our daily life by enabling new applications
with new requirements, including extensive coverage, high
bandwidth, and ultra-reliable, low-latency communications.
These advances have allowed significant developments in
many life domains, such as transportation, agriculture, and
health. Vehicular networks are one of the leading transporta-
tion applications witnessing tremendous advances. Thanks to
5G, Connected and Automated Vehicles (CAVs) provide more
road safety and an enjoyable driving experience. However, as
technological levels increase, vulnerabilities also increase. 5G-
enabled CAVs are facing a massive vector of attacks that can
lead to hazardous situations for drivers and passengers [1].
More specifically, internal attacks such as message droppings,
denial of service, and position falsification pose a real dan-
ger since attackers are authenticated members, making them
resistant to cryptographic solutions [2]. Fortunately, recent
advances in Machine Learning (ML) have led to interest-
ing solutions to cope with these attacks. Several ML-based
Misbehavior Detection Systems (ML-based MDSs) have been
proposed to detect internal attackers efficiently. However, most

are centrally trained, limiting their detection capabilities, espe-
cially for unseen malicious behaviors (e.g., zero-day attacks).
Indeed, suppose a new attack behavior appears. In that case,
the systems will not be able to detect the attack until sufficient
security datasets are collected and the central entity retrains the
model and redeploys it. On the other hand, collaborative ML-
based MDSs offer a continuous accuracy evolution and flexi-
bility to detect unseen attacks. However, several limitations
exist in early proposed collaborative ML-based MDSs [3–
5]. In particular, they: (i) violate CAVs’ privacy preservation
since the training datasets, with private information, are shared
among learning nodes, and (ii) generate a large overhead
during ML model updates, which can increase communication
latency. To deal with these issues, a few ML-based MDSs [6–
10] have recently exploited Federated Learning (FL). FL is
a distributed ML approach that allows learning nodes (FL
workers) to jointly train a global model without sharing their
datasets with the FL server. Thus, FL can avoid overhead and
mitigates privacy risks [11]. However, each of the existing
FL-based MDSs for 5GB vehicular networks has limitations.
More specifically, (i) [6–8] is vulnerable to single-point-of-
failure and attack risks since one single learning node (FL
server) aggregate the global model; (ii) [9] is vulnerable to
Byzantine attacks and ML-model falsification attacks [12]
since local models are not verified and securely saved, and (iii)
[10] leverages a heavy blockchain-based security infrastructure
with a limited consensus algorithm.

To this end, this article comes to overcome the above-
mentioned limitations. This mainly comprises avoiding single-
point-of-failure and attacks on the FL learning process while
providing blockchain-based lightweight security. We propose
thus a novel on-demand, decentralized, and secure secu-
rity framework for 5GB vehicular networks. The proposed
framework leverages a scalable and lightweight edge-based
blockchain infrastructure, FL, and smart contracts to enable
secure and privacy preservation collaboration in building FL
global attack detection models while avoiding Byzantine at-
tacks. The framework also has a game-theoretic-based incen-
tive mechanism for selecting the best FL workers in each
FL round. The article also includes a comparative analysis
performance evaluation validating the framework’s building
blocks. Finally, it discusses the framework’s challenges and
potential solutions. We can summarize the main contributions
of this article as follows:



• We propose an on-demand security framework for 5GB
vehicular networks in which building ML models for
attack detection are made available to the stakeholders
as needed. This framework is also modular with four
building blocks: (i) edge-based blockchain system, (i)
smart contract Design, (iii) accuracy-based fault tolerance
consensus Protocol, and (iv) Game theoretic-based incen-
tive mechanism.

• We examine our framework’s key features compared
to state-of-the-art works and evaluate its performance
through three experiments regarding model accuracy,
consensus time, and incentives.

The remainder of this paper is organized as follows. Section II
discusses related works and their limitations. Section III
describes the building blocks of the framework. Section IV
describes the framework workflow and how the system works.
Section V performs a comparative analysis and evaluates
the performance of the framework’s cornerstones. Section VI
discusses the challenges of implementing this framework and
potential solutions. Section VII concludes the paper.

II. STATE-OF-THE ART: COLLABORATIVE ML-BASED
MISBEHAVIOR DETECTION SYSTEMS FOR 5GB

VEHICULAR NETWORKS

Several collaborative ML-based MDSs have been proposed
for detecting internal attacks in 5GB vehicular networks.
The authors of [3] presented a detection system that enables
(re)training of the global model based on data newly collected
in a cluster of servers instead of one server. The authors of
[4] proposed a collaborative detection system based on Soft-
ware Defined Networking (SDN), enabling multiple distributed
SDN controllers to train a global model. However, both [3]
and [4] have privacy preservation issues since datasets are
shared between learning nodes. The authors of [5] proposed a
distributed ML approach that enables CAVs to train a global
model without sharing their datasets. However, peer-to-peer
distributed learning generates a large overhead, degrading
communications performance. The authors of [6] proposed an
FL-based privacy preservation collaborative attack detection
system. The authors of [7] proposed FL-SDN-based MDS in
which SDN controllers first collect vehicle data. Then they
train local models and send them for aggregation in the cloud.
The authors of [8] proposed an FL-based MDS to detect
vehicular inter-slice attacks consisting of two FL processes.
FL models are first aggregated in intermediate FL nodes.
Then, they are sent to the central FL server for building the
global model. However, [6–8] are vulnerable to single-point-
of-failure and attack risks since there is only one centralized
server to calculate the global model. The authors of [9]
proposed FL-based privacy preservation collaborative attack
detection that leverages a set of FL servers to calculate global
models. However, this solution is vulnerable to Byzantine
and model falsification attacks. The authors of [10] com-
bined blockchain and FL for collaborative attack detection.
The blockchain system consists of Road Side Units (RSUs),
which store global models obtained after running the Proof-
of-Accuracy (PoA) algorithms. However, this solution designs

unrealistic and heavy blockchain infrastructure since RSUs
have limited storage and processing capacities that can prevent
them from running blockchain operations. Moreover, selecting
FL workers (CAVs) is very challenging, given the limited
coverage of RSUs, and the high mobility of CAVs.

Unlike the above-mentioned FL-based solutions, our frame-
work has a decentralized FL architecture avoiding thus single-
point-of-failure and attack risks. It also has verification mech-
anisms for overcoming Byzantine and model falsification
attacks. Furthermore, the framework offers a lightweight
edge-enabled blockchain system enabling smart contracts and
managing incentives for trusted and successful collaboration
between FL servers and workers.

III. ON-DEMAND SECURITY FRAMEWORK FOR 5GB
VEHICULAR NETWORKS: BUILDING BLOCKS

Building-
blocks

Edge-based blockchain
system

Smart Contract Design

Accuracy-based Delegated
Byzantine Fault Tolerance

Consensus Protocol

Game Theoretic-based
Incentive Mechanism

Fig. 1: The framework’s building blocks

As shown in Figure 1, the cornerstones of our framework
are: (i) an edge-based blockchain system that ensures secure
collaboration in building global models while avoiding Byzan-
tine attacks; (ii) efficient smart contracts between stakeholders
and FL workers that ensure trusted and fair rewards for FL
workers; (iii) an incentive mechanism to stimulate and select
the best FL workers that provide highly accurate local models;
and (iv) a lightweight consensus protocol for providing fast
and reliable mining of blocks. In the following, we describe
these building blocks in detail.

A. Edge-based blockchain system

Our framework consists of two layers, as shown in Figure 2.
The first layer is the infrastructure that includes CAVs and
gNodeBs equipped with 5G-V2X technologies. The nodes
of this layer can be honest or malicious and be selected
to serve as FL workers. Indeed, the threat model includes
malicious nodes that perform internal attacks such as position
falsification and message dropping. The same nodes can also
perform Byzantine and model falsification attacks if selected
to serve as FL workers. Moreover, the second layer is the
5GB edge, mainly consisting of distributed FL-enabled edge
nodes with sufficient data storage, processing, and computing
capabilities connecting through wired and secure fiber con-
nections for sharing local ML models. Each FL-enabled edge
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node has a consortium blockchain hosting transactions and
smart contracts to enable reliable sharing of local models and
secure aggregating global models. Moreover, each FL-enabled
edge node manages a limited geographic zone (e.g., a smart
city), has global knowledge of the mobility of CAVs, and com-
municates with gNodeBs and CAVs within this zone through
secure 5G communication links. If we consider implementing
this framework in Luxembourg as a study case. An FL-enabled
edge node can be dedicated to each country’s twelve provinces.
An FL-enabled edge can communicate with vehicles via 5G
base stations in the province. Specifically, FL-enabled edge
nodes can be deployed on the cloud RAN in a Baseband Unit
(BBU).

B. Smart Contract Design

The framework receives creation requests for smart con-
tracts from stakeholders. A stakeholder is an entity interested
in building ML models for detecting specific types of attacks.
Stakeholders can comprise, for example, government enti-
ties, security organizations, or road organizations. The smart
contract has several parameters, as shown in Figure 2. The
model parameters are publicly shared among the FL workers,
while other parameters are only shared with the FL-enabled
edge nodes. Model parameters include the model structure,
regularization parameters, weights, loss function, and learning
rate. Other parameters comprise, for example, (i) the dataset
used for validating local models and (ii) the maximum number
of rounds to run for building a global model. The smart
contract also defines five functions, which are: (i) Initialize():
it is called in step 2 and used to initialize the smart contract’s
parameters such as the initial global model, the validation
dataset, and the reward, (ii) Select(): it is called in step 3 and
used to select FL workers in each FL round, (iii) Invoke():
it is invoked at the end of each FL round to aggregate the
global model in step 6 for the next round; (iv) Reward(): it
is an internal function called in step 7 and used to calculate
rewards for FL workers, and (v) Close(): it is used to close
the contract after completing the number of FL rounds and
returns the resulting global model to the stakeholder.

C. Accuracy-based Delegated Byzantine Fault Tolerance Con-
sensus Protocol

To ensure a coherent and recognized ledger for all
blockchain members, we propose a lightweight and scal-
able consensus protocol called the Accuracy-based Delegated
Byzantine Fault Tolerance (A-DBFT) consensus protocol
based on [13]. Our consensus protocol comprises two steps:

(i) Selecting the leader and consensus members: the
blockchain members (edge nodes) can be simple; they can
thus only verify, broadcast local models into the blockchain
network, and accept the validated blocks, or they can be miners
acting as simple and participating in consensus processes.
After the end of every consensus process, all edge nodes
recalculate the average accuracy of the aggregated final global
model. The framework selects the top 𝑀 edge nodes with
the highest average accuracy values as consensus members.

𝑀 should be greater than 3 𝑓 + 1, where 𝑓 is the maximum
number of faulty nodes to tolerate.

(ii) The consensus process: it comprises the following
steps: (a) Broadcast: after the end of every FL round, all the
received local models are broadcast in the entire blockchain for
audit and verification; (b) Collect: miners collect all the local
models. Then, miners check local models and add validated
ones to a list. Each miner waits to receive all the local models
before executing the smart contract locally; (c) Propose: after
all non-leaders members have finished building their local
blocks, the leader miner broadcasts a proposal to all non-
leaders; (d) Confirm: once a non-leader receives a candidate
block, it first verifies its validity, then retrieves the state of the
block for comparing it with its local state. If the check passes,
each non-leader broadcasts a confirmation message. However,
if the received block is invalid, the non-leader triggers a view
change, which calculates the next view change. Therefore,
the non-leader will broadcast a change view message; (e)
Publish: each miner keeps counting the number of received
confirmations and view changes. A miner reaches a consensus
only if the number of received messages from other distinct
consensus members exceeds (𝑀 − 𝑓 ). Finally, the next leader
is selected to prepare for the next consensus process.

D. Game Theoretic-based Incentive Mechanism

We propose formulating their selection process as a game
theory model to stimulate FL workers to provide accurate local
ML models. Various game-theoretical models can be used in
this problem. For example, the problem can be formulated as a
Stackelberg game. This game consists of an edge node acting
as the leader and several FL workers operating as followers.
Each FL worker is rational in deciding on its contribution
level regarding the accuracy of its local model for serving
stakeholders. Moreover, the FL worker’s utility may also
depend on other factors of reward and costs. On the one hand,
the utility of edge nodes depends on their paying monetary
costs and the trained model performance. On the other hand,
FL workers should cover the costs spend on collecting data
and training models. Stackelberg’s problem could be solved in
this conflict of interest situation to find the equilibrium.

IV. ON-DEMAND SECURITY FRAMEWORK FOR 5GB
VEHICULAR NETWORKS: WORKFLOW

Figure 2 shows the workflow of the framework, which con-
sists of seven steps. Step 1 is the system initialization; CAVs,
gNodeBs, and FL-enabled edge nodes must register with the
Certification Authority (CA). During the registration, each
node obtains a legitimate identity consisting of a private key,
a public key, and a public certificate. Then, the process starts
in step 2 when a stakeholder submits its smart contract into
the blockchain system. Once the blockchain system receives
the smart contract, a consensus process runs to store it on the
blockchain, get an address, and be invocable by edge nodes.
Once the smart contract is ready, edge nodes compete to find
the best FL workers to perform the task. Thus, in step 3,
edge nodes broadcast offers to stimulate CAVs and gNodeBs
to participate. Potential FL workers then submit their requests
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Fig. 2: The framework’s Workflow

to edge nodes, broadcasting them over the blockchain system.
Each edge node selects the best FL workers based on their
reputations for the current FL round. The reputation of an
FL worker is computed based on the accuracy of its previous
local models and its trustworthiness. Once FL workers are
selected, each edge node sends a confirmation to the selected
FL workers within its controlled area.

At the beginning of each FL round, edge nodes send the
latest global model to FL workers. Thus, each FL worker
calculates the global model’s weights update locally using its
local dataset in step 4. At the end of the round, FL workers
send their local models to edge nodes. Edge nodes broadcast
received local models throughout the blockchain network for
verification and consensus. Then, in step 5, FL-enabled edge
nodes collaboratively verify local models to detect Byzantine
attacks. Edge nodes evaluate models using the validation
dataset. Then, they eliminate a suspicious model if the ac-
curacy difference between the local and the global models
exceeds a certain threshold. The validation threshold can be
statically or dynamically set after each training round [12].

In step 6, once all local models are collected and checked
by the mining nodes, the current leader aggregates all its
validated models and calculates the current global model. It
also calculates the distribution of rewards for FL workers
and generates transfer transactions for rewards and reputation
updates for FL workers. The block thus includes the global
model, validated local models, rewarding transactions of FL
workers, and the newly calculated reputation values. Finally,
the consensus protocol runs to insert the block into the
blockchain. After each FL round ends, the framework updates
FL workers’ reputation values in step 7. The framework
decreases the reputation of FL workers with suspicious local
models. In contrast, it increases the reputation of those with
valid local models according to the accuracy of their models.
The framework then uses the reputation values (𝑅𝑊 ) to cal-
culate the reward allocated for each FL worker. It first divides
the stakeholder’s reward in line with the number of FL rounds.
Then, given 𝐶𝑅𝑖

is the number of coins allocated for an FL

round (𝑅𝑖), the number of coins allocated to each FL worker
(k) equals 𝐶𝑅𝑖

∗ 𝑅𝑊𝑘∑𝑙
𝑗=1 𝑅𝑊𝑗

.

While steps 1 and 2 only run at the system and the process
initialization, the remaining steps (3-7) repeat until the target
number of FL rounds are reached. At the end of the process,
the framework sends the resulting global FL model back to
the stakeholder.

V. COMPARATIVE ANALYSIS AND PERFORMANCE
EVALUATION

This section analyzes the framework’s key features com-
pared to the state-of-art works. We also evaluate the perfor-
mance of our framework in terms of the accuracy of built
models, blockchain consensus time, and incentive mechanism
while demonstrating its out-performance of relevant FL-based
solutions.

A. Comparative Analysis

Table I compares our framework with related ML-based
collaborative MDS considering different criteria. Specifically,
(i) columns (”Privacy preservation” and ”Secure”) indicate se-
curity and privacy preservation properties, (ii) columns (”Dis-
tributed”, ”Incentive FL workers”, and ”Overhead”) examine
the ML architecture and the overhead generated, and (iii)
columns (”Consensus Protocol” and ”Scalability”) examine
blockchain proprieties if applicable. Note that the ”+” sign
means that the solution provides the feature. More specifically,
the ”Distributed” column indicates that the solution uses
several learning nodes to build the global model instead of
a centralized one. The ”Overhead” column indicates whether
the overhead generated by the solution is small or large. The
value mentioned in Table I is mainly based on the learn-
ing mode used by the solution (distributed Data-center/peer-
peer/Federated). According to [11], distributed Data-center (as
in [3]), centralized (as in [4]), and peer-to-peer (as in [5])
generate large overhead while Federated (as in [6, 9, 10] and
our solution) generate a small overhead. The ”Secure” column
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Fig. 3: Performance of our framework

shows that the solution proposed in [10] and our solution are
the only approaches to secure learning. For the ”Consensus
protocol” column, we only mention the name of the protocol
if applicable. The ”Scalability” column depends on the used
consensus protocol. This column is based on the comparison
given in [14] to determine whether the work is scalable.

Table I shows that our framework is based on a secure
distributed architecture to build attack detection models while
preserving privacy. In addition, thanks to smart contracts,
the framework ensures trusted and incentivized interactions
with FL workers. Moreover, our framework uses a lightweight
consensus algorithm (A-DBFT) that ensures secure, fast, and
reliable mining of blocks and high scalability. Furthermore,
in our framework, mobility and scalability are handled by a
region-based management mechanism. Specifically, each FL-
enabled edge node managed a limited geographic region.
Moreover, our scheme does not manage many CAVs in each
region since the number of FL workers is also limited.

TABLE I: Comparison of state-of-the-art works
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[3] + - Large - - - -
[5] + + Large - - - -
[4] - - Large - - - -
[6] - + Small - - - -
[7] - + Small - - - -
[8] - + Small - + - -
[9] + + Small - - - -
[10] + + Small + - PoA -
This work + + Small + + A-DBFT +

B. Performance evaluation

We have conducted three experiments to demonstrate the
effectiveness of our framework.

1) Experiment 01:
In the first experiment, We used Tensorflow and Keras

Python libraries to design an abstract FL architecture. Specifi-
cally, deep learning models with two ten-unit hidden layers

have been trained on a 12-CPU machine with 15 GB of
RAM. The weights of local models have been computed
using the Stochastic Gradient Descent (SGD). In addition, the
loss function has used the categorical cross-entropy with a
0.005 learning rate. Moreover, the weights of the global model
have been calculated after each round based on the Federated
averaging algorithm. Our evaluation uses VeReMi, a dataset
generated from network simulations that implements position
falsification attack scenarios in 5GB vehicular networks. Our
evaluation adopts the scenarios of the medium traffic density
and 20% attacker ratio. The feature extraction leverages our
previous work [15].

Figure 3.a compares the accuracy obtained by our frame-
work with Uprety et al [6]. We compare our framework
only with this work because the proposed solution has also
been trained on the VeReMi dataset. The number of running
epochs by FL workers equals 20. Our results demonstrate
that accuracy values obtained by our framework outperform
those obtained in [6]. Indeed, after running the same FL
rounds considered in [6], our framework achieves more than
94% of accuracy, while [6] only achieves approximately 80%.
Figure 3.b focuses on our framework; we evaluated the impact
of the number of running epochs on the obtained accuracy
values (the number of FL workers is set to 3). The results
show that accuracy values increase with the number of running
epochs.

2) Experiment 02:
In the second experiment, we evaluate the consensus time.

We run the A-DBFT consensus protocol developed using
Python programming language in a machine equipped with
a CPU (Intel i5 2.6 GHz) and 8 GB of RAM. Table II
shows the number of transactions per block and consensus
time versus the number of FL workers. Note that the number
of consensus members considered equals seven. As we can
see, the number of transactions increases as the number of FL
workers increases. Consequently, the consensus time increases
with the number of involved FL workers.

Figure 3.c compares the consensus time in our framework
with Liu et al. [10] for various numbers of generated blocks.
We compared our framework only with this work because it is
the only solution among the state-of-the-art works presented
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in Table I that proposes to secure learning. The number of
FL workers considered in our evaluation equals ten. As we
can see, the consensus time in our framework increases with
the number of generated blocks, which is the same tendency
for the values of consensus time observed in [10]. The values
of the consensus time in our framework are lower than the
consensus time in [10] for all cases, thanks to A-DBFT.

TABLE II: Transactions per block and consensus time vs. FL
workers

The number of FL workers
3 5 10

Number of transactions per block 10 16 31
Consensus time (ms) 122 204 690

3) Experiment 03:
In this experiment, we analyzed the game’s theoretical-

based incentive building block. This evaluation is based on
our previously proposed model, taking costs as energy and
processing overhead [8]. Specifically, we analyzed the best re-
sponses of the FL-enabled edge node, considering the reward,
energy, and processing overhead. For this experiment, we set
the processing overhead per unit size to 0.2, and the amount of
energy spent to 0.15. In addition, we vary the reward values
within a [0.1 − 10] range. Figure 4 represents the utility of
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Fig. 4: The utility of the FL-enabled edge node with the
variation of the reward and the accuracy of the local model

the edge node with the variation of the accuracy and reward.
Various reward values change the utility of the edge node.
In addition, the utility raises as the accuracy does. Moreover,
The red dashed lines depict the edge node’s optimal reward for
having the most utility given the model accuracy. Therefore,
the edge node must raise its reward to incentivize CAVs to
improve local model accuracy. For instance, the edge node
should increase the optimal reward from 3.9 to 4.9, i.e., 25%,
to increase the accuracy of the local model from 0.85 to 0.95.
Note that the accuracy values are considered a reasonable and
realistic range in [0.85, 0.95].

VI. CHALLENGES AND POTENTIAL SOLUTIONS

This section highlights the significant challenges that can
appear for the successful deployment of our framework and
their potential solutions.

A. FL workers selection

In our framework, the selection of FL workers is only based
on their reputations which can increase the prejudice of the
framework toward a specific set of FL workers. This has
several disadvantages, such as increasing the bias in global
FL models and leading to the unfairness of the framework by
monopolizing some FL workers at the expense of others. One
solution to avoid this issue could be randomly selected part
of FL workers. Specifically, an explorer parameter could be
added to determine the ratio of FL workers that should be
selected randomly.

B. Privacy preservation of Global FL model

Our framework ensures privacy preservation in learning
since datasets are not shared between learning nodes. However,
FL workers can keep global FL models after returning their
updates to edge nodes. This can increase the privacy risks since
FL workers can sell it to other interested stakeholders or at-
tackers who can adapt their attacks to avoid being detected by
the same model. One solution could be to leverage blockchain
for traceability and identification of FL workers violating FL
model privacy preservation.

C. Dynamic selection of parameters

As shown in the evaluation part, the accuracy of the global
model depends not only on model parameters but also on the
number of FL rounds and the number of epochs running by FL
workers. Stakeholders should set the latter in the initialization
phase. However, when submitting their requests, stakeholders
cannot decide on the best choice of these parameters to achieve
higher accuracy in fewer FL rounds. One solution that could
help with this is to equip our framework with a recommender
system that gives some recommendations to stakeholders to
set values for these parameters to obtain higher accuracy. This
system can be built based on the past experiences of our
framework and could continuously be enhanced.

VII. CONCLUSION

This article proposed a novel security framework for 5GB
vehicular networks. Our framework enables on-demand pri-
vacy preservation collaborative attack detection models for
CAVs by leveraging federated learning, blockchain, and smart
contracts. Moreover, Our framework provides mechanisms for
stimulating FL workers and preventing Byzantine attacks. The
performance evaluations showed that our framework archives
more than 94% accuracy in building models on a well-known
vehicular dataset and less than 1s of blockchain consensus
time, outperforming related solutions. We have also discussed
the challenges involved in our framework and their poten-
tial solutions. In future work, we plan to consider different
approaches for selecting FL workers based mainly on their
reputations and available computing resources to build deep
neural networks.
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